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Abstract – Cloud computing has emerged as a crucial paradigm 

for delivering scalable and efficient services to many users. Load 

balancing in cloud environments presents several challenges, 

such as optimizing makespan, degree of imbalance, standard 

deviation, enhancing system performance and processing speed, 

and ensuring a reliable cloud infrastructure. These challenges 

are exacerbated by dynamic and unpredictable workloads, 

which can lead to uneven distribution of tasks and 

underutilization or overloading of resources. To address the 

challenges proposed by dynamic and unpredictable workloads, 

various load-balancing algorithms have been proposed. This 

work presents a novel approach called the HBLBACO (Hybrid 

BAT and LBACO) algorithm to balance the load on cloud, which 

combines the strengths of the Bat algorithm (BA) and the Load 

Balancing Ant Colony Optimization (LBACO) algorithm that is 

local optima and global optima respectively to achieve improved 

load distribution in cloud environments. To analyse the proposed 

algorithm, extensive experiments were conducted using 

CloudSim simulation environments. The experimental results 

demonstrate that the HBLBACO algorithm reduces makespan, 

degree of imbalance, standard deviation and maximized 

processing speed. It effectively adapts to dynamic workload 

changes and achieves a more balanced distribution of tasks 

across VMs, leading to improved system performance. The 

results confirm that the proposed approach outperforms 8%, 

68%, 71%, 81% then LBACO, 2%, 21%, 43%, 96% then ACO 

and 53% ,96%, 98% then PSO algorithm in terms of makespan, 

degree of imbalance, standard deviation and processing speed 

respectively. 

Index Terms – Cloud Computing, Cloud Load Balancing, 

HBLBACO Algorithm, BAT Algorithm, LBACO Algorithm, 

ACO Algorithm. 

1. INTRODUCTION 

Cloud computing technology delivers a wide array of services 

to clients worldwide through the utilization of highly scalable 

and virtualized resources over the internet. The primary goal 

is to offer global services with minimal costs and optimal 

performance. In order to enable a numerous amount of clients 

around the globe to share resources efficiently and receive 

high-quality service within a specific timeframe, it is crucial 

to handle client requests in an efficient manner that minimizes 

time and resource wastage. This underscores the significant 

need for effective load balancing approaches, which serve as a 

critical factor of any cloud services provider for their success 

[1][2] 

Load balancing plays a pivotal role in ensuring that cloud 

nodes are evenly distributed, preventing situations where 

certain resources are overwhelmed while others remain 

underutilized. This imbalance can result in a decrease in the 

response time for tasks assigned [3][4].Load balancing serves 

as an efficient approach to distribute workloads across 

resources, thereby enhancing processing speed and makespan 

times. The objective is to maintain an stable distribution of 
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work among cloud resources, preventing both overloading 

and under loading scenarios [5]. 

Traditional algorithms [6] are employed for addressing this 

issue; however, their effectiveness diminishes when 

confronted with intricate and large-scale problems. 

Metaheuristic algorithms, including ant colony optimization 

(ACO) [7] [8], particle swarm optimization (PSO) [9][10], 

artificial bee colony (ABC) [11][12], and genetic algorithm 

(GA) [13], have gained popularity for tackling NP complete 

problems. As the complexity of the problem increases, 

convergence process and the speed of metaheuristic 

approaches using random population tend to deteriorate, 

especially when dealing with a higher number of jobs. The 

utilization of an efficient scheduling approach that generates 

high-quality initial solutions for the initial population of 

metaheuristic algorithms leverages the power of these 

dynamic approaches, thereby mitigating their limitations in 

dealing with intricately randomized initialization problems 

[14] 

In this work, a hybrid BAT and LBACO algorithm 

(HBLBACO) is proposed to distribute the VM loads in an 

efficient way. To enhance the effectiveness of workload 

balancing, HBLBACO combines the strengths of two existing 

algorithms, the BA and LBACO algorithm. HBLBACO 

decreases the overall makespan time, standard deviation, and 

degree of imbalance. Furthermore, it maximizes the 

processing speed of the algorithm. When compared to other 

algorithms, HBLBACO is shown to be more efficient in 

resolving the workload balancing problem in cloud 

environments. 

1.1. Problem Definition 

Traditional load balancing techniques often struggle with the 

complexity of cloud environments, where workloads can vary 

widely in terms of processing requirements, and resource 

availability can fluctuate. Additionally, these techniques may 

suffer from issues like slow convergence, premature 

convergence to suboptimal solutions, or an inability to adapt 

to dynamic changes in the environment. 

To address these challenges, there is a need for an advanced 

optimization algorithm that can effectively explore the 

solution space, quickly comply to changing conditions, and 

find near-optimal load distribution across virtual machines 

(VMs). The goal is to develop an algorithm that can improve 

overall system performance by minimizing makespan, degree 

of imbalance, standard deviation, and maximizing processing 

speed of all available resources. 

So, this research’s objective is to provide a Hybrid Bat and 

LBACO algorithm that effectively addresses the problem of 

load balancing in cloud computing environments. The hybrid 

algorithm combines the exploration capabilities of the Bat 

Algorithm with the exploitation strengths of LBACO 

algorithm to achieve optimal load distribution. 

The significant contribution of proposed work:  

• This work proposes a novel hybrid HBLBACO algorithm 

that effectively combines the global search ability of the 

BA Algorithm and the local search refinement of the 

LBACO algorithm. 

• The proposed approach is performed using CloudSim 

Simulation 

• The hybrid algorithm is tested at different number of tasks 

by increasing them 

• The proposed hybrid approach is compared with LBACO, 

PSO, ACO algorithms. 

The remainder of this paper is organized as follows: Section 2 

represents the literature review on workload balancing. 

Section 3 represents the workflow of proposed algorithm. 

Section 4 presents the performance evaluation of the proposed 

approach, including experimental results and discussions. 

Section 5 concludes the paper and summarizes the future 

scope of this work. 

2. LITERATURE REVIEW 

A considerable body of research has dedicated to address the 

problem of load balancing and obtaining optimal assignment 

solutions. These research efforts can be broadly classified into 

three categories of algorithms: traditional, metaheuristic, and 

hybrid algorithms [15] 

2.1. Traditional Algorithms 

These approaches function by leveraging established data 

regarding resources and tasks to compute their assessment 

criteria. Many of these algorithms depend on time of 

execution to efficiently delegate tasks to resources that 

reduces makespan and load deviation. An example of such an 

algorithm is Min-Min approach, which serves as basis for 

various balancing algorithms [16]. Min-Min approach [17] 

determines the completion time of tasks submitted to different 

virtual machines (VMs). Task having the shortest time of 

completion is then allocated to its respective VM. Afterward, 

the completion times of the remaining tasks on that VM are 

adjusted. This task is then deleted from the list of unassigned 

tasks, and the process repeats until all tasks are allocated. 

[18]. 

The Load Balance Improved Min-Min (LBIMM) approach 

[19] enhances upon the traditional Min-Min approach. 

Initially, Min-Min approach is run to generate the initial 

solution for the next phase. Subsequently, completion time of 

the smallest task from the most loaded resource is determined 

across all VMs. The makespan is determined by relocating the 

task to the VM with the min completion time for that 
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particular task. This makespan is then compared to the one 

generated by Min-Min. If the makespan is shorter than that of 

Min-Min, the reassignment of task to resource is done where 

it originated, and the start time of resources is adjusted. This 

iterative process continues until no further reassignments can 

reduce the makespan. As a result, heavily loaded resources are 

relieved, while lighter load are utilized efficiently. While 

traditional approaches are straightforward to implement and 

can enhance makespan, certain may neglect load deviation, 

particularly in scenarios with significant differences in 

resource speeds. Additionally, they may not achieve optimal 

solutions, especially as the problem complexity or size 

increases. 

2.2. Metaheuristic Algorithms 

Meta-heuristic techniques can provide approximate optimal 

solutions to complex problems in reasonable time period. 

Scheduling tasks in a large search space is difficult, as there 

are many possible solutions and it can take a long-time span 

to give the optimal solution. In such cases, no single, well-

defined method can solve the problem. However, finding a 

near-optimal solution is often sufficient. As a result, meta-

heuristic techniques are often used to schedule in task 

scheduling. The different types of metaheuristic algorithms 

includes ACO, BAT , ABC and(LBACO [20]. 

Xin-She Yang developed standard bat algorithm, is motivated 

by the bats echolocation behavior. It introduces frequency 

tuning and is recognized as the primary optimization and 

artificial intelligence algorithm. Every bat in the algorithm is 

characterized by its velocity (v) and location (x) within a d-

dimensional solution space or search. The location represents 

a solution vector for a specific problem. Throughout the 

iterative search process, the algorithm maintains a population 

of n bats, with the best solution found (x∗) being stored and 

updated accordingly [21][22] 

Mallikarjuna et al. presented a binary bat algorithm produced 

particularly to address the valve-point effect of economic load 

dispatch problem. Their study highlighted several advantages 

of their binary bat algorithm. Notably, the algorithm 

demonstrated rapid convergence during the initial stages and 

exhibited the ability to dynamically shift from exploration to 

exploitation as the optimality of the solution improved. These 

characteristics make the binary bat algorithm an advantageous 

approach for efficiently tackling the valve-point effect of 

economic load dispatch problem [23]. Jayswal et al. proposed 

the Fault Tolerance BAT algorithm as a solution to address 

challenges related to assurance, liability, and reliability in 

cloud computing [24], [25]. 

Zehua Zhang et al suggested the approach to maximize 

resource allocation and enhance system performance. The 

method provides a possible strategy for achieving efficient 

load balancing in cloud computing by combining ACO and 

network theory [26]. Fidanova et al. proposed a load 

balancing approach for grid computing using ACO and Monte 

Carlo techniques. The goal of the algorithm is to find optimal 

scheduling for a set of tasks on a grid computing system [27]. 

Kun Li proposed the LBACO approach for scheduling 

independent tasks in load balancing. The motive of LBACO is 

to reduce the makespan, or total time of execution of all tasks 

while also balancing the load evenly across all virtual 

machines (VMs). LBACO achieves this by using ACO 

approach inspired by the behavior of ants. In ant colony 

optimization, ants deposit pheromones on the ground as they 

travel. These pheromones act as a signal to other ants, 

indicating that a particular path is a good one to follow. 

LBACO uses a similar approach, but instead of pheromones, 

it uses a probability distribution to guide the ants [28]. 

2.3. Hybrid Algorithms 

Hybrid load balancing algorithms involve the fusion of two 

scheduling algorithms to leverage the strengths of both [29]. 

This paper introduces some widely recognized hybrid 

algorithms and elucidates the rationale behind proposing a 

new algorithm. The HGA-ACO algorithm [30], for instance, 

amalgamates GA and ACO. In HGA-ACO algorithm, a 

randomly initialized GA is employed to generate the 

pheromone for ACO. Subsequently, ACO iterates to produce 

the optimal result. The best fit result from both approaches are 

combined through crossover to yield the overall best solution. 

Despite the approach focus on factors such as execution time, 

throughput, and response time, it does not specifically address 

the load balancing problem [31]. 

The OH_BAC (Osmotic Hybrid Artificial Bee and Ant 

Colony) approach, as introduced in [32], utilizes the osmosis 

technique to establish an energy-efficient environment. In this 

approach, the ABC and ACO collaboratively work to identify 

the optimal virtual machine (VM) for migration to best suited 

physical machine. Furthermore, the algorithm activates the 

best suited osmotic host between all physical machines to 

reduce power consumption. 

Table 1 depicts the summary of the algorithms that we came 

across our literature review. It includes methodology used, 

algorithms used, advantages and disadvantages of the 

discussed algorithms. 

The rationale behind selecting the hybrid approach, 

combining the Bat Algorithm with LBACO, stems from the 

need to solve the inherent challenges of load balancing in 

cloud computing more effectively than traditional methods. 

The Bat Algorithm excels in global search capabilities due to 

its exploitation of frequency tuning and velocity updates, 

which help in diversifying the search space and avoiding local 

optima. However, while the Bat Algorithm is powerful in 

exploration, it can sometimes suffer from slow convergence 

in fine-tuning solutions. ACO algorithm is known for its 
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strong exploitation capabilities, where ants progressively 

refine their solutions based on pheromone trails, resulting in a 

more intensive search in areas of the solution space. This 

pheromone-guided search is particularly effective in fine-

tuning solutions but can be limited in its ability to explore the 

broader search space, especially in dynamic and complex 

environments like cloud computing. 

By hybridizing these two algorithms, the resulting method 

leverages the strengths of both: the global search capability of 

the Bat Algorithm and the local search refinement of ACO. 

This synergy allows the hybrid approach to not only explore a 

wider range of potential solutions but also to converge more 

quickly and accurately on optimal load balancing 

configurations. Compared to traditional load balancing 

methods, which may rely solely on heuristic or static rules, 

this hybrid approach offers a more dynamic, adaptive, and 

efficient solution. It is particularly advantageous in cloud 

environments where workloads are highly variable, and 

resource availability can change rapidly, making it imperative 

to have a robust and flexible optimization strategy that can 

adapt in real time. 

Table 1 Summary of Literature Review Algorithms 

Algorithm Algorithms Used Methodology Used Advantages Disadvantages 

Min-MIn[17] Greedy 

algorithm 

Greedy algorithm selecting 

task with the min time of 

execution and assigns to 

the resource that can 

complete it the earliest. 

Simple and easy to 

implement. 

- Provides a fast-decision-

making process. 

May lead to load 

imbalances. 

- Not optimal for 

dynamic environments. 

LBIMM (Load 

Balancing 

Improved Min-

Min)[18] 

Min-Min 

algorithm with 

load balancing 

modifications 

Extension of MIN-min 

with load balancing 

enhancements to better 

distribute tasks across 

resources. 

Improved load distribution 

over MIN-min. 

- Better handling of 

heterogeneous tasks. 

Increased complexity 

compared to MIN-min. 

- May still cause 

imbalance in highly 

dynamic environments. 

ACO (Ant 

Colony 

Optimization)[2] 

ACO algorithm Nature-inspired algorithm 

mimicking the foraging 

behaviour of ants, using 

pheromone trails to find 

optimal paths (task 

assignments). 

Good for dynamic and 

distributed environments. 

- Scalability to large-scale 

systems. 

- Finds near-optimal 

solutions. 

Convergence time can be 

high. 

- Dependent on 

parameter settings for 

performance. 

BAT[33] BAT algorithm  Metaheuristic algorithm 

inspired by bats 

echolocation behavior, 

balancing between global 

and local search for 

solutions. 

Efficient in finding global 

optima. 

- Can handle multi-

objective optimization. 

- Good balance between 

exploration and 

exploitation. 

Performance depends on 

parameter tuning. 

- May suffer from 

premature convergence. 

ABC (Artificial 

Bee Colony)[34] 

ABC algorithm  Nature inspired algorithm 

mimicking the foraging 

behaviour of honey bees, 

focusing on exploration 

and exploitation of the 

search space. 

Effective in exploring the 

search space. 

- Suitable for complex 

optimization problems. 

- Good convergence rate 

Can be slower in 

converging compared to 

other algorithms. 

- Performance is 

sensitive to parameter 

values. 

LBACO (Load 

Balancing Ant 

Colony 

Optimization)[28] 

ACO with load 

balancing 

strategies 

- Hybrid algorithm 

combining ACO with 

specific load balancing 

techniques to enhance task 

distribution. 

Combines advantages of 

ACO and load balancing 

strategies. 

- Adaptable to changing 

conditions in cloud 

environments. 

 

More computationally 

intensive. 

- Requires careful 

parameter tuning. 
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HGA-ACO 

(Hybrid Genetic 

Algorithm and 

ACO)[30] 

GA combined 

ACO 

Hybridization of GA for 

global search ACO for 

refined local search. 

High efficiency in finding 

near-optimal solutions. 

- Exploits both global and 

local search capabilities. 

- Robust against premature 

convergence. 

Complex to implement. 

- Higher computational 

overhead. 

- Requires balancing 

between GA and ACO 

components. 

OH-BAC 

(Osmotic Hybrid 

Artificial Bee and 

Ant Colony)[32] 

ABC combined 

with ACO 

Hybrid approach 

combining the ABC for 

exploration with ACO for 

effective task distribution. 

- Combines the exploration 

strength of ABC with the 

optimization efficiency of 

ACO. 

- Well-suited for dynamic 

cloud environments. 

- High optimization 

capability and load 

balancing efficiency. 

Complex 

implementation. 

- Computationally 

expensive. 

- Requires careful tuning 

of multiple algorithm 

parameters. 

3. PROPOSED HBLBACO ALGORITHM 

The hybrid HBLBACO algorithm proposed in this paper 

combines the BAT and LBACO algorithms to achieve 

efficient cloud computing load. The proposed hybrid 

algorithm maximizes the benefits of both algorithms to boost 

load balancing effectiveness and performance in cloud 

computing. The LBACO algorithm is capable of local search, 

whereas the bat algorithm is capable of global search. The 

parallel processing capabilities of cloud computing 

environments can also be utilized by the hybrid algorithm to 

speed up the load balancing procedure. Algorithm 1 is the 

algorithm for hybrid HBLBACO Algorithm. 

Begin 

Step 1: Initialize BAT Population 

Initialize the population of bats with random positions and 

velocities in the search space 

Initialize the parameters for loudness, pulse rate, frequency, 

and maximum iterations 

Step 2: Main Loop 

While (current iteration ≤ max iterations) do 

Step 3: Fitness Evaluation of Bats using LBACO 

For each bat in the population do 

Calculate the fitness of the current bat using the LBACO 

algorithm 

End For 

Step 4: Update Best Fitness Value and Best Solution 

If (current bat's fitness is better than the best fitness found so 

far) then 

Update the best fitness value 

Update the best solution with the current bat's position 

EndIf 

Step 5: Update Loudness and Pulse Rate of Bats using Fitness 

Value 

For each bat in the population do 

Adjust the loudness and pulse rate based on the fitness of the 

current solution 

End For 

Step 6: Update Frequency and Velocity of Bats using Current 

and Best Solution 

For each bat in the population do 

Update the bat's frequency based on the current position and 

best solution 

Update the bat's velocity using the updated frequency and the 

difference in the current position and the best solution 

Update the bat's position based on its velocity 

End For 

End While 

Step 7: Return best fit 

Return the best result found 

End 

Algorithm 1 Hybrid HBLBACO Algorithm 

The flowchart of the proposed HBLBACO algorithm is 

represented in Figure 1. 

Step by step implementation of HBLBACO algorithm: 

3.1. Initialization Phase 

In this step, the algorithm is initialized with the cloud 

infrastructure and user requests. The cloud infrastructure 

consists of a set of virtual machines with different capacities, 
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and the user requests consist of a set of tasks with different 

computational requirements. The hybrid HBLBACO 

approach is initialized to a specific number of iterations. 

Various random solutions are generated in the first iteration. 

The Bat Algorithm and the LBACO algorithm are also 

initialized with their respective parameters, such as the 

population size, pheromone levels, and heuristic information. 

The randomly generated solutions work as the input to the 

next phase. The initialization process is represented 

mathematically in Eq. (1) 

𝑋 = {𝑥1 , 𝑥2 , … … 𝑥𝑛 }         … (1) 

where each 𝑥𝑛  represents a load balancing strategy. 

 

Figure 1 Flowchart of Proposed HBLBACO Algorithm 

3.2. Fitness Evaluation  

The fitness of the best generated solution is evaluated using 

LBACO algorithm. To evaluate the fitness of each bat 

solution using LBACO, each bat represents a potential 

solution, and the computation tasks are assigned to the 

resources based on the bat's solution. By evaluating the 

overall execution time and resource utilization across all tasks 

and resources, the performance of the bat's solution is 

evaluated. The fitness value increases as the overall execution 

time decreases and the tasks are spread more evenly among 

the resources. Equation 2 shows the mathematical 

representation of fitness evaluation. 

F(S)=α(T(S)1)+β(U(S)           (2) 

Where: S represents the bat's solution, which is a potential 

assignment of computation tasks to resources,  

T(S) is the total time of execution of the tasks based on the 

bat's solution,  

U(S) is a measure of resource utilization efficiency, reflecting 

how evenly the tasks are distributed among the resources, 

 α and β are control parameters. 

3.3. Best Solution Updating Phase 

The best solution and best fit value are initialized to those of 

the first bat solution in this phase. The search procedure 

involves the initial best solution and best fitness value as a 

starting point. The fitness of each new solution is compared to 

the best fit value when the algorithm repeats the loop and 

creates new solutions for each bat. The best solution and best 

fitness value are modified to accommodate new solution if 

fitness of new solution is better than the current best fit value. 

By setting the initial best solution and best fitness value to the 

first bat solution's values, the algorithm ensures that the 

search process starts with a valid solution and that the best 

solution found so far is initialized correctly. This initialization 

step can also help to refine the efficiency of the search process 

by assigning a good starting point for the approach to survey 

the search space. This step is necessary to keep track of the 

best solution found so far and to update it when a better 

solution is found during the search process. Eq. 3 represents 

the mathematical formula this phase. 

During the search process, for each new solution Si  generated 

by the algorithm, the fitness F(Si)is calculated and compared 

with the current best fitness value Fbest. The best solution and 

fitness value are updated as follows: 

If F(Si)>Fbest, then: Sbest=Si and Fbest=F(Si) (3) 

Where: Si is the new solution generated during the search.  

F(Si) is the fitness value of the new solution Si. 

3.4. Update Loudness and Pulse Rate of Bats Using Fitness 

Value 

This step updates each bat's loudness and pulse rate based on 

their current fitness. The loudness of a bat represents the 

intensity or amplitude of the bat's echolocation calls. In the 

context of the algorithm, it determines the step size of the 

bat's search process. A higher loudness value means that the 

bat can move further away from its current position in the 

search space. The loudness update is represented 

mathematically in Eq. (4) 

Update best fitness value and best solution 

Iterations > Max 

Iterations 

Return best solution 

Yes 

Update frequency and velocity of bats using current 

and best solution 

Update loudness and pulse rate of bats using fitness 

value 

No 

Fitness evaluation of bats using LBACO 

Initialize BAT population 
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𝐵𝑖(𝑡+1)
 

= α ∗  𝐵𝑖(𝑡)        ... (4) 

Where 𝐵𝑖(𝑡)  represents bat loudness, α is a control parameter. 

The loudness of each bat is updated at each iteration of the 

algorithm based on its fitness value. If the evaluated fitness of 

the bat is better than the best evaluated fitness found so far, 

the loudness is decreased else increased. 

The bats pulse rate determines the frequency of echolocation 

calls. In BAT algorithm it represents the search space of bats. 

Pulse update process is represented mathematically in Eq. (5). 

if (rand > 𝑟𝑖(𝑡) ),  

then 𝑥𝑖(𝑡+1)  = 𝑥𝑘 + {ε * (𝐿𝐵 - 𝑈𝐵)} … (5) 

where 𝑟𝑖(𝑡)  is the pulse rate of the bat, 𝐿𝐵  and 𝑈𝐵  are the 

lower and upper bounds of the search space, and ε is control 

parameter 

If the pulse rate is high, then it will explore more search 

space. Based on fitness, pulse rate of bats is updated at each 

iteration. 

3.5. Update Frequency and Velocity of Bats Using Current 

and Best Solution 

This step updates each bat's frequency and velocity to explore 

the search space more effectively. This helps in finding the 

optimal solution. This process is mathematically represented 

in Eq. (6). The frequency is updated at each iteration. 

𝐹𝑖(𝑡+1) =  𝐹𝑚𝑖𝑛 + {(𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛 ) ∗ 𝑟}  (6) 

Where 𝐹𝑖(𝑡)  represents bats frequency, 𝐹𝑚𝑖𝑛 and 𝐹𝑚𝑎𝑥  

represents maximum and minimum frequencies, r represents 

random number between 0 and 1. 

Velocity of bat represents the movement of bats in search 

space using its distance and direction. This process is 

mathematically represented in Eq. (7). It is updated by using 

the current and best solution. The updated velocity is added to 

the bat's current position to determine its new location. 

 𝑉𝑖(𝑡+1) =  𝑉𝑖(𝑡) + {(𝑥𝑖(𝑡) − 𝑥𝑘) ∗ 𝐴𝑖(𝑡)} … (7) 

where 𝑉𝑖(𝑡) is the velocity of the bat, 𝐴𝑖(𝑡) is the loudness of 

the bat, 𝑥𝑖(𝑡) is the position of the bat, 𝑥𝑘  is the global best 

solution 

3.6. Termination and Output Phase 

The algorithm will continue to run until the maximum number 

of iterations is reached. At each iteration, the algorithm will 

evaluate the fitness of each bat solution using the LBACO 

approach, update the loudness and pulse rate of each bat on 

the basis their fitness value, and update the frequency and 

velocity of each bat using the current and best solutions. After 

each iteration, the algorithm will check for the termination 

criteria. If it reaches to termination condition, the algorithm 

will terminate and return the best solution found so far. If the 

termination criteria have not been reached, the algorithm will 

continue to the next iteration and repeat the process. 

4. RESULTS AND DISCUSSIONS 

The HBLBACO algorithm is proposed using the Recloud for 

the purpose of evaluating the proposed algorithm. By 

implementing an effective layer of workload distribution and 

an appropriate environment for implementing various 

scheduling methods, the Recloud expands the current 

Cloudsim simulator. The outcomes of the proposed 

HBLBACO algorithm have compared with other work 

scheduling algorithms such as LBACO algorithm in order to 

analyze the performance of the algorithm. The efficiency of 

the HBLBACO algorithm was also evaluated in comparison 

to other comparable research which is covered in section 4.3. 

4.1. Environmental Setup 

Table 1 Simulation Parameters of Servers 

Parameter Value 

Architecture x64 

Operating System Linux 

VMM XEN 

Time Zone 10.0 

Memory Cost 0.05 

Storage Cost 0.001 

Table 2 Simulation Parameters of VMs 

Parameter Value 

MIPS 9000 

Processing Elements 1 

RAM 512 

BW 1000 

VM Policy TIME_Shared 

Using simulation parameters for servers in Table 1, and 

virtual machines in Table 2, we performed extensive tests to 

compare the proposed algorithm's result in the load balancing 

problem with those of existing methods. Table 1 contains the 

simulation parameters of server in which VMM stands for 

Virtual Machine Monitor. 

These parameters were used to determine the capabilities of 

the experiment's VMs and process. The proposed HBLBACO 
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algorithm was developed with various number of tasks to 

analyze the four objectives:  

1. Reduction in the makespan of the algorithm, 

2. Minimizing the degree of imbalance, 

3. Reducing the standard deviation value, and 

4. Maximizing the processing speed of the algorithm 

The HBLBACO evaluation tests were carried out using the 

parameters listed in Table 3. 

Table 3 HBLBACO Algorithm Parameters 

Parameter Value 

Population Size 100 

Number of Iterations 1000 

AMIN, AMAX 0, 5 

RMIN, RMAX 0, 5 

D 3 

Α 1.0 

Β 4.0 

Γ 2.0 

Rho 0.05 

Table 4 Number of Tasks in Each Scenario 

Scenarios Number of tasks 

Scenario one 100 

Scenario two 300 

Scenario three 600 

Scenario four 1000 

The algorithm starts with 100 random solutions, called 

population size. The number of iterations chosen was 1000. In 

the BAT phase, the minimum and maximum loudness values 

represented by AMIN, AMAX of bats were 0 and 5 

respectively. The minimum and maximum pulse rate denoted 

by RMIN, RMAX of bats were 0 and 5 respectively.  

The value of D was 3 which represents Cloudlet size. In 

LBACO phase, the values of α, β, γ and Rho were 1.0, 4.0, 

2.0 and 0.05 respectively. Here α represents pheromone 

exponent, β represents computing capacity, γ represents load 

balancing factor and Rho represents pheromone trail constant. 

Based on the characteristics of the VMs, four experiments 

were carried out, as indicated in Table 4. The workflow's size 

will be modified in order to test the algorithm's capacity. 

Table 4 lists the number of tasks for each of the four 

situations. 

4.2. Performance Analysis 

Table 5 HBLBACO vs LBACO 

Algorithm Makespan 
Standard 

deviation 

Degree of 

imbalance 

Processing 

speed 

Scenario 1 

HBLBACO 

LBACO 

 

35.626 

37.3378 

 

0.9743 

2.6747 

 

0.0757 

0.1923 

 

1602 

510 

Scenario 2 

HBLBACO 

LBACO 

 

105.6881 

112.9734 

 

3.3101 

7.3225 

 

0.1024 

0.2243 

 

3870 

764 

Scenario 3 

HBLBACO 

LBACO 

 

202.6696 

222.6867 

 

2.0931 

14.3082 

 

0.0285 

0.2135 

 

7374 

1454 

Scenario 4 

HBLBACO 

LBACO 

 

346.0248 

370.9586 

 

6.5202 

20.2984 

 

0.048 

0.1797 

 

13922 

2152 

To evaluate the decrease in makespan and standard deviation, 

each of the four scenarios have been put into operation. When 

compared to the LBACO algorithm, the proposed HBLBACO 

approach minimizes degree of imbalance and maximizes 

processing speed. Table 5 lists the outcomes of the 

experiments that were conducted for each of the four 

situations. 

The workflow's task number increased for each case. In 

Scenario 1, the search space is restricted, which speeds up the 

process of finding the best solution. On the other hand, 

scenario four shows an extensive number of tasks to increase 

the search area. The wide space makes it difficult for the 

optimization algorithm to locate the best solution. Table 5 

outcomes show how the performance parameters of the 

HBLBACO and LBACO algorithms differ. However, there is 

improvement in HBLBACO algorithm compared with 

LBACO algorithm. The HBLBACO algorithm performs 

better when search space was expanded as in scenario four. 

This outcome is attributed to the fast convergence of 

solutions, which prevents unnecessary solution a variety. 

4.2.1. Makespan 

Upon evaluating the makespan improvement between the 

HBLBACO algorithm and the LBACO algorithm, it becomes 

evident that the former demonstrates a substantial 

enhancement of 8% compared to the latter. This improvement 

is clearly illustrated in Figure 2. The key factor contributing 
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to this progress is the HBLBACO algorithm's consistent and 

strategic selection of the most suitable virtual machines 

(VMs) for executing tasks. 

 

Figure 2 Makespan of LBACO vs. HBLBACO Algorithm 

4.2.2. Standard Deviation 

In terms of standard deviation, Figure 3 clearly demonstrates 

that the HBLBACO algorithm, which has been proposed, 

outperforms the LBACO algorithm by a significant margin of 

71%. The reason behind this notable improvement is 

attributed to the efficient selection of virtual machines (VMs) 

by the HBLBACO algorithm. 

 

Figure 3 Standard Deviation of LBACO vs. HBLBACO 

Algorithm 

4.2.3. Degree of Imbalance 

 

Figure 4 Degree of Imbalance of LBACO vs. HBLBACO 

Algorithm 

With regards to the degree of imbalance, the findings 

presented in Figure 4 highlight a substantial 68% superiority 

of the proposed HBLBACO algorithm over the LBACO 

algorithm. 

4.2.4. Processing Speed 

The HBLBACO algorithm performs 81% better than the 

LBACO algorithm in terms of processing speed as shown in 

Figure 5. This significant performance is because the 

proposed algorithm uses suitable load distribution among 

VMs which leads to optimized speed of processing tasks. 

 

Figure 5 Processing Speed of LBACO vs. HBLBACO 

Algorithm 

4.3. Comparison of Related Approaches 

In order to compare different algorithms for scheduling 

workflow tasks, three specific algorithms were assessed: PSO 

algorithm and ACO algorithm. These algorithms were 

implemented based on their respective descriptions found in 

literature.  

The outcomes indicate that the proposed HBLBACO 

algorithm not only enhances convergence to the optimal 

solution at a faster rate compared to the other algorithms, but 

also exhibits a higher quality of load balancing. These 

findings are elaborated upon in section 4.2 of the discussion. 

Table 6 HBLBACO vs. PSO 

Methods 
Avg. 

Makespan 

Avg. Standard 

deviation 

Avg. Degree of 

imbalance 

HBLBACO 170.5 2.05 0.057 

PSO 364.5 108.12 1.45 

The comparison between the PSO algorithm and the proposed 

HBLBACO algorithm was conducted with regards to three 

objectives: the makespan (total time to complete all tasks), the 

standard deviation (the measure of variability in task 

completion times), and the degree of imbalance (the 

distribution of tasks among resources). This comparison is 

presented in Table 6. 
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Table 7 HBLBACO vs. ACO 

Methods 
Avg. 

Makespan 

Avg. 

Standard 

deviation 

Avg. 

Degree of 

imbalance 

Avg. 

Processing 

Speed 

HBLBACO 172.45 3.114 0.075 7094.5 

ACO 175.58 5.456 0.0965 311.5 

The comparison between the proposed HBLBACO algorithm 

and the ACO algorithm was conducted with respect to four 

objectives: the makespan (total time to complete all tasks), the 

standard deviation (the measure of variability in task 

completion times), the degree of imbalance (the distribution 

of tasks among resources) and processing speed (task 

completion in given timeframe). This comparison is presented 

in Table 7. 

4.3.1. Makespan 

Figure 6 shows that the HBLBACO algorithm outperforms 

53% in terms of makespan than the PSO algorithm. Figure 7 

shows that the proposed HBLBACO algorithm outperforms 

2% better than ACO algorithm in terms of makespan. 

 

Figure 6 Makespan of HBLBACO vs. PSO 

 

Figure 7 Makespan of HBLBACO vs. ACO 

4.3.2. Standard Deviation 

Figure 8 shows that the proposed HBLBACO algorithm 

outperforms 98% in terms of standard deviation than the PSO 

algorithm. Figure 9 shows that the proposed HBLBACO 

algorithm is 43% better than the ACO algorithm in terms of 

standard deviation. 

 

Figure 8 Standard Deviation of HBLBACO vs. PSO 

 

Figure 9 Standard Deviation of HBLBACO vs. ACO 

4.3.3. Degree of Imbalance 

Figure 10 shows that the proposed HBLBACO algorithm is 

96% better than PSO algorithm in terms of degree of 

imbalance. Figure 11 shows the improvement of 21% in terms 

of degree of imbalance between the proposed HBLBACO 

algorithm and ACO algorithm. 

 

Figure 10 Degree of Imbalance of HBLBACO vs. PSO 
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Figure 11 Degree of Imbalance of HBLBACO vs. ACO 

4.3.4. Processing Speed 

Figure 12 shows the improvement of 96% in terms of 

processing speed of proposed HBLBACO algorithm with 

ACO algorithm. 

 

Figure 12 Processing Speed of HBLBACO vs. ACO 

In essence, the proposed HBLBACO algorithm stands out due 

to its exceptional ability to combine suitable diversity and fast 

convergence. By effectively leveraging these features, it 

surpasses other algorithms by swiftly identifying the optimal 

solution, in any case of the number of workflow tasks 

involved. 

5. CONCLUSION AND FUTURE SCOPE 

The HBLBACO algorithm proposed in this paper is designed 

to address load balancing issues in cloud environments. The 

dispersion of load across available resources is referred as 

load balancing. To maximize resource use and prevent 

overloading particular capacities while maintaining others 

inactive, load balancing is used. The HBLBACO algorithm is 

implemented using the cloudsim simulator and compared with 

other known load balancing algorithms such as LBACO, 

PSO, and ACO. It is designed to distribute jobs over VMs 

with effective workload distribution to minimize makespan, 

standard deviation, and degree of imbalance, and increase 

processing speed. The outcomes of algorithm are compared 

with LBACO, PSO and ACO techniques. The HBLBACO 

algorithm optimizes makespan by 8%, 53%, and 2% 

compared to LBACO, PSO, and ACO, respectively. It also 

minimizes standard deviation by 71%, 98%, and 43%, and 

minimizes degree of imbalance by 68%, 96%, and 21%, 

respectively. The algorithm also enhances processing speed 

by 81% and 96% compared to LBACO, and ACO, 

respectively. The fitness function of the HBLBACO 

algorithm which balances cost and time has a big impact on 

the results. A mathematical formula called the fitness function 

is utilized in optimization problems to rate the effectiveness 

of solutions. To create a balance between these parameters, 

the algorithm utilizes the same weights for makespan, 

standard deviation, and degree of imbalance in the fitness 

function. 

Future work can include extending the algorithm to 

heterogeneous environments with more than one data center, 

extending the workflow application distribution into two 

levels, using dynamic workflows to allow flexibility to users 

to change task attributes during runtime, and verifying the 

justification over real-time cloud environments. These 

extensions can enhance the scalability, flexibility, and 

efficiency of algorithm in various cloud environments. 
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