
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 594

RESEARCH ARTICLE

An Efficient Load Balancing HBLBACO Approach

Using Hybrid BAT and LBACO Algorithm in Cloud

Environment

Shalu Rani

Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar,

Haryana, India.

✉ bansal11shalu@gmail.com

Dharminder Kumar

Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar,

Haryana, India.

dr_dk_kumar_02@yahoo.com

Sakshi Dhingra

Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar,

Haryana, India.

sakshi24.dhingra@gmail.com

Received: 14 June 2024 / Revised: 25 August 2024 / Accepted: 12 September 2024 / Published: 30 October 2024

Abstract – Cloud computing has emerged as a crucial paradigm

for delivering scalable and efficient services to many users. Load

balancing in cloud environments presents several challenges,

such as optimizing makespan, degree of imbalance, standard

deviation, enhancing system performance and processing speed,

and ensuring a reliable cloud infrastructure. These challenges

are exacerbated by dynamic and unpredictable workloads,

which can lead to uneven distribution of tasks and

underutilization or overloading of resources. To address the

challenges proposed by dynamic and unpredictable workloads,

various load-balancing algorithms have been proposed. This

work presents a novel approach called the HBLBACO (Hybrid

BAT and LBACO) algorithm to balance the load on cloud, which

combines the strengths of the Bat algorithm (BA) and the Load

Balancing Ant Colony Optimization (LBACO) algorithm that is

local optima and global optima respectively to achieve improved

load distribution in cloud environments. To analyse the proposed

algorithm, extensive experiments were conducted using

CloudSim simulation environments. The experimental results

demonstrate that the HBLBACO algorithm reduces makespan,

degree of imbalance, standard deviation and maximized

processing speed. It effectively adapts to dynamic workload

changes and achieves a more balanced distribution of tasks

across VMs, leading to improved system performance. The

results confirm that the proposed approach outperforms 8%,

68%, 71%, 81% then LBACO, 2%, 21%, 43%, 96% then ACO

and 53% ,96%, 98% then PSO algorithm in terms of makespan,

degree of imbalance, standard deviation and processing speed

respectively.

Index Terms – Cloud Computing, Cloud Load Balancing,

HBLBACO Algorithm, BAT Algorithm, LBACO Algorithm,

ACO Algorithm.

1. INTRODUCTION

Cloud computing technology delivers a wide array of services

to clients worldwide through the utilization of highly scalable

and virtualized resources over the internet. The primary goal

is to offer global services with minimal costs and optimal

performance. In order to enable a numerous amount of clients

around the globe to share resources efficiently and receive

high-quality service within a specific timeframe, it is crucial

to handle client requests in an efficient manner that minimizes

time and resource wastage. This underscores the significant

need for effective load balancing approaches, which serve as a

critical factor of any cloud services provider for their success

[1][2]

Load balancing plays a pivotal role in ensuring that cloud

nodes are evenly distributed, preventing situations where

certain resources are overwhelmed while others remain

underutilized. This imbalance can result in a decrease in the

response time for tasks assigned [3][4].Load balancing serves

as an efficient approach to distribute workloads across

resources, thereby enhancing processing speed and makespan

times. The objective is to maintain an stable distribution of

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 595

RESEARCH ARTICLE

work among cloud resources, preventing both overloading

and under loading scenarios [5].

Traditional algorithms [6] are employed for addressing this

issue; however, their effectiveness diminishes when

confronted with intricate and large-scale problems.

Metaheuristic algorithms, including ant colony optimization

(ACO) [7] [8], particle swarm optimization (PSO) [9][10],

artificial bee colony (ABC) [11][12], and genetic algorithm

(GA) [13], have gained popularity for tackling NP complete

problems. As the complexity of the problem increases,

convergence process and the speed of metaheuristic

approaches using random population tend to deteriorate,

especially when dealing with a higher number of jobs. The

utilization of an efficient scheduling approach that generates

high-quality initial solutions for the initial population of

metaheuristic algorithms leverages the power of these

dynamic approaches, thereby mitigating their limitations in

dealing with intricately randomized initialization problems

[14]

In this work, a hybrid BAT and LBACO algorithm

(HBLBACO) is proposed to distribute the VM loads in an

efficient way. To enhance the effectiveness of workload

balancing, HBLBACO combines the strengths of two existing

algorithms, the BA and LBACO algorithm. HBLBACO

decreases the overall makespan time, standard deviation, and

degree of imbalance. Furthermore, it maximizes the

processing speed of the algorithm. When compared to other

algorithms, HBLBACO is shown to be more efficient in

resolving the workload balancing problem in cloud

environments.

1.1. Problem Definition

Traditional load balancing techniques often struggle with the

complexity of cloud environments, where workloads can vary

widely in terms of processing requirements, and resource

availability can fluctuate. Additionally, these techniques may

suffer from issues like slow convergence, premature

convergence to suboptimal solutions, or an inability to adapt

to dynamic changes in the environment.

To address these challenges, there is a need for an advanced

optimization algorithm that can effectively explore the

solution space, quickly comply to changing conditions, and

find near-optimal load distribution across virtual machines

(VMs). The goal is to develop an algorithm that can improve

overall system performance by minimizing makespan, degree

of imbalance, standard deviation, and maximizing processing

speed of all available resources.

So, this research’s objective is to provide a Hybrid Bat and

LBACO algorithm that effectively addresses the problem of

load balancing in cloud computing environments. The hybrid

algorithm combines the exploration capabilities of the Bat

Algorithm with the exploitation strengths of LBACO

algorithm to achieve optimal load distribution.

The significant contribution of proposed work:

• This work proposes a novel hybrid HBLBACO algorithm

that effectively combines the global search ability of the

BA Algorithm and the local search refinement of the

LBACO algorithm.

• The proposed approach is performed using CloudSim

Simulation

• The hybrid algorithm is tested at different number of tasks

by increasing them

• The proposed hybrid approach is compared with LBACO,

PSO, ACO algorithms.

The remainder of this paper is organized as follows: Section 2

represents the literature review on workload balancing.

Section 3 represents the workflow of proposed algorithm.

Section 4 presents the performance evaluation of the proposed

approach, including experimental results and discussions.

Section 5 concludes the paper and summarizes the future

scope of this work.

2. LITERATURE REVIEW

A considerable body of research has dedicated to address the

problem of load balancing and obtaining optimal assignment

solutions. These research efforts can be broadly classified into

three categories of algorithms: traditional, metaheuristic, and

hybrid algorithms [15]

2.1. Traditional Algorithms

These approaches function by leveraging established data

regarding resources and tasks to compute their assessment

criteria. Many of these algorithms depend on time of

execution to efficiently delegate tasks to resources that

reduces makespan and load deviation. An example of such an

algorithm is Min-Min approach, which serves as basis for

various balancing algorithms [16]. Min-Min approach [17]

determines the completion time of tasks submitted to different

virtual machines (VMs). Task having the shortest time of

completion is then allocated to its respective VM. Afterward,

the completion times of the remaining tasks on that VM are

adjusted. This task is then deleted from the list of unassigned

tasks, and the process repeats until all tasks are allocated.

[18].

The Load Balance Improved Min-Min (LBIMM) approach

[19] enhances upon the traditional Min-Min approach.

Initially, Min-Min approach is run to generate the initial

solution for the next phase. Subsequently, completion time of

the smallest task from the most loaded resource is determined

across all VMs. The makespan is determined by relocating the

task to the VM with the min completion time for that

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 596

RESEARCH ARTICLE

particular task. This makespan is then compared to the one

generated by Min-Min. If the makespan is shorter than that of

Min-Min, the reassignment of task to resource is done where

it originated, and the start time of resources is adjusted. This

iterative process continues until no further reassignments can

reduce the makespan. As a result, heavily loaded resources are

relieved, while lighter load are utilized efficiently. While

traditional approaches are straightforward to implement and

can enhance makespan, certain may neglect load deviation,

particularly in scenarios with significant differences in

resource speeds. Additionally, they may not achieve optimal

solutions, especially as the problem complexity or size

increases.

2.2. Metaheuristic Algorithms

Meta-heuristic techniques can provide approximate optimal

solutions to complex problems in reasonable time period.

Scheduling tasks in a large search space is difficult, as there

are many possible solutions and it can take a long-time span

to give the optimal solution. In such cases, no single, well-

defined method can solve the problem. However, finding a

near-optimal solution is often sufficient. As a result, meta-

heuristic techniques are often used to schedule in task

scheduling. The different types of metaheuristic algorithms

includes ACO, BAT , ABC and(LBACO [20].

Xin-She Yang developed standard bat algorithm, is motivated

by the bats echolocation behavior. It introduces frequency

tuning and is recognized as the primary optimization and

artificial intelligence algorithm. Every bat in the algorithm is

characterized by its velocity (v) and location (x) within a d-

dimensional solution space or search. The location represents

a solution vector for a specific problem. Throughout the

iterative search process, the algorithm maintains a population

of n bats, with the best solution found (x∗) being stored and

updated accordingly [21][22]

Mallikarjuna et al. presented a binary bat algorithm produced

particularly to address the valve-point effect of economic load

dispatch problem. Their study highlighted several advantages

of their binary bat algorithm. Notably, the algorithm

demonstrated rapid convergence during the initial stages and

exhibited the ability to dynamically shift from exploration to

exploitation as the optimality of the solution improved. These

characteristics make the binary bat algorithm an advantageous

approach for efficiently tackling the valve-point effect of

economic load dispatch problem [23]. Jayswal et al. proposed

the Fault Tolerance BAT algorithm as a solution to address

challenges related to assurance, liability, and reliability in

cloud computing [24], [25].

Zehua Zhang et al suggested the approach to maximize

resource allocation and enhance system performance. The

method provides a possible strategy for achieving efficient

load balancing in cloud computing by combining ACO and

network theory [26]. Fidanova et al. proposed a load

balancing approach for grid computing using ACO and Monte

Carlo techniques. The goal of the algorithm is to find optimal

scheduling for a set of tasks on a grid computing system [27].

Kun Li proposed the LBACO approach for scheduling

independent tasks in load balancing. The motive of LBACO is

to reduce the makespan, or total time of execution of all tasks

while also balancing the load evenly across all virtual

machines (VMs). LBACO achieves this by using ACO

approach inspired by the behavior of ants. In ant colony

optimization, ants deposit pheromones on the ground as they

travel. These pheromones act as a signal to other ants,

indicating that a particular path is a good one to follow.

LBACO uses a similar approach, but instead of pheromones,

it uses a probability distribution to guide the ants [28].

2.3. Hybrid Algorithms

Hybrid load balancing algorithms involve the fusion of two

scheduling algorithms to leverage the strengths of both [29].

This paper introduces some widely recognized hybrid

algorithms and elucidates the rationale behind proposing a

new algorithm. The HGA-ACO algorithm [30], for instance,

amalgamates GA and ACO. In HGA-ACO algorithm, a

randomly initialized GA is employed to generate the

pheromone for ACO. Subsequently, ACO iterates to produce

the optimal result. The best fit result from both approaches are

combined through crossover to yield the overall best solution.

Despite the approach focus on factors such as execution time,

throughput, and response time, it does not specifically address

the load balancing problem [31].

The OH_BAC (Osmotic Hybrid Artificial Bee and Ant

Colony) approach, as introduced in [32], utilizes the osmosis

technique to establish an energy-efficient environment. In this

approach, the ABC and ACO collaboratively work to identify

the optimal virtual machine (VM) for migration to best suited

physical machine. Furthermore, the algorithm activates the

best suited osmotic host between all physical machines to

reduce power consumption.

Table 1 depicts the summary of the algorithms that we came

across our literature review. It includes methodology used,

algorithms used, advantages and disadvantages of the

discussed algorithms.

The rationale behind selecting the hybrid approach,

combining the Bat Algorithm with LBACO, stems from the

need to solve the inherent challenges of load balancing in

cloud computing more effectively than traditional methods.

The Bat Algorithm excels in global search capabilities due to

its exploitation of frequency tuning and velocity updates,

which help in diversifying the search space and avoiding local

optima. However, while the Bat Algorithm is powerful in

exploration, it can sometimes suffer from slow convergence

in fine-tuning solutions. ACO algorithm is known for its

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 597

RESEARCH ARTICLE

strong exploitation capabilities, where ants progressively

refine their solutions based on pheromone trails, resulting in a

more intensive search in areas of the solution space. This

pheromone-guided search is particularly effective in fine-

tuning solutions but can be limited in its ability to explore the

broader search space, especially in dynamic and complex

environments like cloud computing.

By hybridizing these two algorithms, the resulting method

leverages the strengths of both: the global search capability of

the Bat Algorithm and the local search refinement of ACO.

This synergy allows the hybrid approach to not only explore a

wider range of potential solutions but also to converge more

quickly and accurately on optimal load balancing

configurations. Compared to traditional load balancing

methods, which may rely solely on heuristic or static rules,

this hybrid approach offers a more dynamic, adaptive, and

efficient solution. It is particularly advantageous in cloud

environments where workloads are highly variable, and

resource availability can change rapidly, making it imperative

to have a robust and flexible optimization strategy that can

adapt in real time.

Table 1 Summary of Literature Review Algorithms

Algorithm Algorithms Used Methodology Used Advantages Disadvantages

Min-MIn[17] Greedy

algorithm

Greedy algorithm selecting

task with the min time of

execution and assigns to

the resource that can

complete it the earliest.

Simple and easy to

implement.

- Provides a fast-decision-

making process.

May lead to load

imbalances.

- Not optimal for

dynamic environments.

LBIMM (Load

Balancing

Improved Min-

Min)[18]

Min-Min

algorithm with

load balancing

modifications

Extension of MIN-min

with load balancing

enhancements to better

distribute tasks across

resources.

Improved load distribution

over MIN-min.

- Better handling of

heterogeneous tasks.

Increased complexity

compared to MIN-min.

- May still cause

imbalance in highly

dynamic environments.

ACO (Ant

Colony

Optimization)[2]

ACO algorithm Nature-inspired algorithm

mimicking the foraging

behaviour of ants, using

pheromone trails to find

optimal paths (task

assignments).

Good for dynamic and

distributed environments.

- Scalability to large-scale

systems.

- Finds near-optimal

solutions.

Convergence time can be

high.

- Dependent on

parameter settings for

performance.

BAT[33] BAT algorithm Metaheuristic algorithm

inspired by bats

echolocation behavior,

balancing between global

and local search for

solutions.

Efficient in finding global

optima.

- Can handle multi-

objective optimization.

- Good balance between

exploration and

exploitation.

Performance depends on

parameter tuning.

- May suffer from

premature convergence.

ABC (Artificial

Bee Colony)[34]

ABC algorithm Nature inspired algorithm

mimicking the foraging

behaviour of honey bees,

focusing on exploration

and exploitation of the

search space.

Effective in exploring the

search space.

- Suitable for complex

optimization problems.

- Good convergence rate

Can be slower in

converging compared to

other algorithms.

- Performance is

sensitive to parameter

values.

LBACO (Load

Balancing Ant

Colony

Optimization)[28]

ACO with load

balancing

strategies

- Hybrid algorithm

combining ACO with

specific load balancing

techniques to enhance task

distribution.

Combines advantages of

ACO and load balancing

strategies.

- Adaptable to changing

conditions in cloud

environments.

More computationally

intensive.

- Requires careful

parameter tuning.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 598

RESEARCH ARTICLE

HGA-ACO

(Hybrid Genetic

Algorithm and

ACO)[30]

GA combined

ACO

Hybridization of GA for

global search ACO for

refined local search.

High efficiency in finding

near-optimal solutions.

- Exploits both global and

local search capabilities.

- Robust against premature

convergence.

Complex to implement.

- Higher computational

overhead.

- Requires balancing

between GA and ACO

components.

OH-BAC

(Osmotic Hybrid

Artificial Bee and

Ant Colony)[32]

ABC combined

with ACO

Hybrid approach

combining the ABC for

exploration with ACO for

effective task distribution.

- Combines the exploration

strength of ABC with the

optimization efficiency of

ACO.

- Well-suited for dynamic

cloud environments.

- High optimization

capability and load

balancing efficiency.

Complex

implementation.

- Computationally

expensive.

- Requires careful tuning

of multiple algorithm

parameters.

3. PROPOSED HBLBACO ALGORITHM

The hybrid HBLBACO algorithm proposed in this paper

combines the BAT and LBACO algorithms to achieve

efficient cloud computing load. The proposed hybrid

algorithm maximizes the benefits of both algorithms to boost

load balancing effectiveness and performance in cloud

computing. The LBACO algorithm is capable of local search,

whereas the bat algorithm is capable of global search. The

parallel processing capabilities of cloud computing

environments can also be utilized by the hybrid algorithm to

speed up the load balancing procedure. Algorithm 1 is the

algorithm for hybrid HBLBACO Algorithm.

Begin

Step 1: Initialize BAT Population

Initialize the population of bats with random positions and

velocities in the search space

Initialize the parameters for loudness, pulse rate, frequency,

and maximum iterations

Step 2: Main Loop

While (current iteration ≤ max iterations) do

Step 3: Fitness Evaluation of Bats using LBACO

For each bat in the population do

Calculate the fitness of the current bat using the LBACO

algorithm

End For

Step 4: Update Best Fitness Value and Best Solution

If (current bat's fitness is better than the best fitness found so

far) then

Update the best fitness value

Update the best solution with the current bat's position

EndIf

Step 5: Update Loudness and Pulse Rate of Bats using Fitness

Value

For each bat in the population do

Adjust the loudness and pulse rate based on the fitness of the

current solution

End For

Step 6: Update Frequency and Velocity of Bats using Current

and Best Solution

For each bat in the population do

Update the bat's frequency based on the current position and

best solution

Update the bat's velocity using the updated frequency and the

difference in the current position and the best solution

Update the bat's position based on its velocity

End For

End While

Step 7: Return best fit

Return the best result found

End

Algorithm 1 Hybrid HBLBACO Algorithm

The flowchart of the proposed HBLBACO algorithm is

represented in Figure 1.

Step by step implementation of HBLBACO algorithm:

3.1. Initialization Phase

In this step, the algorithm is initialized with the cloud

infrastructure and user requests. The cloud infrastructure

consists of a set of virtual machines with different capacities,

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 599

RESEARCH ARTICLE

and the user requests consist of a set of tasks with different

computational requirements. The hybrid HBLBACO

approach is initialized to a specific number of iterations.

Various random solutions are generated in the first iteration.

The Bat Algorithm and the LBACO algorithm are also

initialized with their respective parameters, such as the

population size, pheromone levels, and heuristic information.

The randomly generated solutions work as the input to the

next phase. The initialization process is represented

mathematically in Eq. (1)

𝑋 = {𝑥1 , 𝑥2 , … … 𝑥𝑛 } … (1)

where each 𝑥𝑛 represents a load balancing strategy.

Figure 1 Flowchart of Proposed HBLBACO Algorithm

3.2. Fitness Evaluation

The fitness of the best generated solution is evaluated using

LBACO algorithm. To evaluate the fitness of each bat

solution using LBACO, each bat represents a potential

solution, and the computation tasks are assigned to the

resources based on the bat's solution. By evaluating the

overall execution time and resource utilization across all tasks

and resources, the performance of the bat's solution is

evaluated. The fitness value increases as the overall execution

time decreases and the tasks are spread more evenly among

the resources. Equation 2 shows the mathematical

representation of fitness evaluation.

F(S)=α(T(S)1)+β(U(S) (2)

Where: S represents the bat's solution, which is a potential

assignment of computation tasks to resources,

T(S) is the total time of execution of the tasks based on the

bat's solution,

U(S) is a measure of resource utilization efficiency, reflecting

how evenly the tasks are distributed among the resources,

 α and β are control parameters.

3.3. Best Solution Updating Phase

The best solution and best fit value are initialized to those of

the first bat solution in this phase. The search procedure

involves the initial best solution and best fitness value as a

starting point. The fitness of each new solution is compared to

the best fit value when the algorithm repeats the loop and

creates new solutions for each bat. The best solution and best

fitness value are modified to accommodate new solution if

fitness of new solution is better than the current best fit value.

By setting the initial best solution and best fitness value to the

first bat solution's values, the algorithm ensures that the

search process starts with a valid solution and that the best

solution found so far is initialized correctly. This initialization

step can also help to refine the efficiency of the search process

by assigning a good starting point for the approach to survey

the search space. This step is necessary to keep track of the

best solution found so far and to update it when a better

solution is found during the search process. Eq. 3 represents

the mathematical formula this phase.

During the search process, for each new solution Si generated

by the algorithm, the fitness F(Si)is calculated and compared

with the current best fitness value Fbest. The best solution and

fitness value are updated as follows:

If F(Si)>Fbest, then: Sbest=Si and Fbest=F(Si) (3)

Where: Si is the new solution generated during the search.

F(Si) is the fitness value of the new solution Si.

3.4. Update Loudness and Pulse Rate of Bats Using Fitness

Value

This step updates each bat's loudness and pulse rate based on

their current fitness. The loudness of a bat represents the

intensity or amplitude of the bat's echolocation calls. In the

context of the algorithm, it determines the step size of the

bat's search process. A higher loudness value means that the

bat can move further away from its current position in the

search space. The loudness update is represented

mathematically in Eq. (4)

Update best fitness value and best solution

Iterations > Max

Iterations

Return best solution

Yes

Update frequency and velocity of bats using current

and best solution

Update loudness and pulse rate of bats using fitness

value

No

Fitness evaluation of bats using LBACO

Initialize BAT population

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 600

RESEARCH ARTICLE

𝐵𝑖(𝑡+1)

= α ∗ 𝐵𝑖(𝑡) ... (4)

Where 𝐵𝑖(𝑡) represents bat loudness, α is a control parameter.

The loudness of each bat is updated at each iteration of the

algorithm based on its fitness value. If the evaluated fitness of

the bat is better than the best evaluated fitness found so far,

the loudness is decreased else increased.

The bats pulse rate determines the frequency of echolocation

calls. In BAT algorithm it represents the search space of bats.

Pulse update process is represented mathematically in Eq. (5).

if (rand > 𝑟𝑖(𝑡)),

then 𝑥𝑖(𝑡+1) = 𝑥𝑘 + {ε * (𝐿𝐵 - 𝑈𝐵)} … (5)

where 𝑟𝑖(𝑡) is the pulse rate of the bat, 𝐿𝐵 and 𝑈𝐵 are the

lower and upper bounds of the search space, and ε is control

parameter

If the pulse rate is high, then it will explore more search

space. Based on fitness, pulse rate of bats is updated at each

iteration.

3.5. Update Frequency and Velocity of Bats Using Current

and Best Solution

This step updates each bat's frequency and velocity to explore

the search space more effectively. This helps in finding the

optimal solution. This process is mathematically represented

in Eq. (6). The frequency is updated at each iteration.

𝐹𝑖(𝑡+1) = 𝐹𝑚𝑖𝑛 + {(𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛) ∗ 𝑟} (6)

Where 𝐹𝑖(𝑡) represents bats frequency, 𝐹𝑚𝑖𝑛 and 𝐹𝑚𝑎𝑥

represents maximum and minimum frequencies, r represents

random number between 0 and 1.

Velocity of bat represents the movement of bats in search

space using its distance and direction. This process is

mathematically represented in Eq. (7). It is updated by using

the current and best solution. The updated velocity is added to

the bat's current position to determine its new location.

 𝑉𝑖(𝑡+1) = 𝑉𝑖(𝑡) + {(𝑥𝑖(𝑡) − 𝑥𝑘) ∗ 𝐴𝑖(𝑡)} … (7)

where 𝑉𝑖(𝑡) is the velocity of the bat, 𝐴𝑖(𝑡) is the loudness of

the bat, 𝑥𝑖(𝑡) is the position of the bat, 𝑥𝑘 is the global best

solution

3.6. Termination and Output Phase

The algorithm will continue to run until the maximum number

of iterations is reached. At each iteration, the algorithm will

evaluate the fitness of each bat solution using the LBACO

approach, update the loudness and pulse rate of each bat on

the basis their fitness value, and update the frequency and

velocity of each bat using the current and best solutions. After

each iteration, the algorithm will check for the termination

criteria. If it reaches to termination condition, the algorithm

will terminate and return the best solution found so far. If the

termination criteria have not been reached, the algorithm will

continue to the next iteration and repeat the process.

4. RESULTS AND DISCUSSIONS

The HBLBACO algorithm is proposed using the Recloud for

the purpose of evaluating the proposed algorithm. By

implementing an effective layer of workload distribution and

an appropriate environment for implementing various

scheduling methods, the Recloud expands the current

Cloudsim simulator. The outcomes of the proposed

HBLBACO algorithm have compared with other work

scheduling algorithms such as LBACO algorithm in order to

analyze the performance of the algorithm. The efficiency of

the HBLBACO algorithm was also evaluated in comparison

to other comparable research which is covered in section 4.3.

4.1. Environmental Setup

Table 1 Simulation Parameters of Servers

Parameter Value

Architecture x64

Operating System Linux

VMM XEN

Time Zone 10.0

Memory Cost 0.05

Storage Cost 0.001

Table 2 Simulation Parameters of VMs

Parameter Value

MIPS 9000

Processing Elements 1

RAM 512

BW 1000

VM Policy TIME_Shared

Using simulation parameters for servers in Table 1, and

virtual machines in Table 2, we performed extensive tests to

compare the proposed algorithm's result in the load balancing

problem with those of existing methods. Table 1 contains the

simulation parameters of server in which VMM stands for

Virtual Machine Monitor.

These parameters were used to determine the capabilities of

the experiment's VMs and process. The proposed HBLBACO

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 601

RESEARCH ARTICLE

algorithm was developed with various number of tasks to

analyze the four objectives:

1. Reduction in the makespan of the algorithm,

2. Minimizing the degree of imbalance,

3. Reducing the standard deviation value, and

4. Maximizing the processing speed of the algorithm

The HBLBACO evaluation tests were carried out using the

parameters listed in Table 3.

Table 3 HBLBACO Algorithm Parameters

Parameter Value

Population Size 100

Number of Iterations 1000

AMIN, AMAX 0, 5

RMIN, RMAX 0, 5

D 3

Α 1.0

Β 4.0

Γ 2.0

Rho 0.05

Table 4 Number of Tasks in Each Scenario

Scenarios Number of tasks

Scenario one 100

Scenario two 300

Scenario three 600

Scenario four 1000

The algorithm starts with 100 random solutions, called

population size. The number of iterations chosen was 1000. In

the BAT phase, the minimum and maximum loudness values

represented by AMIN, AMAX of bats were 0 and 5

respectively. The minimum and maximum pulse rate denoted

by RMIN, RMAX of bats were 0 and 5 respectively.

The value of D was 3 which represents Cloudlet size. In

LBACO phase, the values of α, β, γ and Rho were 1.0, 4.0,

2.0 and 0.05 respectively. Here α represents pheromone

exponent, β represents computing capacity, γ represents load

balancing factor and Rho represents pheromone trail constant.

Based on the characteristics of the VMs, four experiments

were carried out, as indicated in Table 4. The workflow's size

will be modified in order to test the algorithm's capacity.

Table 4 lists the number of tasks for each of the four

situations.

4.2. Performance Analysis

Table 5 HBLBACO vs LBACO

Algorithm Makespan
Standard

deviation

Degree of

imbalance

Processing

speed

Scenario 1

HBLBACO

LBACO

35.626

37.3378

0.9743

2.6747

0.0757

0.1923

1602

510

Scenario 2

HBLBACO

LBACO

105.6881

112.9734

3.3101

7.3225

0.1024

0.2243

3870

764

Scenario 3

HBLBACO

LBACO

202.6696

222.6867

2.0931

14.3082

0.0285

0.2135

7374

1454

Scenario 4

HBLBACO

LBACO

346.0248

370.9586

6.5202

20.2984

0.048

0.1797

13922

2152

To evaluate the decrease in makespan and standard deviation,

each of the four scenarios have been put into operation. When

compared to the LBACO algorithm, the proposed HBLBACO

approach minimizes degree of imbalance and maximizes

processing speed. Table 5 lists the outcomes of the

experiments that were conducted for each of the four

situations.

The workflow's task number increased for each case. In

Scenario 1, the search space is restricted, which speeds up the

process of finding the best solution. On the other hand,

scenario four shows an extensive number of tasks to increase

the search area. The wide space makes it difficult for the

optimization algorithm to locate the best solution. Table 5

outcomes show how the performance parameters of the

HBLBACO and LBACO algorithms differ. However, there is

improvement in HBLBACO algorithm compared with

LBACO algorithm. The HBLBACO algorithm performs

better when search space was expanded as in scenario four.

This outcome is attributed to the fast convergence of

solutions, which prevents unnecessary solution a variety.

4.2.1. Makespan

Upon evaluating the makespan improvement between the

HBLBACO algorithm and the LBACO algorithm, it becomes

evident that the former demonstrates a substantial

enhancement of 8% compared to the latter. This improvement

is clearly illustrated in Figure 2. The key factor contributing

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 602

RESEARCH ARTICLE

to this progress is the HBLBACO algorithm's consistent and

strategic selection of the most suitable virtual machines

(VMs) for executing tasks.

Figure 2 Makespan of LBACO vs. HBLBACO Algorithm

4.2.2. Standard Deviation

In terms of standard deviation, Figure 3 clearly demonstrates

that the HBLBACO algorithm, which has been proposed,

outperforms the LBACO algorithm by a significant margin of

71%. The reason behind this notable improvement is

attributed to the efficient selection of virtual machines (VMs)

by the HBLBACO algorithm.

Figure 3 Standard Deviation of LBACO vs. HBLBACO

Algorithm

4.2.3. Degree of Imbalance

Figure 4 Degree of Imbalance of LBACO vs. HBLBACO

Algorithm

With regards to the degree of imbalance, the findings

presented in Figure 4 highlight a substantial 68% superiority

of the proposed HBLBACO algorithm over the LBACO

algorithm.

4.2.4. Processing Speed

The HBLBACO algorithm performs 81% better than the

LBACO algorithm in terms of processing speed as shown in

Figure 5. This significant performance is because the

proposed algorithm uses suitable load distribution among

VMs which leads to optimized speed of processing tasks.

Figure 5 Processing Speed of LBACO vs. HBLBACO

Algorithm

4.3. Comparison of Related Approaches

In order to compare different algorithms for scheduling

workflow tasks, three specific algorithms were assessed: PSO

algorithm and ACO algorithm. These algorithms were

implemented based on their respective descriptions found in

literature.

The outcomes indicate that the proposed HBLBACO

algorithm not only enhances convergence to the optimal

solution at a faster rate compared to the other algorithms, but

also exhibits a higher quality of load balancing. These

findings are elaborated upon in section 4.2 of the discussion.

Table 6 HBLBACO vs. PSO

Methods
Avg.

Makespan

Avg. Standard

deviation

Avg. Degree of

imbalance

HBLBACO 170.5 2.05 0.057

PSO 364.5 108.12 1.45

The comparison between the PSO algorithm and the proposed

HBLBACO algorithm was conducted with regards to three

objectives: the makespan (total time to complete all tasks), the

standard deviation (the measure of variability in task

completion times), and the degree of imbalance (the

distribution of tasks among resources). This comparison is

presented in Table 6.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 603

RESEARCH ARTICLE

Table 7 HBLBACO vs. ACO

Methods
Avg.

Makespan

Avg.

Standard

deviation

Avg.

Degree of

imbalance

Avg.

Processing

Speed

HBLBACO 172.45 3.114 0.075 7094.5

ACO 175.58 5.456 0.0965 311.5

The comparison between the proposed HBLBACO algorithm

and the ACO algorithm was conducted with respect to four

objectives: the makespan (total time to complete all tasks), the

standard deviation (the measure of variability in task

completion times), the degree of imbalance (the distribution

of tasks among resources) and processing speed (task

completion in given timeframe). This comparison is presented

in Table 7.

4.3.1. Makespan

Figure 6 shows that the HBLBACO algorithm outperforms

53% in terms of makespan than the PSO algorithm. Figure 7

shows that the proposed HBLBACO algorithm outperforms

2% better than ACO algorithm in terms of makespan.

Figure 6 Makespan of HBLBACO vs. PSO

Figure 7 Makespan of HBLBACO vs. ACO

4.3.2. Standard Deviation

Figure 8 shows that the proposed HBLBACO algorithm

outperforms 98% in terms of standard deviation than the PSO

algorithm. Figure 9 shows that the proposed HBLBACO

algorithm is 43% better than the ACO algorithm in terms of

standard deviation.

Figure 8 Standard Deviation of HBLBACO vs. PSO

Figure 9 Standard Deviation of HBLBACO vs. ACO

4.3.3. Degree of Imbalance

Figure 10 shows that the proposed HBLBACO algorithm is

96% better than PSO algorithm in terms of degree of

imbalance. Figure 11 shows the improvement of 21% in terms

of degree of imbalance between the proposed HBLBACO

algorithm and ACO algorithm.

Figure 10 Degree of Imbalance of HBLBACO vs. PSO

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 604

RESEARCH ARTICLE

Figure 11 Degree of Imbalance of HBLBACO vs. ACO

4.3.4. Processing Speed

Figure 12 shows the improvement of 96% in terms of

processing speed of proposed HBLBACO algorithm with

ACO algorithm.

Figure 12 Processing Speed of HBLBACO vs. ACO

In essence, the proposed HBLBACO algorithm stands out due

to its exceptional ability to combine suitable diversity and fast

convergence. By effectively leveraging these features, it

surpasses other algorithms by swiftly identifying the optimal

solution, in any case of the number of workflow tasks

involved.

5. CONCLUSION AND FUTURE SCOPE

The HBLBACO algorithm proposed in this paper is designed

to address load balancing issues in cloud environments. The

dispersion of load across available resources is referred as

load balancing. To maximize resource use and prevent

overloading particular capacities while maintaining others

inactive, load balancing is used. The HBLBACO algorithm is

implemented using the cloudsim simulator and compared with

other known load balancing algorithms such as LBACO,

PSO, and ACO. It is designed to distribute jobs over VMs

with effective workload distribution to minimize makespan,

standard deviation, and degree of imbalance, and increase

processing speed. The outcomes of algorithm are compared

with LBACO, PSO and ACO techniques. The HBLBACO

algorithm optimizes makespan by 8%, 53%, and 2%

compared to LBACO, PSO, and ACO, respectively. It also

minimizes standard deviation by 71%, 98%, and 43%, and

minimizes degree of imbalance by 68%, 96%, and 21%,

respectively. The algorithm also enhances processing speed

by 81% and 96% compared to LBACO, and ACO,

respectively. The fitness function of the HBLBACO

algorithm which balances cost and time has a big impact on

the results. A mathematical formula called the fitness function

is utilized in optimization problems to rate the effectiveness

of solutions. To create a balance between these parameters,

the algorithm utilizes the same weights for makespan,

standard deviation, and degree of imbalance in the fitness

function.

Future work can include extending the algorithm to

heterogeneous environments with more than one data center,

extending the workflow application distribution into two

levels, using dynamic workflows to allow flexibility to users

to change task attributes during runtime, and verifying the

justification over real-time cloud environments. These

extensions can enhance the scalability, flexibility, and

efficiency of algorithm in various cloud environments.

REFERENCES

[1] Panwar, A. Singh, A. Dixit, and G. Parashar, “Cloud Computing and
Load Balancing: A Review,” 2022 Int. Conf. Comput. Intell. Sustain.

Eng. Solut. (CISES), 2022, pp. 334–343, 2022, doi:

10.1109/cises54857.2022.9844367.

[2] S. Rani, D. Kumar, and S. Dhingra, “A review on dynamic load

balancing algorithms,” 3rd IEEE 2022 Int. Conf. Comput. Commun.

Intell. Syst. ICCCIS 2022, pp. 515–520, 2022, doi:
10.1109/ICCCIS56430.2022.10037671.

[3] A. Hamidi, M. K. Goal, and R. Astya, “Load Balancing in Cloud

Computing Using Meta-Heuristic Algorithm: A Review,” Proc. 2022
9th Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2022, pp. 639–

643, 2022, doi: 10.23919/INDIACom54597.2022.9763131.

[4] S. Khare, U. Chourasia, and A. J. Deen, “Load Balancing in Cloud
Computing,” in Proceedings of the International Conference on

Cognitive and Intelligent Computing, 2022, pp. 601–608.

[5] S. T. Waghmode and B. M. Patil, “Adaptive Load Balancing in Cloud
Computing Environment,” Int. J. Intell. Syst. Appl. Eng., vol. 11, pp.

209–217, 2023.
[6] M. A. Elmagzoub, D. Syed, A. Shaikh, N. Islam, A. Alghamdi, and S.

Rizwan, “A survey of swarm intelligence based load balancing

techniques in cloud computing environment,” Electron., vol. 10, no.
21, 2021, doi: 10.3390/electronics10212718.

[7] H. Xue, K. T. Kim, and H. Y. Youn, “Dynamic load balancing of

software-defined networking based on genetic-ant colony
optimization,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi:

10.3390/s19020311.

[8] A. Gupta and H. S. Bhadauria, “Honey Bee Based Improvised BAT
Algorithm for Cloud Task Scheduling,” Int. J. Comput. Networks

Appl., vol. 10, no. 4, pp. 494-510journal, 2023, doi:

10.22247/ijcna/2023/223310.
[9] A. M. Manasrah and H. B. Ali, “Workflow Scheduling Using Hybrid

GA-PSO Algorithm in Cloud Computing,” Wirel. Commun. Mob.

Comput., vol. 2018, 2018, doi: 10.1155/2018/1934784.
[10] P. Jain and S. K. Sharma, “A Load Balancing Aware Task Scheduling

using Hybrid Firefly Salp Swarm Algorithm in Cloud Computing,” Int.

J. Comput. Networks Appl., vol. 10, no. 6, pp. 914–933, 2023, doi:
10.22247/ijcna/2023/223686.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 605

RESEARCH ARTICLE

[11] H. Xing, F. Song, L. Yan, and W. Pan, “A modified artificial bee
colony algorithm for load balancing in network-coding-based

multicast,” Soft Comput., vol. 23, no. 15, pp. 6287–6305, 2019, doi:

10.1007/s00500-018-3284-9.
[12] H. Saini, G. Singh, and M. Rohil, “Design of Hybrid Metaheuristic

Optimization Algorithm for Trust-Aware Privacy Preservation in

Cloud Computing,” Int. J. Comput. Networks Appl., vol. 10, no. 6, pp.
934–946, 2023, doi: 10.22247/ijcna/2023/223690.

[13] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A

Genetic Algorithm (GA) based Load Balancing Strategy for Cloud
Computing,” Procedia Technol., vol. 10, pp. 340–347, 2013, doi:

10.1016/j.protcy.2013.12.369.

[14] M. Adhikari, S. Nandy, and T. Amgoth, “Meta heuristic-based task
deployment mechanism for load balancing in IaaS cloud,” J. Netw.

Comput. Appl., vol. 128, pp. 64–77, 2019, doi:

https://doi.org/10.1016/j.jnca.2018.12.010.

[15] W. Saber, W. Moussa, A. M. Ghuniem, and R. Rizk, “Hybrid load

balance based on genetic algorithm in cloud environment,” Int. J.

Electr. Comput. Eng., vol. 11, no. 3, pp. 2477–2489, 2021, doi:
10.11591/ijece.v11i3.pp2477-2489.

[16] P. Neelima and A. R. M. Reddy, “An efficient load balancing system
using adaptive dragonfly algorithm in cloud computing,” Cluster

Comput., vol. 23, no. 4, pp. 2891–2899, 2020, doi: 10.1007/s10586-

020-03054-w.
[17] Y. Shi and K. Qian, “LBMM: A Load Balancing Based Task

Scheduling Algorithm for Cloud,” in Advances in Information and

Communication, 2020, pp. 706–712.
[18] M. Haghi Kashani and E. Mahdipour, “Load Balancing Algorithms in

Fog Computing: A Systematic Review,” IEEE Trans. Serv. Comput.,

vol. 1374, no. c, pp. 1–18, 2022, doi: 10.1109/TSC.2022.3174475.
[19] S. Abdolhosseini and M. T. Kheirabadi, “Scheduling Independent

Parallel Jobs in Cloud Computing : A Survey,” vol. 11, no. 3, pp. 11–

21, 2019.
[20] Z. Shafahi and A. Yari, “An efficient task scheduling in cloud

computing based on ACO algorithm,” 2021 12th Int. Conf. Inf. Knowl.

Technol. IKT 2021, pp. 72–77, 2021, doi:
10.1109/IKT54664.2021.9685674.

[21] X. S. Yang, “A new metaheuristic Bat-inspired Algorithm,” Stud.

Comput. Intell., vol. 284, pp. 65–74, 2010, doi: 10.1007/978-3-642-
12538-6_6.

[22] B. Xing and W.-J. Gao, Innovative Computational Intelligence : A

Rough Guide to 134 Clever Algorithms. 2014.
[23] B. Mallikarjuna, K. H. Reddy, and O. Hemakesavulu, “Economic Load

Dispatch Problem with Valve – Point Effect Using a Binary Bat

Algorithm,” ACEEE Int. J. Electr. Power Eng., vol. 4, no. 3, pp. 33–
38, 2013.

[24] A. K. Jayswal, “Efficient task allocation for cloud using bat

Algorithm,” PDGC 2020 - 2020 6th Int. Conf. Parallel, Distrib. Grid
Comput., pp. 186–190, 2020, doi:

10.1109/PDGC50313.2020.9315845.

[25] A. K. Jayswal and D. K. Lobiyal, “Fault Aware BAT Algorithm for
Task Scheduling in Cloud,” Proc. 2021 10th Int. Conf. Syst. Model.

Adv. Res. Trends, SMART 2021, pp. 104–108, 2021, doi:

10.1109/SMART52563.2021.9676253.
[26] Z. Zhang and X. Zhang, “A load balancing mechanism based on ant

colony and complex network theory in open cloud computing

federation,” ICIMA 2010 - 2010 2nd Int. Conf. Ind. Mechatronics
Autom., vol. 2, pp. 240–243, 2010, doi:

10.1109/ICINDMA.2010.5538385.

[27] S. Fidanova and M. Durchova, “Ant algorithm for grid scheduling
problem,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 3743 LNCS, pp. 405–

412, 2006, doi: 10.1007/11666806_46.
[28] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling

based on load balancing ant colony optimization,” Proc. - 2011 6th

Annu. ChinaGrid Conf. ChinaGrid 2011, pp. 3–9, 2011, doi:
10.1109/ChinaGrid.2011.17.

[29] A. Hota, S. Mohapatra, and S. Mohanty, Survey of Different Load
Balancing Approach-Based Algorithms in Cloud Computing: A

Comprehensive Review, vol. 711. Springer Singapore, 2019. doi:

10.1007/978-981-10-8055-5_10.
[30] B. Wang and J. Li, “Load balancing task scheduling based on Multi-

Population Genetic Algorithm in cloud computing,” Chinese Control

Conf. CCC, vol. 2016-Augus, pp. 5261–5266, 2016, doi:
10.1109/ChiCC.2016.7554174.

[31] K. Pradeep and D. Pravakar, “Exploration on Task Scheduling using

Optimization Algorithm in Cloud computing,” 2022 6th Int. Conf.
Trends Electron. Informatics, ICOEI 2022 - Proc., no. Icoei, pp. 874–

877, 2022, doi: 10.1109/ICOEI53556.2022.9777120.

[32] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, “Osmotic Bio-
Inspired Load Balancing Algorithm in Cloud Computing,” IEEE

Access, vol. 7, pp. 42735–42744, 2019, doi:

10.1109/ACCESS.2019.2907615.

[33] A. Singh, A. Meyyazhagan, and S. Verma, “Nature-Inspired

Computing: Bat Echolocation to BAT Algorithm,” in Nature-Inspired

Intelligent Computing Techniques in Bioinformatics, K. Raza, Ed.
Singapore: Springer Nature Singapore, 2023, pp. 163–174. doi:

10.1007/978-981-19-6379-7_9.
[34] D. Karaboga and C. Ozturk, “A novel clustering approach: Artificial

Bee Colony (ABC) algorithm,” Appl. Soft Comput. J., vol. 11, no. 1,

pp. 652–657, 2011, doi: 10.1016/j.asoc.2009.12.025.

Authors

Shalu Rani received the B. Tech and M. Tech

degrees in Computer Science Engineering from Guru
Jambheshwar University of Science and Technology

in 2019, and 2022, respectively. Her research

interests are in the area of computer networking,
including cloud computing, and Internet of Things.

She can be contacted at email:

bansal11shalu@gmail.com.

Prof. Dharminder Kumar is currently working as

a Prof. & Dean, Faculty of Science & Technology
& NAAC Coordinator, Gurugram University,

Gurugram-122003. He is a Retd. Professor from

GJUS&T, Hisar-125001. He is the coordinator of
the Technical Education Quality Improvement

Program (TEQIP) of the World Bank. He also

worked as Dean of the Faculty of Engineering and
Technology, Head of the Department (HOD) of

Computer Science and Engineering and founder

Dean of Colleges. He has supervised many students at PhD and M.Tech.
Level. His areas of interest include Data Mining and Computer and

Communication Networks. He can be contacted at email:

dr_dk_kumar_02@yahoo.com, dr.dk.kumar.02@gmail.com &

dharminder.kumar@gurugramuniversity.ac.in.

Sakshi Dhingra is an Assistant Professor in

Department of Computer Science and Engineering
at Guru Jambheshwar University of Science and

Technology, Hissar, Haryana, India. She graduated

from Punjab Technical University Jalandhar in
2010 and received a Master’s Degree (Gold Medal

list) in Computer Science and Engineering from

Guru Jambheshwar University of Science and
Technology in 2012. She has presented many

papers in International Journals/Conferences. She

has supervised many students at the M.Tech and
MCA level. Her areas of interest are Image Processing, Soft Computing, and

Remote Sensing. She can be contacted at email:

sakshi24.dhingra@gmail.com.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/38 Volume 11, Issue 5, September – October (2024)

ISSN: 2395-0455 ©EverScience Publications 606

RESEARCH ARTICLE

How to cite this article:

Shalu Rani, Dharminder Kumar, Sakshi Dhingra, “An Efficient Load Balancing HBLBACO Approach Using Hybrid BAT

and LBACO Algorithm in Cloud Environment”, International Journal of Computer Networks and Applications (IJCNA),

11(5), PP: 594-606, 2024, DOI: 10.22247/ijcna/2024/38.

