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Abstract – Device-to-device (D2D) communication has emerged 

as a critical technology in modern wireless networks, enabling 

efficient and cost-effective data exchange. However, its 

decentralized nature poses significant security and privacy 

challenges. This research proposes a novel methodology, 

Blockchain-based Onion Routing (BbOR) with Deep 

Convolutional Neural Networks (DCNN), to enhance the 

security, privacy, and robustness of D2D communication 

systems. Blockchain ensures data integrity and trustworthiness 

by maintaining an immutable, tamper-resistant ledger of 

encrypted tokens and messages. Onion routing adds a layer of 

privacy by anonymizing the communication path through 

multiple layers of encryption. The integration of Deep CNN for 

attack prediction enhances the system's ability to proactively 

detect and mitigate security threats, by analyzing token behavior 

and Blockchain transaction patterns. The proposed framework 

was validated using the Wireless Sensor Network Data Set 

(WSNDS), where data preprocessing, cryptographic token 

generation, secure routing, and attack detection mechanisms 

were systematically implemented. Results demonstrate the 

efficiency of the BbOR-Deep CNN system in providing robust 

security and privacy for D2D communication, making it suitable 

for applications in IoT, healthcare, and finance. 

Index Terms – D2D Communication, Blockchain, Secure 

Routing, Privacy-Preserving Communication, Onion Routing, 

Deep Convolutional Neural Networks, Deep Learning-Based 

Attack Detection. 

1. INTRODUCTION 

Device-to-device (D2D) communication is a crucial 

component of IoT networks, addressing the increasing 

demands of mobile users while optimizing spectrum 

utilization [1]. Initially introduced in 4G networks, it has been 

further developed for 5G [2] to support applications such as 

smart factories, Industry 4.0, and real-time industrial 

automation [3]. By enabling direct communication between 

devices [4], D2D reduces network congestion, lowers power 

consumption, and improves data transmission efficiency [5]. 

Despite its benefits, D2D communication faces several 

challenges, including real-time activation [6], optimal 
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spectrum allocation [7], and security vulnerabilities [8]. 

Researchers have explored various strategies to enhance 

performance, such as multi-hop cognitive wireless-powered 

communication for improving connectivity in Wireless Sensor 

Networks (WSNs) [9]. Graph-theoretic approaches have also 

been employed to enhance packet delivery by enabling direct 

communication between cluster heads [10]. Additionally, 

incentive mechanisms have been introduced in user-sharing-

based caching systems to encourage participation and improve 

content distribution efficiency [11]. 

Security and privacy remain major concerns in D2D 

networks. Blockchain technology, known for its tamper-

resistant and decentralized properties, ensures data integrity 

and prevents unauthorized modifications [12]. By providing 

immutable and transparent records, Blockchain enhances trust 

in caching and model training processes [13]. Given the 

complexity of 5G path selection, decentralized decision-

making methods allow devices to optimize routing based on 

local information [14]. Meanwhile, Onion Routing 

strengthens privacy by encrypting messages in multiple layers 

[15] and routing them through intermediate nodes [16], thus 

preventing traffic analysis and preserving user anonymity 

[17]. 

However, existing methods such as Blockchain with 

Interplanetary File System (IPFS) introduce complexity [18], 

while traditional Fuzzy C-Means clustering may struggle in 

dynamic environments [19]. Mutual Authentication Schemes 

[20], although efficient, may not be suitable for networks with 

frequent device switching and multiple trust centers. 

Additionally, the security of Onion Routing heavily depends 

on user participation—reduced adoption can compromise 

anonymity. Therefore, enhancing its efficiency and 

integrating advanced security mechanisms are critical. 

To address these challenges, this study proposes a 

Blockchain-based Onion Routing with Deep CNN (BbOR-

DCNN) framework for secure D2D communication. 

Blockchain ensures transaction integrity, Onion Routing 

preserves privacy, and Deep CNN detects potential threats in 

real-time. This integrated approach enhances security, 

privacy, and resilience, making it well-suited for mobile 

networks, IoT systems, and peer-to-peer data exchanges. 

1.1. Problem Statement  

The integration of D2D communication with security 

mechanisms like blockchain and onion routing presents 

several research gaps. Current D2D protocols lack secure, 

privacy-preserving solutions, with traditional encryption 

methods being vulnerable. The application of blockchain in 

D2D communication, especially in mobile and IoT networks, 

is still underdeveloped, and existing onion routing protocols 

face challenges in minimizing delay and computational 

overhead. Additionally, proactive attack detection using 

machine learning, specifically Deep CNNs, has not been 

explored, and the integration of blockchain with CNNs for 

security threat detection remains novel. Scalability issues and 

the trade-off between real-time performance and security in 

decryption and authentication mechanisms further complicate 

D2D communication. The proposed research aims to address 

these gaps by combining blockchain, onion routing, and deep 

learning to create a secure, scalable, and privacy-preserving 

solution for D2D communication. 

1.2. Motivation 

With the rapid advancement of communication technologies, 

D2D communication has become a cornerstone of modern 

networks, particularly in the realms of mobile networks, IoT, 

and peer-to-peer data sharing. These technologies allow direct 

device communication, improving efficiency, speed, and cost-

effectiveness, but also pose security and privacy risks, making 

data vulnerable to unauthorized access and attacks. As the 

number of connected devices grows, the risk of cyber threats 

like eavesdropping and data manipulation increases, with 

traditional security methods often falling short in 

decentralized, peer-to-peer networks. This study seeks to 

overcome challenges in secure communication by combining 

Blockchain and onion routing to enhance data integrity, 

privacy, and authentication. The proposed approach offers a 

reliable, scalable, and efficient solution for secure D2D 

communication, making it ideal for sensitive applications 

such as IoT, healthcare, and finance. Figure 1 illustrates the 

system model and problem statement. 

Routing nodes 

Source Nodes
Destination Nodes

Blockchain 

Server Nodes

• Vulnerable to 

unauthorized access and 

attacks

• Eavesdropping and data 

manipulation increases

Figure 1 System Model and Problem Statement 

A key contribution to the proposed method BbOR with Deep 

CNN: 

• The input sensor data is collected by the transmitting 

device. 
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• The input data is pre-processed to eliminate any irrelevant 

or unnecessary information. 

• A unique cryptographic token is generated using pseudo-

random methods, to serve as a one-time-use credential.  

• The generated token is encrypted using a Diffie–Hellman 

algorithm, typically paired with the recipient's public key.  

• The proposed BbOR-DCNN method is integrated where 

encrypted tokens and messages are stored within a 

Blockchain. The Blockchain ensures trust and 

immutability, providing a secure record of the transaction 

and preventing tampering. 

• To further enhance security and privacy, onion routing is 

applied to the encrypted message. The data is encapsulated 

in multiple layers of encryption, with each intermediate 

node decrypting one layer at a time. 

• An attack prediction mechanism with Deep CNN is 

incorporated into the BbOR method, utilizing Blockchain 

records and cryptographic token behavior to detect 

anomalies indicative of potential threats. This enables 

proactive threat detection and prevention. 

• The destination device receives the encrypted message and 

token, validates its legitimacy by verifying the 

cryptographic hash, and ensures the token has not expired, 

been previously used, or mismatched with the Blockchain 

record. 

• Once the token is validated, the encrypted message is 

decrypted using the shared secret or the recipient's private 

key. 

Section 1 presents the topic, while Section 2 reviews previous 

studies and their associated challenges. Section 3 outlines the 

system model and the issues it faces. Section 4 details the 

proposed solution, followed by a discussion of the results in 

Section 5. Finally, Section 6 offers the conclusion. 

2. RELATED WORK 

To improve security and preserve reliable connections inside 

Machine-Type Communication (MTC), Jadav et al. [21] 

introduced the Garlic Routing Blockchain with Deep 

Learning. The Nadam optimizer, which is based on Long-

Short-Term Memory (LSTM), first determines if incoming 

data requests are harmful or not. The Garlic Routing (GR) 

network receives non-malicious requests and assigns a unique 

ElGamal encrypted session tag to each participating 

computer. To protect the MTC data requests, Advanced 

Encryption Standard (AES) encryption is then used. To 

ensure scalability and secure management, the framework 

stores session tags on a blockchain based on the Inter-

Planetary File System (IPFS). Furthermore, GRADE 

enhances network performance in MTC situations by utilizing 

the 6G network's capabilities. However, it is limited in the 

reliance on high network infrastructure for optimal 

performance. 

Yaseen, et al. [22] showed an innovative approach of Onion 

Routing in Software Defined Networks to address the delay 

and interruption issues caused by the encryption, decryption, 

and cryptographic key exchange processes. The SDN layer 

facilitates intelligent and proactive management of Onion 

Routing network security information, enabling faster public 

key exchanges. The ML component optimizes the processing 

of security tasks, while the Blockchain ensures secure and 

tamper-proof management of cryptographic keys. This 

combination maintains continuous data flow for the clients, 

significantly improving network performance. However, 

challenges remain in the complexity of integrating SDN, ML, 

and BC technologies in the Tor network. 

To enhance communication and energy efficiency in D2D-

assisted decentralized learning, Liu, et al. [23] suggested The 

approach focuses on decentralized learning with joint 

optimization to adjust computational power, allocate wireless 

resources, select links, and adapt aggregate weights. By 

balancing learning latency with energy consumption, the goal 

is to minimize the total learning cost. This is achieved using a 

tabu search meta-heuristic for link selection, semi-definite 

programming for weight aggregation, and alternating 

optimization for computing power and wireless resource 

allocation. The disadvantage lies in the computational 

complexity of the optimization algorithms. 

Yang et al. [24] proposed a selective Blockchain system with 

Byzantine fault tolerance to enhance D2D communication. 

The approach divides the Blockchain into off-blockchain and 

on-blockchain stages. In the first stage, it secures IoT devices 

transmitting sensitive data. The second stage focuses on 

improving privacy by assessing device security capacities and 

allowing devices to join a private Blockchain. The final stage 

optimizes consensus by evaluating node participation and 

detecting selfish participants. This method improves 

consensus reliability and performance for resource-limited 

environments. However, challenges include the complexity of 

off-blockchain management and scalability for large 

networks. 

Luo, et al [25] used Deep learning approaches to optimize the 

age of information (AoI) and throughput. It addresses the 

limitation of traditional schemes that prioritize maximum 

throughput over information freshness. The proposed scheme 

utilizes a last-come-first-serve policy with packet replacement 

and leverages a neural network to learn optimal scheduling 

parameters without requiring explicit channel state 

information (CSI). This approach aims to strike a balance 

between maximizing throughput and minimizing AoI, 

resulting in improved overall system performance. However, 
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it is limited in the trade-off between AoI and throughput 

metrics. 

D2D communication facilitates direct data exchange for 

applications like public safety, V2V, and drones, requiring 

reliable connectivity across operators. Traditional roaming 

systems lack sufficient trust in D2D scenarios due to limited 

core network visibility of direct device links. To overcome 

this, Park et al. [26] introduced a Blockchain-inspired trust-

based framework incorporating authentication, authorization, 

and class-aware dynamic resource pool selection. This 

approach enhances trust and resource efficiency, with 

analytical results demonstrating improved capacity through 

better decoding performance. While the framework offers 

benefits like improved reliability and resource management, 

its complexity and implementation costs remain challenges. 

Miao et al. [27] address challenges in wireless IoT, such as 

spectrum reuse, network efficiency, and security in 5G, by 

proposing a D2D group communication protocol. The 

protocol employs the Chinese Remainder Theorem, secret 

sharing, and Chebyshev Polynomials to enable secure and 

efficient group authentication. Validated through BAN logic 

and security analysis, it demonstrates superior security and 

performance compared to existing methods. While the 

approach enhances efficiency, its design and implementation 

add complexity to the system. 

Kiran et.al [28] explored the potential of combining Onion 

Routing and Blockchain technology to enhance wireless data 

transfer security, particularly in industries like healthcare, 

finance, and government. However, it acknowledges 

performance trade-offs like higher latency and energy 

consumption. 

J. Kiran et.al [29] presented a hybrid architecture combining 

Blockchain and onion routing for enhanced privacy and 

security. Results show that it is particularly suitable for smart 

cities, healthcare, and finance, reduces attack success rates 

and resource usage. Future optimizations aim to optimize the 

framework for limited resource contexts and improve user 

data security.   

The details of existing work with their advantage and 

disadvantages are mentioned in Table 1. 

Table 1 Challenges of Existing Works 

Sr. No. Author Method Merits Demerits 

1. Jadav 

et al. [21] 

Garlic Routing 

Blockchain with 

Deep Learning 

It ensures scalability and 

secure management 

It is limited in the reliance on high 

network infrastructure for optimal 

performance. 

2. Yaseen, et al. 

[22] 

Onion Routing in 

Software Defined 

Network 

It significantly improves 

network performance. 

Challenges remain in the 

complexity of integrating SDN, 

ML, and BC technologies in the 

Tor network. 

3. Liu, et al. 

[23] 

Decentralized 

Learning with Joint 

Optimization 

Algorithm 

It reduces the overall 

learning cost 

High computational complexity of 

the optimization algorithms 

4. Yang, et al 

[24] 

Selective blockchain 

and byzantine fault 

tolerance method 

It improves the 

reliability of the 

consensus mechanism 

and overall system 

performance 

Challenges include the complexity 

of off-blockchain management 

and scalability for large networks. 

5. Luo, et al 

[25] 

Deep learning 

approaches 

It improves overall 

system performance. 

It is limited in the trade-off 

between AoI and throughput 

metrics. 

6. Park et al. 

[26] 

Blockchain-inspired 

trust-based 

framework 

It improves reliability 

and resource 

management 

It is limited by complexity and 

implementation costs 

7. Miao et al. 

[27] 

D2D group 

communication 

protocol 

the approach enhances 

efficiency 

Its design and implementation add 

complexity to the system. 
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3. PROPOSED MODELLING 

A novel method of Blockchain-based Onion routing with 

Deep CNN (BbOR-DCNN) in D2D communication is 

developed by enhancing the security and privacy of the data. 

Blockchain offers a secure, transparent platform for recording 

device transactions, ensuring data integrity, and detecting any 

alterations. Its decentralized nature eliminates single points of 

failure, enhancing system resilience against attacks. Onion 

routing ensures data confidentiality and data privacy by 

encrypting the message multiple times and routing it through 

several nodes, each removing one layer of encryption, 

preventing eavesdropping, and preserving sender and 

recipient anonymity. By combining these technologies, the 

proposed methodology achieves a high level of security and 

privacy for D2D communication, making it suitable for a 

wide range of applications, including mobile communications, 

IoT networks, and peer-to-peer data exchanges.  

Figure 2 illustrates the architecture of the proposed BbOR-

DCNN model, which enhances secure D2D communication 

by integrating Blockchain, Onion Routing, and Deep CNN for 

attack prediction. Initially, the transmitting device generates 

input data, applies preprocessing for quality enhancement, and 

creates a cryptographic token using pseudo-random methods. 

This token is encrypted with the Diffie-Hellman algorithm 

and paired with the recipient’s public key for secure 

transmission. The encrypted token and message are stored in a 

Blockchain to ensure integrity. Onion routing adds multiple 

encryption layers, which intermediate nodes decrypt 

sequentially to maintain privacy. Deep CNN analyzes 

Blockchain records to detect threats. At the destination, the 

token is validated, and upon success, the message is decrypted 

using the shared secret or recipient’s private key. 

Input data Pre-Processing Generating Tokens Encryption

Proposed BbOR-DCNN

DecryptionData Transfer

Onion RoutingCheckingAttack Prediction

 Figure 2 Architecture of Proposed BbOR-DCNN 

3.1. Data Collection   

The "WSNDS" (Wireless Sensor Network Data Set) on 

Kaggle consists of data collected from a wireless sensor 

network deployed to monitor environmental conditions. It 

includes sensor readings such as temperature, humidity, and 

other environmental parameters gathered from various sensor 

nodes over time. The dataset is designed to facilitate research 

in areas like sensor network data analysis, anomaly detection, 

and environmental monitoring.  

It provides a comprehensive collection of time-series data, 

making it valuable for machine-learning models aimed at 

predictive maintenance, sensor calibration, and energy-

efficient network management in wireless sensor networks. 

https://www.kaggle.com/datasets/bassamkasasbeh1/wsnds   

3.2. Data Preprocessing  

In this study, the preprocessing [30] step involves 

standardizing the sensor dataset to ensure consistency and 

comparability across variables. Standardization adjusts the 

data to have a mean of 0 and a standard deviation of 1, 

enhancing the performance of subsequent analysis and 

modeling. The standardization StY  formula is given in 

equation (1): 

( )
( )YD

YMY
YSt

−
=                                           (1) 

Here, Y represents the individual sensor data value being 

standardized. The mean ( )YM refers to the average value of 

the sensor data distribution, while the standard deviation

( )YD  measures the dispersion of the data. This 

transformation ensures that all sensor data variables are on a 

similar scale, reducing bias and improving the robustness of 

the proposed methodology. 

3.3. Cryptographic Token Generation Using CSPRNG   

The proposed method employs Cryptographically Secure 

pseudorandom number Generators (CSPRNGs) [31] to 

generate highly secure and unpredictable tokens. An 8-byte 

nonce is generated using CSPRNG: "MHkxbV9Q", which is 

then concatenated with the cryptographic token: 

"WNE7Bc4bsi6r02x9ECQTBmDph77JHXVk", forming the 

final token: 

"MHkxbV9QWNE7Bc4bsi6r02x9ECQTBmDph77JHXVk" 

This combined token is securely stored in 

cryptographic_token_with_nonce.txt for encryption, 

authentication, or validation, ensuring robust security in D2D 

communication. 

3.4. Token Encryption Using    

In this work, the Diffie–Hellman (DH) algorithm [32] is 

utilized to securely encrypt a cryptographic token by 

generating a common secret key shared between the sender 

https://www.kaggle.com/datasets/bassamkasasbeh1/wsnds
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and recipient. A large prime G and a primitive root modulo

G , denoted as R  are chosen as public parameters. 

The sender selects a private key  1,1 − Gs and computes 

their public key  1,1 − Gsk ( )GRs s

k mod= . For 

instance, the sender's public key is 16=ks . Similarly, the 

recipient chooses a private key  1,1 − Gr and computes 

their public key ( )GRr r

k mod= . For instance, the 

recipient's public key is 3=kr . 

The sender and recipient exchange public keys and each 

independently calculates the shared secret key by raising the 

received public key to the power of their private key modulo

G . The sender computes the shared secret

( ) ( )GRGSS srs

rsr modmod == . The recipient 

independently computes

( ) ( ) sr

rsr

srs SGRGSS === modmod . Both 

computations yield the same shared secret

( )GRS sr

Shared mod= .  

This shared secret is then used as a symmetric key to encrypt 

the token, producing the encrypted token. Each byte of the 

token is transformed using the shared key, resulting in the 

encrypted token
TKE s 

"131,149,158,163,153,164,153,166,149,125,149,163,163,145,

151,149". 

The DH process can be interpreted as a dynamical system 

where key generation and shared secret computation are 

modeled as iterative processes. For key generation, the 

dynamical system is defined in equation (2)  

1mod 01 ==+ wwithGwRw nn                          (2) 

This progression leads to the public keys ks  and kr , which 

are endpoints of the respective trajectories for the sender and 

recipient. For shared secret computation, another system 

evolves as Gzrz nkn mod1 =+ for the sender and 

Gzsz nkn mod1 =+ for the receiver, both starting with

10 =z . This ensures that the computed shared secrets 

srs zS =   (sender) and   rsr zS =  (recipient) are equal, 

forming the common secret key.  

By securely deriving the shared secret SharedS , the encrypted 

token can only be decrypted by the recipient who possesses 

the private key r , ensuring the confidentiality of the token. 

3.5. Blockchain Based Onion Routing  

This work employs Blockchain-based onion routing to ensure 

secure and anonymous D2D communication. After encrypting 

the verification token using Diffie-Hellman (DH) key 

exchange, Blockchain securely distributes the encrypted token 

and messages among participating devices. Each transaction 

generates a block containing the encrypted token, message, 

device ID, and timestamp, which is hashed and appended to 

the Blockchain, ensuring integrity, transparency, and tamper 

resistance. 

For routing, layered encryption is applied, where each layer 

corresponds to an intermediate device’s public key. As the 

message traverses the network, each device decrypts one layer 

using its private key, extracts the verification token, and 

appends it to the shared secret key for further decryption. This 

preserves sender and recipient anonymity while protecting 

communication from malicious actors.  

The integration of Blockchain and onion routing [33] 

enhances the security, privacy, and trustworthiness of the 

D2D communication network. 

The encrypted token
TKE , along with the message and device 

details, is securely stored in the Blockchain CB . Blockchain 

ensures transparency, trust, and immutability. Each block in 

the Blockchain contains: an encrypted verification token 
TKE

, the encrypted message ME , the device ID, and a timestamp 

ST . To create a block, a hash is computed for the current 

block using a combination of the hash of the previous block

1−Vh , the encrypted token for the current device
TK

VE , and a 

randomly generated nonce VN for validation. The hash Vh

value for the 
thV  block is calculated using equation (3): 

V

TK

VVV NEhh = −1                                        (3) 

where, the operator  represents a bitwise XOR operation, 

which ensures that the resulting hash is unique and depends 

on all the input elements. This process links each block 

cryptographically to its predecessor, creating a secure and 

immutable chain of records. Once the block hash is validated 

and consensus is achieved among the participating nodes, the 

block is appended to the Blockchain. This ensures integrity, 

transparency, and protection against tampering.  

3.5.1. Onion Routing for Anonymized Communication 

Onion routing enables secure message delivery by applying 

layered encryption, where each layer corresponds to an 

intermediate device's public key nP  of the n device. The 
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sender encrypts the message M in multiple layers, ensuring 

secure transmission across the communication path. The fully 

encrypted message ME is computed using equation (4): 

( ) 















=

−

E
P

E
P

E
P

EE
nn

M
11

                            (4) 

Here, 
nP

E  denotes encryption using the public key nP . The 

fully encrypted message ME  and the Blockchain transaction 

ID  , which securely stores associated metadata and tokens, 

are transmitted to the first device. Each device decrypts its 

layer using its private key
K

DeP , revealing the next layer, and 

ensuring secure, stepwise processing of the message. 

The message is routed through multiple intermediate devices. 

At each intermediate device DeI . One layer of encryption is 

removed using the device's private key
K

DeP . The device uses 

its private key 
K

DeP  to decrypt the verification token
TKE  and 

is defined using equation (5) 









= TKE

P
ITK

decrypt
E K

De

                                     (5) 

Then the decrypted verification token TK
decrypt

E  is 

appended to the device’s shared secret 
De

SharedS  to decrypt the 

corresponding onion layer, as shown in equation (6): 

TK
decrypt

ESS De

Shared

De

Shared +=ˆ                                   (6) 

This step reveals the next layer of the encrypted message 

while keeping the remaining layers secure. The device then 

passes the partially decrypted message to the next 

intermediate device along the path. Throughout the process, 

Blockchain ensures secure storage of the encrypted token 
TKE , maintaining data integrity and granting decryption 

access only to authorized devices. 

3.6. Attack Prediction 

A Deep CNN (DCNN) predicts potential attacks by analyzing 

features from Blockchain records and cryptographic token 

behavior. It processes input through convolutional, pooling, 

and fully connected layers [34], extracting hierarchical 

features to classify traffic as normal or malicious using a 

softmax function. 

Let A represent input features derived from Blockchain data, 

including token metadata, hash values, timestamps, and 

detected anomalies. The DCNN extracts hierarchical features 

using convolutional filters, with the convolutional layer 
t

CL

output represented by equation (7). 

( )( )t
t

C FACLUL ,Re=                                     (7) 

Where ( )tFAC ,  represents convolution operation with filter

tF , ( )zLURe is the rectified linear unit activation function. 

The output of each pooling layer reduces the spatial 

dimensions, the output of the 
tht pooling layer is defined 

using equation (8): 









=

tt C
L

t
Pool

P
L                                         (8) 

where 
t

Pool  represents the pooling operation. The final 

pooling layer's output is flattened into a one-dimensional 

vector and passed through fully connected layers (
n

ccc fff ,...., 21
). n  is taken as the weight for the fully 

connected layers. The softmax activation function is applied
nO , yielding probabilities for each class as shown in 

equation (9): 

( )( )nn

c OfSoftB max=                                    (9) 

The output 
nO  from the final fully connected layer is derived 

by applying the weights n  to the preceding layer's output. 

The softmax function then transforms this output into a 

probability distribution across the two classes, distinguishing 

between normal and attack categories. The training process 

minimizes cross-entropy loss to improve prediction accuracy. 

If the probability of an attack exceeds a predefined threshold, 

the message is flagged for security review. Otherwise, it 

proceeds to the decryption stage, ensuring secure and 

proactive threat detection before the final message is 

decrypted at the destination device.  

3.7. Decryption at the Destination Device   

After the attack prediction stage, the message decryption 

process occurs at the destination device. Once the Deep CNN 

has analyzed the Blockchain records and cryptographic token 

behavior to predict and detect potential attacks, the destination 

device proceeds with decrypting the message. If no threats are 

identified and the token and message are verified, the device 

decrypts the message using the shared secret or its private 

key. This step guarantees that only the intended recipient, 

possessing the correct key, can access the original content. 

The combination of Blockchain-based token validation, attack 

prediction through Deep CNN, and final decryption ensures 
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secure, trustworthy, and tamper-resistant communication 

between devices in the D2D network. A pseudocode of the 

Proposed BbOR-DCNN method in D2D Wireless 

communication is given in Algorithm 1. Flow chart of the 

proposed method is given in Figure 3. 

Start 

{ 

Data Collection  

{ 

// gathering wireless sensor network data  

} 

Data preprocessing  

{ 

Int DMYYSt ,,,  

// initialize the preprocessing parameters  
( )

( )YD

YMY
YSt

−
=                                   

//using equation (1) 

//Standardized the sensor data 

} 

Cryptographic Token Generation 

{ 

// Tokens are generated using CSPRNG for high security 

// Generate an 8-byte nonce (e.g., MHkxbV9Q) 

// Generate a secure cryptographic token using CSPRNG 

(WNE7Bc4bsi6r02x9ECQTBmDph77JHXVk) 

// Concatenate nonce and token to form a unique token 

(MHkxbV9QWNE7Bc4bsi6r02x9ECQTBmDph77JHXVk)  

} 

Token Encryption using Diffie-Hellman 

{ 

Sharedkk SrsrsInt ,,,,  

// initialize the encryption parameters  

// sender chooses private key  1,1 − Gs and computes 

public key  1,1 − Gsk  

// receiver chooses private key  1,1 − Gr and computes 

public key ( )GRr r

k mod=  

//The sender and recipient exchange public keys and compute 

the shared secret 

( )GRS sr

Shared mod=    

// This shared secret is then used to encrypt the token 
TKE  

for secure transmission 

} 

Proposed BbOR-DCNN 

{ 

Blockchain-Based Onion Routing 

{ 

De

SharedK
De

TK

MV S
P

IEEhInt ˆ,,,,  

// Initialize the parameters 

//Combining blockchain and onion routing achieves secure 

and anonymous communication 

//Each transaction creates a new block with an encrypted 

verification token 
TKE , the encrypted message ME , the 

device ID, and a timestamp ST  

V

TK

VVV NEhh = −1                  // using equation (3) 

// hash Vh value for the block is calculated 

// sender applies multiple layers of encryption to the message 

using onion routing  

// At each intermediate device DeI  one layer of encryption is 

removed using the device’s private key 

( ) 















=

−

E
P

E
P

E
P

EE
nn

M
11

   // using equation (4) 

// message encrypted  









= TKE

P
ITK

decrypt
E K

De

          // using equation (5) 

// the decrypt verification token 

TK
decrypt

ESS De

Shared

De

Shared +=ˆ         // using equation (6) 

// decrypted verification token is combined with the device's 

shared secret 
De

SharedS  to decrypt the corresponding onion layer 

} 
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Attack Prediction using DCNN  

{ 

De

SharedK
De

TK

MV S
P

IEEhInt ˆ,,,,  

// Initialize the prediction parameters 

( )( )t
t

FACLU
C

L ,Re=                 // using equation (7) 

// hierarchical features are extracted using filters in the 

convolution layer 









=

tt C
L

t
Pool

P
L                      // using equation (8) 

//The spatial dimensions reduced in each pooling layer 

//The final pooling layer's output is flattened into a one-

dimensional vector and passed through fully connected layers 

( )( )nn

c OfSoftB max=                 // using equation (9) 

// the softmax activation function is applied to 
nO , yielding 

probabilities for each class 

} 

Decryption at the destination device   

{ 

If  

no threats are detected the received message decrypted 

Else 

stop 

} 

} 

End  

} 

Algorithm 1 Pseudocode of the Proposed BbOR-DCNN 

Method in D2D Wireless Communication 

Start

Data Collection

Data Preprocessing

Cryptographic Token 

Generation

Token Encryption

Blockchain based Onion 

Routing 

Attack Prediction 

Proposed BbOR-DCNN

Decrypted 

Stop

Not Decrypted 
If threats are 

detected 

Performance Analysis 

No

Yes

 // gathering wireless sensor 

network dataset

// preprocessing is performed to 

standardized the sensor data

 // a secure cryptographic token is 

generated using CSPRNG 

// the computed shared secret key is used to 

encrypt the token using DH

// designing the proposed 

method

// the encrypted tokens and messages 

are stored in blockchain 

// the encrypted messages undergo multi-layer 

encryption using onion routing, where each node 

decrypts a single layer at a time

// the message is decrypted using 

shared secrets

// Blockchain records and token behavior 

are analyzed to detect anomalies using 

DCNN

// Performance of the proposed 

is evaluated 

 
Figure 3 Flowchart of the Proposed BbOR-DCNN Approach 
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4. RESULTS AND DISCUSSIONS 

The proposed method BbOR-DCNN is implemented in 

MATLAB to simulate and analyze secure communication in 

D2D networks, focusing on the integration of Blockchain and 

onion routing for enhanced privacy and data integrity. The 

performance of the proposed BbOR-Deep CNN is evaluated 

using accuracy, packet delivery ratio, average energy 

consumption, data delay, computational complexity, 

prediction time, encryption time, and decryption time.  

Table 2 provides details of the experimental setup used for the 

evaluation. MATLAB is chosen for simulation in this study 

due to its robust computational capabilities, specialized 

toolboxes, and ease of prototyping complex algorithms for 

secure D2D communication using blockchain and onion 

routing (BbOR).  

Unlike NS-3, which is ideal for protocol-level simulations, it 

lacks built-in support for cryptographic security modeling, 

blockchain validation mechanisms, and deep learning-based 

anomaly detection, or Python-based frameworks such as 

TensorFlow and PyTorch, which primarily focus on deep 

learning, but do not provide the same level of integrated 

network security modeling, cryptographic token handling, and 

real-time data encryption as MATLAB.  

MATLAB provides a well-integrated environment for both 

cryptographic security modeling and deep learning-based 

attack detection. The BbOR-DCNN framework requires 

extensive cryptographic processing, blockchain-based token 

validation, and onion routing implementation, all of which are 

efficiently supported by MATLAB's built-in functions. 

Additionally, MATLAB’s superior data visualization and 

matrix-based computation efficiency allow for a detailed 

analysis of key security performance metrics, including 

packet delivery ratio, encryption time, computational 

complexity, and adversarial attack resilience.  

These advantages make MATLAB the optimal choice for 

designing, testing, and validating the proposed BbOR-DCNN 

framework, ensuring its robustness and efficiency in securing 

D2D communication against evolving cyber threats. 

Table 2 Experimental Setup for the Proposed Method 

Parameter Description 

Processor Intel(R) Core(TM) i5-4300M 

CPU @ 2.60GHz   2.60 GHz 

Installed RAM 8.00 GB 

Version 22H2 

Edition Windows 10 Pro 

Platform MATLAB R2023a 

4.1. Experimental Analysis 

The test accuracy graph in Figure 4 of the proposed method 

shows a rapid improvement in performance within the initial 

epochs, achieving nearly 100% accuracy by the second epoch. 

The smoothed accuracy remains consistently high throughout 

the training process, with minimal fluctuation, indicating 

robust learning and convergence of the model. The loss graph 

also reflects this stability, with a sharp decrease in the initial 

epochs and a gradual decline to near zero as the epochs 

progress, demonstrating efficient minimization of the error 

function. The model’s training process is efficient, completing 

in just 10 epochs with a constant learning rate of 0.001, 

showcasing its reliability and effectiveness. 

4.2. Evaluation of the Proposed System's Performance 

The proposed method of BbOR-DCNN in D2D 

communication is developed by enhancing the security and 

privacy of the data. The performance of the proposed method 

is evaluated using metrics such as accuracy, packet delivery 

ratio, average energy consumption, data delay, computational 

complexity, prediction time, encryption time, and decryption 

time. 

4.2.1. Accuracy 

In the proposed BbOR-DCNN work, accuracy 𝑅𝐴 represents 

the model's ability to correctly predict outcomes based on 

input data. This is crucial for assessing how well the Deep 

CNN learns and generalizes patterns in data after optimization 

by BbOR. The accuracy is expressed using the equation (10). 

Higher accuracy indicates better reliability and correctness of 

the proposed approach. 

𝑅𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                               (10) 

Where, true positive (𝑇𝑃) and true negative (𝑇𝑁) to the ratios 

of all true positive (𝑇𝑃), true negative (𝑇𝑁), false positive (𝐹𝑃), 

and false negative ( 𝐹𝑁 ) values. The proposed method 

achieved a higher accuracy as shown in figure 5. 

4.2.2. Packet Delivery Ratio 

In the proposed BbOR routing mechanism, PDR assesses the 

routing efficiency by determining the ratio of successfully 

delivered data packets to the total transmitted packets. Higher 

PDR indicates robust routing decisions made by BbOR. A 

high PDR reflects the effectiveness of the BbOR in 

minimizing packet loss and ensuring reliable data 

transmission. The proposed method achieved a better PDR as 

shown in the figure 6. 

4.2.3. Average Energy Consumption 

This metric evaluates the energy efficiency of BbOR in 

managing network resources and minimizing the energy 

drained during data transmission and computation. Lower 
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average energy consumption indicates better energy 

optimization by the BbOR mechanism. Figure 7 shows the 

average energy consumption of the proposed approach. 

 
Figure 4 Test Accuracy of the Proposed Approach 

 

Figure 5 Accuracy of the Proposed BbOR-DCNN 
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Figure 6 PDR of the Proposed BbOR-DCNN 

 

Figure 7 Energy Consumption of the Proposed BbOR-DCNN 

4.2.4. Data Delay 

Data delay measures the time taken for packets to reach the 

destination, reflecting the routing efficiency of BbOR and the 

prediction speed of Deep CNN. Minimizing delay is critical 

for real-time applications. The delay is impacted by routing 

optimization BbOR and the computational efficiency of the 

Deep CNN. Figure 8 illustrate the performance of the data 

delay achieved by the proposed approach.  

4.2.5. Computational Complexity 

The computational complexity evaluates the BbOR-DCNN 

system in terms of time and space. For BbOR-Deep CNN, the 

overall complexity considers the optimization cost of BbOR 

and the inference cost of DCNN. The proposed method 

achieved a better computational complexity as shown in the 

figure 9. 

 

Figure 8 Data Delay of the Proposed BbOR-DCNN 

 

Figure 9 Computational Complexity of the Proposed BbOR-

DCNN 

4.2.6. Prediction Time 

 

Figure 10 Prediction Time of the Proposed BbOR-DCNN 
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Prediction time is the time required for the Deep CNN to infer 

a result from given input data. It reflects the efficiency of the 

BbOR-Deep CNN in providing quick and accurate 

predictions. Lower prediction times signify a faster and more 

efficient Deep CNN model. The proposed method achieved a 

lower prediction time as shown in the figure 10. 

4.2.7. Encryption time 

In the proposed framework, encryption time refers to the time 

taken to secure data for transmission during the routing 

process managed by BbOR. Efficient encryption ensures data 

security without significant overhead. The proposed method 

achieved a lower encryption time as shown in the figure 11. 

 

Figure 11 Encryption Time of the Proposed BbOR-DCNN 

4.2.8. Decryption time 

Decryption time measures the time needed to decrypt the data 

at the destination. This is important for ensuring seamless data 

usage in secured communication scenarios. It reflects the 

security mechanisms integrated into BbOR for protecting data 

during transmission. The proposed method achieved a lower 

decryption time as shown in the figure 12.  

 
Figure 12 The Decryption Time of the Proposed BbOR-

DCNN 

4.3. Comparative Analysis 

The effectiveness of the BbOR-Deep CNN method is 

assessed, and its performance is benchmarked against existing 

techniques to improve data security and privacy with the 

metrics are accuracy, packet deliver ratio, average energy 

consumption, data delay, computational complexity, 

prediction time, encryption time, and decryption time. The 

existing methods such as DNN, RNN, LSTM, DHMLM [35], 

CTEER, D2D-MCL, QL-MAC [36], ESECI, ERSS, 

DbSAEC-HSO, DBDH [37]. 

4.3.1. Comparison of Proposed Accuracy with Existing      

Methods 

The comparison figure 13 showcases the accuracy of various 

methods, with DNN achieving 86.43% and RNN improving 

to 97.81%, demonstrating their sequential data handling 

capabilities. LSTM further enhances accuracy to 98.49% by 

preserving long-term dependencies, while DHMLM achieves 

99.07% through dynamic hierarchical learning. The proposed 

BbOR-Deep CNN outperforms all with 99.54% accuracy, 

leveraging Blockchain, onion routing, and deep CNN for 

secure communication and effective threat detection. This 

highlights its superiority over traditional. 

 

Figure 13 Comparison of Accuracy 

4.3.2. Comparison of Proposed Packet Deliver Ratio with   

Existing Methods 

The comparison figure 14 highlights the Packet Delivery 

Ratio (PDR) performance of four methods CTEER, D2D-

MCL, QL-MAC, and the proposed BbOR-Deep CNN across 

varying simulation rounds. The proposed BbOR-Deep CNN 

consistently outperforms other methods, demonstrating the 

highest PDR at all rounds, reaching 92% at 500 rounds and 

maintaining a robust 92% even at 2500 rounds. In contrast, 

other methods show a gradual decline in PDR as simulation 

rounds increase, with CTEER consistently delivering the 

lowest performance. This indicates the superior reliability and 

efficiency of the BbOR-Deep CNN method in ensuring high 
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PDR over extended simulations. The results validate its 

effectiveness for secure and reliable communication in 

dynamic environments. 

 

Figure 14 Comparison of PDR 

4.3.3. Comparison of Proposed Average Energy Consumption 

with Existing Methods 

Figure 15 compares the average energy consumption of four 

methods CTEER, D2D-MCL, QL-MAC, and the proposed 

BbOR-Deep CNN across simulation rounds. At 500 rounds, 

BbOR-Deep CNN shows the lowest consumption (0.5 J) 

compared to CTEER (0.9 J), D2D-MCL (0.62 J), and QL-

MAC (0.79 J).  

As the rounds increase to 2500, BbOR-Deep CNN remains 

the most efficient at 0.6 J, while CTEER, D2D-MCL, and 

QL-MAC consume 1.28 J, 0.9 J, and 1.18 J, respectively. The 

energy consumption of all methods rises with simulation 

rounds, but BbOR-Deep CNN maintains superior efficiency 

throughout. This illustrates its ability to achieve significant 

energy savings while ensuring robust performance. 

 

Figure 15 Comparison of Energy Consumption 

4.3.4. Comparison of Proposed Data Delay with Existing 

Methods 

The comparison figure 16 shows data delay (in seconds) for 

various methods across different simulation rounds. In the 

first round (500 simulations), the proposed BbOR-Deep CNN 

method achieves a delay of 0.5 seconds, which is significantly 

lower than CTEER (1.2s), D2D-MCL (0.75s), and QL-MAC 

(1.09s). As the number of simulation rounds increases, 

BbOR-Deep CNN continues to maintain the lowest delay, 

reaching 1 second at 2500 rounds, while other methods 

experience higher delays. For instance, CTEER's delay 

increases from 1.2s to 1.45s, D2D-MCL's delay grows from 

0.75s to 1.15s, and QL-MAC's delay rises from 1.09s to 1.39s. 

This demonstrates that BbOR-Deep CNN consistently 

provides the most efficient performance in terms of 

minimizing data delay across all simulation rounds. 

 

Figure 16 Comparison of Data Delay 

4.3.5. Comparison of Proposed Computational Complexity 

with Existing Methods 

 

Figure 17 Comparison of Computational Complexity 

The comparison figure 17 shows the computational 

complexity (in percentage) for different methods across 
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various simulation rounds. For 500 rounds, the Proposed 

BbOR-Deep CNN method has a complexity of 10%, 

significantly lower than CTEER (23%), D2D-MCL (13%), 

and QL-MAC (19%). As the number of simulation rounds 

increases to 2500, the complexity for BbOR-Deep CNN rises 

to 17%, compared to 33% for CTEER, 21% for D2D-MCL, 

and 30% for QL-MAC. This demonstrates that the Proposed 

BbOR-Deep CNN consistently maintains lower 

computational complexity, making it a more efficient and 

scalable solution across increasing simulation rounds. 

4.3.6. Comparison of Proposed Prediction Time with Existing 

Methods 

The comparison figure 18 highlights the prediction time 

efficiency of various methods, including RNN, DNN, 

DHMLM, LSTM, and the proposed BbOR-Deep CNN. 

Among these, the proposed BbOR-Deep CNN demonstrates 

the lowest prediction time of 12.16 ms, showcasing its 

superior computational efficiency. Traditional methods such 

as RNN and LSTM exhibit significantly higher prediction 

times of 28 and 49.83 ms, respectively, indicating slower 

processing. While DNN (24.6 ms) and DHMLM (16.3 ms) 

perform better than RNN and LSTM, they still lag behind the 

proposed method. This underscores the effectiveness of 

BbOR-Deep CNN in ensuring rapid and secure predictions in 

applications requiring real-time performance. 

 

Figure 18 Comparison of Prediction Time 

4.3.7. Comparison of Proposed Encryption Time with         

Existing Methods 

The comparison figure 19 highlights the encryption time 

performance of various methods, showcasing the efficiency of 

the proposed BbOR-Deep CNN approach. ESECI records the 

highest encryption time at 70 ms, followed by DbSAEC-HSO 

at 50 ms, and ERSS at 25 ms. The DBDH method 

significantly reduces encryption time to 3.55 ms, 

demonstrating a substantial improvement. However, the 

proposed BbOR-Deep CNN achieves the fastest encryption 

time of just 2.31 ms, emphasizing its superior computational 

efficiency and suitability for real-time applications. This 

demonstrates the proposed method's ability to optimize 

encryption processes while ensuring robust security. 

 

Figure 19 Comparison of Encryption Time 

4.3.8. Comparison of Proposed Decryption Time with 

Existing Methods 

The comparison figure 20 highlights the decryption time 

efficiency of different methods. Among the evaluated 

approaches, the proposed BbOR-Deep CNN method 

demonstrates the fastest decryption time at 2.49 ms, 

significantly outperforming alternatives like DBDH (3.6 ms), 

DbSAEC_HSO (53 ms), ERSS (35 ms), and ESECI (90 ms).  

This performance improvement underscores the effectiveness 

of the BbOR-Deep CNN's optimized cryptographic and 

processing framework. The minimal decryption time enhances 

real-time application suitability, making it highly efficient for 

secure communication scenarios. This advantage positions 

BbOR-Deep CNN as a robust solution for time-sensitive 

security processes. 

 

Figure 20 Comparison of Decryption Time 
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4.4. Scalability Analysis and Computational Overhead 

Estimation 

The scalability of the proposed BbOR-DCNN framework was 

analyzed through computational overhead estimation and 

practical deployment scenarios. The simulation results at 2500 

rounds demonstrated that the model maintains high accuracy 

(99.54%) and security efficiency, with a low computational 

complexity of 17%, ensuring feasibility in large-scale D2D 

networks. The packet delivery ratio remains at 92%, while 

data delay is controlled at 1s, confirming the framework’s 

suitability for real-time applications. Additionally, the deep 

CNN-based attack detection requires only 12.16ms, making it 

effective for proactive security in dynamic environments.  

To ensure practical deployment, the BbOR-DCNN approach 

leverages optimized cryptographic token mechanisms, 

lightweight blockchain consensus, and distributed deep 

learning for threat detection. These features enable the model 

to scale efficiently across high-density IoT, smart city, and 

industrial automation networks without significantly 

increasing computational overhead. Compared to existing 

methods, BbOR-DCNN ensures a superior balance between 

security, efficiency, and scalability, making it a robust 

solution for securing next-generation D2D communications. 
Figure 21 illustrates the computational overhead analysis and 

scalability of the BbOR-DCNN model across different 

simulation rounds. 

 

Figure 21 Scalability and Computational Overhead Analysis 

of the Proposed BbOR-DCNN 

4.5. Performance Evaluation of the Proposed Method Before 

and After Attack Prediction 

The proposed method demonstrates remarkable improvements 

in performance after attack prediction compared to before 

prediction. Performance evaluation of the proposed method 

before and after prediction is shown in Table 3. Accuracy 

significantly increases from 92% to 99.54%, and the PDR 

improves from 90% to 92%, showcasing enhanced reliability. 

Energy consumption is reduced from 5.00×10⁻⁵ J/bit to 0.60 J, 

indicating better energy efficiency. Data delay decreases from 

2.06ms to 1.00ms, and computational complexity improves 

from 19% to 17%, highlighting faster and more efficient 

processing. Additionally, encryption and decryption times are 

notably reduced from 4.85ms to 2.31ms and from 4.91ms to 

2.49ms, respectively, while prediction time drops from 

13.11ms to 12.16ms. These results underline the effectiveness 

of the proposed method in enhancing system performance 

while mitigating attack impacts. 

Table 3 Performance Evaluation of the Proposed Method 

Before and After Prediction 

Metric Before 

Prediction 

After 

Prediction 

Accuracy (%) 92 99.54 

Packet Delivery 

Ratio (%) 

90 92 

Energy 

Consumption 

(Joules/bit) 

5.00×10−5 0.60 J 

Data Delay (ms) 2.06 1.00 

Computational 

Complexity 

19 17 

Encryption Time 

(ms) 

4.85 2.31 

Decryption Time 

(ms) 

4.91 2.49 

Prediction Time 

(ms) 

13.11 12.16 

4.6. Statistical Analysis  

The statistical analysis of our proposed Blockchain-based 

Onion Routing with Deep CNN (BbOR-Deep CNN) model 

validates its performance across key security and efficiency 

metrics. Table 4 provides the statistical analysis of BbOR-

DCNN. The Chi-Square Goodness-of-Fit test (p = 0.76965) 

confirms that the encrypted token distribution is uniform, 

ensuring consistent encryption across transactions. The Z-Test 

for Token Validation (p = 0.41422) indicates no significant 

deviation in token validation, reinforcing the robustness of 

our cryptographic approach. Cohen's Kappa (0.5) 

demonstrates a moderate agreement in token usage, verifying 

reliability in secured transactions. The Spearman Correlation 

(p = 0.536) shows no strong correlation between accuracy and 

prediction time, confirming stable performance irrespective of 

processing delays. Lastly, the Kruskal-Wallis test (p = 

0.16124) confirms that PDR remains consistent across 
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different simulation rounds, indicating the model’s scalability 

and reliability in real-world deployments. These results 

collectively demonstrate the model’s effectiveness in ensuring 

secure, efficient, and stable D2D communication. 

Table 4 Statistical Analysis of BbOR-Deep CNN 

Performance Metrics 

Statistical Test  P-Value 

Chi-Square Goodness-of-Fit for 

Encryption  

0.76965 

Z-Test for Token Validation 

Proportion 

0.41422 

Cohen's Kappa for Token Usage 

Agreement 

0.5 

Spearman Correlation Coefficient 

(between accuracy and prediction 

time) 

0.536 

 

Kruskal-Wallis Test for PDR Values 

across Simulations 

0.16124 

 

4.7. Discussion  

The proposed BbOR-DCNN method achieves superior results 

due to its integration of multiple advanced security and 

optimization techniques. Unlike traditional D2D 

communication methods that suffer from latency, security 

vulnerabilities, and inefficient attack detection, the proposed 

approach leverages Blockchain for immutable security, Onion 

Routing for privacy-preserving transmission, and Deep CNN 

for proactive attack detection. The combination of these 

techniques enhances the accuracy (99.54%), and packet 

delivery ratio (92%), and significantly reduces prediction time 

(12.16 ms), encryption time (2.31 ms), and decryption time 

(2.49 ms), making it highly efficient for real-time 

applications.  

Furthermore, the model effectively mitigates adversarial 

attacks such as Blackhole, Flooding, Grayhole, and TDMA 

(Scheduling) attacks by employing an intelligent 

cryptographic token mechanism and anomaly detection 

through Deep CNN, which continuously learns and adapts to 

emerging threats. The novel integration of cryptographically 

secure token authentication with distributed Blockchain 

validation ensures tamper-proof communication, making the 

proposed approach scalable, resilient, and ideal for critical 

applications in IoT, healthcare, and finance. Unlike 

conventional methods, BbOR-DCNN proactively detects, 

prevents, and mitigates security threats, ensuring an optimal 

trade-off between computational complexity (17%) and 

security robustness. This makes our proposed method not 

only more efficient but also highly novel in securing D2D 

communication against evolving cyber threats. 

5. CONCLUSION 

This research presents an innovative approach to secure and 

private D2D communication through BbOR-DCNN. The 

integration of Blockchain ensures trust, transparency, and 

immutability, while onion routing safeguards communication 

privacy by anonymizing the transmission path. By 

incorporating Deep CNN, the system effectively predicts 

potential attacks using Blockchain transaction patterns and 

token behaviors, enhancing its security capabilities. The 

proposed methodology was validated using the WSNDS 

dataset, demonstrating its scalability and effectiveness in 

mitigating security risks and preserving data integrity in D2D 

networks. This framework provides a robust, efficient, and 

scalable solution suitable for various sensitive applications, 

including IoT, healthcare, and financial systems. However, 

the resource-intensive nature of Deep CNN in the framework 

may challenge its applicability in resource-constrained and 

real-time environments. To address this, future work will 

focus on optimizing the BbOR-Deep CNN framework for 

real-time deployments by leveraging lightweight encryption 

techniques, efficient Blockchain consensus algorithms, and 

model compression methods to reduce resource consumption. 
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