1.
Geetha, C., Johnson, S.D., Oliver, A.S. et al. Adaptive weighted kernel support vector machine-based circle search approach for intrusion detection in IoT environments. SIViP 18, 4479–4490 (2024). https://doi.org/10.1007/s11760-024-03088-2.
2.
Quincozes, V.E., Quincozes, S.E., Kazienko, J.F. et al. A survey on IoT application layer protocols, security challenges, and the role of explainable AI in IoT (XAIoT). Int. J. Inf. Secur. 23, 1975–2002 (2024). https://doi.org/10.1007/s10207-024-00828-w.
3.
Li, M., Dou, Z. Active eavesdropping detection: a novel physical layer security in wireless IoT. EURASIP J. Adv. Signal Process. 2023, 119 (2023). https://doi.org/10.1186/s13634-023-01080-5.
4.
Kumar, M., Yadav, V. & Yadav, S.P. Advance comprehensive analysis for Zigbee network-based IoT system security. Discov Computing 27, 22 (2024). https://doi.org/10.1007/s10791-024-09456-3.
5.
Ul Haq, S., Singh, Y., Sharma, A. et al. A survey on IoT & embedded device firmware security: architecture, extraction techniques, and vulnerability analysis frameworks. Discov Internet Things 3, 17 (2023). https://doi.org/10.1007/s43926-023-00045-2.
6.
Rana, P., Chauhan, S. & Patil, B.P. Cyber Security Threats Detection in IoT Using Krill Based Deep Neural Network Stacked Auto Encoders. Wireless Pers Commun 135, 299–322 (2024). https://doi.org/10.1007/s11277-024-11002-9.
7.
Om Kumar, C.U., Marappan, S., Murugeshan, B. et al. Intrusion Detection Model for IoT Using Recurrent Kernel Convolutional Neural Network. Wireless Pers Commun 129, 783–812 (2023). https://doi.org/10.1007/s11277-022-10155-9.
8.
Mohy-eddine, M., Guezzaz, A., Benkirane, S. et al. Malicious detection model with artificial neural network in IoT-based smart farming security. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04334-5.
9.
Kaliappan, C.P., Palaniappan, K., Ananthavadivel, D. et al. Advancing IoT security: a comprehensive AI-based trust framework for intrusion detection. Peer-to-Peer Netw. Appl. (2024). https://doi.org/10.1007/s12083-024-01684-0.
10.
Karamizadeh, S., Moazen, M., Zamani, M. et al. Enhancing IoT-Based Smart Home Security Through a Combination of Deep Learning and Self-Attention Mechanism. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08685-w.
11.
Rajarajan, S., Kavitha, M.G. Enhanced security for IoT networks: a hybrid optimized learning model for intrusion classification. Sadhana 49, 180 (2024). https://doi.org/10.1007/s12046-024-02535-7.
12.
Zada, I., Alshammari, A., Mazhar, A.A. et al. Enhancing IOT based software defect prediction in analytical data management using war strategy optimization and Kernel ELM. Wireless Netw (2023). https://doi.org/10.1007/s11276-023-03591-3.
13.
Boopathi, M., Gupta, S., Zabeeulla, A.N.M. et al. Optimization algorithms in security and privacy-preserving data disturbance for collaborative edge computing social IoT deep learning architectures. Soft Comput (2023). https://doi.org/10.1007/s00500-023-08396-2.
14.
Shanthala, P.T., Annapurna, D. An improved IoT based security model for fitness tracker using quantum fruit fly optimization improved faster RCNN. Int. j. inf. tecnol. 15, 3623–3629 (2023). https://doi.org/10.1007/s41870-023-01376-7.
15.
Hazman, C., Guezzaz, A., Benkirane, S. et al. lIDS-SIoEL: intrusion detection framework for IoT-based smart environments security using ensemble learning. Cluster Comput 26, 4069–4083 (2023). https://doi.org/10.1007/s10586-022-03810-0.
16.
Nandanwar, H., Katarya, R. TL-BILSTM IoT: transfer learning model for prediction of intrusion detection system in IoT environment. Int. J. Inf. Secur. 23, 1251–1277 (2024). https://doi.org/10.1007/s10207-023-00787-8.
17.
D. Zhan, Z. Yu, X. Yu, H. Zhang, L. Ye and L. Liu, "Securing Operating Systems Through Fine-Grained Kernel Access Limitation for IoT Systems," in IEEE Internet of Things Journal, vol. 10, no. 6, pp. 5378-5392, 15 March15, 2023, doi: 10.1109/JIOT.2022.3222074.
18.
J. Jang and B. B. Kang, "3rdParTEE: Securing Third-Party IoT Services Using the Trusted Execution Environment," in IEEE Internet of Things Journal, vol. 9, no. 17, pp. 15814-15826, 1 Sept.1, 2022, doi: 10.1109/JIOT.2022.3152555.
19.
Z. Tang, L. Sun, D. Niyato, Y. Zhang and A. Liu, "Jammer-Assisted Secure Precoding and Feedback Design for MIMO IoT Networks," in IEEE Internet of Things Journal, vol. 9, no. 14, pp. 12241-12257, 15 July15, 2022, doi: 10.1109/JIOT.2021.3135079.
20.
X. Zhu and J. Tang, "NB-SSH: NB-IoT-Based Remote SSH Access to UAVs Under Symmetric NAT," in IEEE Networking Letters, vol. 6, no. 1, pp. 6-10, March 2024, doi: 10.1109/LNET.2023.3323389.
21.
D. Oliveira, T. Gomes and S. Pinto, "uTango: An Open-Source TEE for IoT Devices," in IEEE Access, vol. 10, pp. 23913-23930, 2022, doi: 10.1109/ACCESS.2022.3152781.
22.
A. Bedari, S. Wang and J. Yang, "A Two-Stage Feature Transformation-Based Fingerprint Authentication System for Privacy Protection in IoT," in IEEE Transactions on Industrial Informatics, vol. 18, no. 4, pp. 2745-2752, April 2022, doi: 10.1109/TII.2021.3101208.
23.
X. Feng, X. Zhu, Q. -L. Han, W. Zhou, S. Wen and Y. Xiang, "Detecting Vulnerability on IoT Device Firmware: A Survey," in IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 1, pp. 25-41, January 2023, doi: 10.1109/JAS.2022.105860.
24.
T. Takemura, R. Yamamoto and K. Suzaki, "TEE-PA: TEE Is a Cornerstone for Remote Provenance Auditing on Edge Devices With Semi-TCB," in IEEE Access, vol. 12, pp. 26536-26549, 2024, doi: 10.1109/ACCESS.2024.3366344.
25.
X. Li, H. Gao, J. Zhang, S. Yang, X. Jin and K. -K. R. Choo, "GPU Accelerated Full Homomorphic Encryption Cryptosystem, Library, and Applications for IoT Systems," in IEEE Internet of Things Journal, vol. 11, no. 4, pp. 6893-6903, 15 Feb.15, 2024, doi: 10.1109/JIOT.2023.3313443.
26.
W. Wu, S. Hu, D. Lin and Z. Liu, "DSLN: Securing Internet of Things Through RF Fingerprint Recognition in Low-SNR Settings," in IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3838-3849, 1 March1, 2022, doi: 10.1109/JIOT.2021.3100398.
27.
D. Hwang, S. Yeleuov, J. Seo, M. Chung, H. Moon and Y. Paek, "Ambassy: A Runtime Framework to Delegate Trusted Applications in an ARM/FPGA Hybrid System," in IEEE Transactions on Mobile Computing, vol. 22, no. 2, pp. 708-719, 1 Feb. 2023, doi: 10.1109/TMC.2021.3086143.
28.
Y. Li and H. Takada, "iSotEE: A Hypervisor Middleware for IoT-Enabled Resource-Constrained Reliable Systems," in IEEE Access, vol. 10, pp. 8566-8576, 2022, doi: 10.1109/ACCESS.2022.3144044.
29.
A. Aspesi and V. Zaccaria, "ConceptOS: A Micro-Kernel Approach to Firmware Updates of Always-On Resource-Constrained Hubris-Based IoT Systems," in IEEE Internet of Things Journal, vol. 11, no. 8, pp. 14472-14482, 15 April15, 2024, doi: 10.1109/JIOT.2023.3343459.
30.
N. Sheybani, X. Zhang, S. U. Hussain and F. Koushanfar, "SenseHash: Computing on Sensor Values Mystified at the Origin," in IEEE Transactions on Emerging Topics in Computing, vol. 12, no. 2, pp. 508-520, April-June 2024, doi: 10.1109/TETC.2022.3217488.
31.
Z. Ning, C. Wang, Y. Chen, F. Zhang and J. Cao, "Revisiting ARM Debugging Features: Nailgun and its Defense," in IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1, pp. 574-589, 1 Jan.-Feb. 2023, doi: 10.1109/TDSC.2021.3139840.
32.
S. Kaiser, M. S. Haq, A. ?. Tosun and T. Korkmaz, "Container Technologies for ARM Architecture: A Comprehensive Survey of the State-of-the-Art," in IEEE Access, vol. 10, pp. 84853-84881, 2022, doi: 10.1109/ACCESS.2022.3197151.
33.
R. Marzouk, A. S. Alluhaidan and S. A. El_Rahman, "An Analytical Predictive Models and Secure Web-Based Personalized Diabetes Monitoring System," in IEEE Access, vol. 10, pp. 105657-105673, 2022, doi: 10.1109/ACCESS.2022.3211264.
34.
B. Park, J. Tang and S. Kim, "Human-Object Relations and Security Control in Inference System for the User Intention," in IEEE Access, vol. 11, pp. 95368-95380, 2023, doi: 10.1109/ACCESS.2023.3310217.
35.
X. Li, Z. Qu, S. Zhao, B. Tang, Z. Lu and Y. Liu, "LoMar: A Local Defense Against Poisoning Attack on Federated Learning," in IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1, pp. 437-450, 1 Jan.-Feb. 2023, doi: 10.1109/TDSC.2021.3135422.
36.
Z. He et al., "Edge Device Identification Based on Federated Learning and Network Traffic Feature Engineering," in IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 4, pp. 1898-1909, Dec. 2022, doi: 10.1109/TCCN.2021.3101239.
37.
M. J. Iqbal, S. Aurangzeb, M. Aleem, G. Srivastava and J. C. -W. Lin, "RThreatDroid: A Ransomware Detection Approach to Secure IoT Based Healthcare Systems," in IEEE Transactions on Network Science and Engineering, vol. 10, no. 5, pp. 2574-2583, 1 Sept.-Oct. 2023, doi: 10.1109/TNSE.2022.3188597.
38.
E. Gyamfi and A. D. Jurcut, "Novel Online Network Intrusion Detection System for Industrial IoT Based on OI-SVDD and AS-ELM," in IEEE Internet of Things Journal, vol. 10, no. 5, pp. 3827-3839, 1 March1, 2023, doi: 10.1109/JIOT.2022.3172393.
39.
X. Wang, C. Fang, M. Yang, X. Wu, H. Zhang and P. Cheng, "Resilient Distributed Classification Learning Against Label Flipping Attack: An ADMM-Based Approach," in IEEE Internet of Things Journal, vol. 10, no. 17, pp. 15617-15631, 1 Sept.1, 2023, doi: 10.1109/JIOT.2023.3264918.
40.
O. Alruwaili, A. Yousef and A. Armghan, "Monitoring the Transmission of Data From Wearable Sensors Using Probabilistic Transfer Learning," in IEEE Access, vol. 12, pp. 97460-97475, 2024, doi: 10.1109/ACCESS.2024.3428444.