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Abstract – This study explores the advancements in Wireless 

Sensor Networks (WSNs) and their application in Mobile 

Wireless Sensor Networks (MWSNs), particularly within 

Healthcare Mobile Wireless Sensor Networks (H-MWSNs). 

Routing in WSNs poses challenges, including adaptability to 

dynamic environments and efficient path computation. 

Addressing these challenges, this research propose the Floyd-

Warshall-based Ad-hoc On-Demand Distance Vector (FW-

AODV) approach. FW-AODV seamlessly integrates the Floyd-

Warshall Algorithm with the AODV protocol, providing optimal 

path computation and dynamic routing capabilities. This 

integration is particularly promising for MWSNs, where 

adaptability and efficiency are crucial, especially in healthcare 

applications. We elucidate the working mechanism of FW-

AODV, detailing its iterative rejuvenation process and dynamic 

color-based communication. Through simulations, this research 

evaluate FW-AODV's performance in dynamic and challenging 

WSN environments. Our results demonstrate FW-AODV's 

effectiveness in enhancing routing efficacy, resilience, and 

adaptability, offering a robust solution for modern healthcare-

focused WSNs. 

Index Terms – FW-AODV, Optimal Path, Dynamic Routing, 

Chameleon Optimization, MWSN, Healthcare MWSN, Routing. 

1. INTRODUCTION 

Health is the vital thing in human life. Healthcare is 

considered as a basement for a thriving society, health 

maintenance is a primary aspect its impact in not only 

individual well-being but also economic productivity. 

Reachable and effective healthcare services ensures the timely 

disease prevention, identification, diagnosis, and treatment it 

reduces the burden of illness on individuals and the 

societies[1]. Beyond the immediate health benefits, a strong 

healthcare system offers a better way to survive for the overall 

society. It enhances productivity, reduces absenteeism, fosters 

a healthier and more engaged population. Healthcare systems 

roles and responsibility is vital in addressing public health 

crises and safeguarding against the spread of infectious 

diseases. Enriched healthcare system leads a society to the 

sustainable future where citizens can lead a healthy and happy 

life with satisfaction. 

MWSNs transforms data collection by introducing the feature 

of mobility to the sensor nodes. Unlike the traditional 

networks this MWSNs allow sensors to move within their 

deployed environment, and enable new options for the 

applications [2]. In surveillance process mobile sensors can 

dynamically track and monitors objects by enhancing 

situational awareness. In disaster management MWSNs with 

mobile nodes enable swift deployment for rapid data 

collection in the affected areas, assisting in efficient response 

strategies. The adaptability of MWSNs to dynamic scenarios 

makes them indispensable in real-time [3]. 

In the sector of healthcare the MWSNs plays a transformative 

role by providing dynamic and real-time monitoring 

capabilities [4]. These networks are equipped with mobile 

sensors, facilitate patient tracking, enabling healthcare 

professionals to gather crucial data constantly. MWSNs 

enhance patient care by allowing healthcare providers to 

monitor vital signs, medication adherence, and overall patient 

activity [5]. This technology is particularly beneficial in elder 

care, where continuous monitoring can provide timely 

interventions in case of emergencies. The adaptability of 

MWSNs ensures that the patients are not confined to fixed 

monitoring stations, promoting freedom of movement while 

maintaining comprehensive healthcare oversight. 
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Deploying MWSNs introduces a set of challenges that claims 

a careful navigation. The primary among these challenges is 

the complexity of managing energy consumption. The 

mobility aspect increases the need for an energy efficient 

solutions to sustain continuous sensor operations [6]. 

Coordinating the movement of sensors without interference or 

collisions are the tedious process, so the requirement of an 

algorithm is essential to optimize mobility and avoid 

conflicts. Striking the right balance between sensor movement 

and data accuracy poses another significant challenge [7]. 

Excessive mobility may lead to inconsistent or redundant 

data, affecting the reliability of the MWSNs. Among all the 

above specified this work deals with energy consumption. 

In MWSNs within the healthcare sector, bio-inspired 

optimization techniques play a pivotal role. These algorithms, 

drawing inspiration from natural processes, are instrumental 

in addressing the intricate challenges associated with routing 

in dynamic healthcare environments. Bio-inspired 

optimization aids in formulating efficient routing strategies 

that optimize energy consumption [8]–[11]. By mimicking 

biological systems, these algorithms contribute to adaptive 

and energy-efficient routing solutions, ensuring continuous 

data collection for real-time patient monitoring. The use of 

bio-inspired optimization in routing algorithms becomes 

imperative for striking a delicate balance between sensor 

mobility, data accuracy, and energy efficiency in the context 

of MWSNs deployed in healthcare scenarios [12]. 

Energy consumption is a critical challenge in H-MWSNs. 

These networks involve mobile sensor nodes operating in 

dynamic healthcare environments. The primary issue revolves 

around managing energy resources efficiently to extend the 

network's operational lifetime while ensuring uninterrupted 

healthcare data transmission and communication. The 

inherent limitation of mobile sensor nodes' battery capacities 

and frequent movement and data transmission requirements 

accelerates energy depletion, reducing network longevity and 

increasing operational costs. Maintaining a balance between 

mobility and energy efficiency in H-MWSNs is a complex 

challenge that demands the development of energy-efficient 

routing protocols, adaptive power management techniques, 

and intelligent data acquisition strategies. Efficient energy 

management is vital to unlock the full potential of these 

networks in healthcare applications like patient monitoring 

and disease management. 

The motivation for addressing the energy consumption 

challenge in H-MWSNs is grounded in the complexities these 

networks face when operating in healthcare environments. H-

MWSNs, with their mobile sensors in dynamic healthcare 

settings, pose intricate technical challenges, particularly 

concerning energy efficiency. The key concern revolves 

around the limited energy resources of mobile sensors in 

healthcare. Frequent movement, continuous data transmission, 

and the critical need for data accuracy accelerate energy 

depletion rates, jeopardizing network longevity and healthcare 

data continuity. Resolving this challenge necessitates the 

development of technologically advanced solutions, including 

energy-efficient routing protocols, adaptive power 

management algorithms, and intelligent data sampling 

strategies. The objective is to strike a precise balance between 

energy consumption, healthcare data precision, and healthcare 

service quality in H-MWSNs. This research is driven by the 

need for innovative, technically sophisticated solutions to 

advance mobile data collection in healthcare, extend network 

lifespan, and minimize disruptions in ever-changing 

healthcare environments, ensuring the sustained utility and 

technical viability of H-MWSNs in healthcare applications. 

The research aims to address the energy efficiency challenge 

in H-MWSN by developing and implementing an innovative 

bio-inspired optimization-based routing protocol tailored to 

healthcare settings. This protocol will harness the adaptability 

and efficiency of biological and ecological systems to 

overcome the unique constraints and dynamics of H-MWSNs 

in healthcare. The key research objectives are as follows: 

 Protocol Development: Create a bio-inspired routing 

protocol that draws inspiration from natural systems, such 

as ant colony optimization, genetic algorithms, or particle 

swarm optimization. The protocol will be tailored to the 

mobility patterns and energy limitations specific to 

healthcare applications within H-MWSNs. 

 Energy Efficiency Enhancement: Focus on significantly 

improving energy efficiency within H-MWSNs by 

reducing energy consumption during healthcare data 

routing and transmission. The protocol will dynamically 

adapt routing decisions to real-time energy levels and 

changing network conditions, ensuring uninterrupted 

patient monitoring and data integrity. 

 Mobility Adaptation: Ensure the protocol's adaptability to 

the mobility of sensor nodes in healthcare environments by 

implementing efficient handover and re-routing 

mechanisms. This will enable seamless network 

connectivity and healthcare data transmission, even in the 

presence of mobile nodes within healthcare settings. 

 Performance Assessment: Conduct comprehensive 

performance evaluations through simulations and real-

world experiments in healthcare contexts. Assess the 

protocol's effectiveness in extending the operational 

lifespan of the H-MWSN, reducing energy consumption, 

and maintaining the integrity of healthcare data 

transmission in dynamic and critical healthcare scenarios. 

By achieving these research objectives, this study aims to 

contribute substantially to energy-efficient H-MWSNs in 

healthcare, enhancing their potential for applications in 
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patient monitoring, disease management, and healthcare 

service improvements, where mobile data collection, network 

sustainability, and healthcare data accuracy are paramount. 

The paper is structured into distinct sections to effectively 

address the research problem. Section 1 introduces the study's 

context and objectives, while Section 2 critically examines 

existing literature, discussing methodologies, algorithms, and 

their respective merits and demerits. In Section 3, the 

proposed solution, Invigorated Chameleon Swarm 

Optimization-Based Ad Hoc On-Demand Distance Vector 

(ICSO-AODV), is elaborated upon, detailing its integration 

and operational mechanism. Following this, Section 4 

meticulously outlines the simulation settings and parameters, 

including the experimental setup and metrics for evaluation. 

Section 5 presents the findings from simulations, offering an 

in-depth analysis and comparison with existing approaches. 

Finally, Section 6 summarizes the key contributions, 

highlights future research directions, and underscores the 

significance of the proposed methodology. 

2. LITERATURE REVIEW 

“Heterogeneous routing protocol for balanced energy 

consumption in mobile wireless sensor network (NMSFRA)” 

[13] the Heterogeneous Routing Protocol stands out for its 

pivotal role in achieving balanced energy consumption within 

ME-WSNs. By integrating heterogeneous sensor nodes, each 

with varying energy capacities and communication ranges, to 

ensure a balanced distribution of energy loads. “Energy 

efficient scheme for better connectivity in sustainable mobile 

wireless sensor networks (LEACH-RN)” [14] the energy-

efficient mobile sink data collection protocol revolutionizes 

WSNs by leveraging the Low Energy Adaptive Clustering 

Hierarchy model with the integration of rendezvous nodes. 

“Residual-Energy Aware Modeling and Analysis of Time-

Varying Wireless Sensor Networks (REAMAT)” [15] the 

paper conveys in the domain of WSNs by introducing a 

residual-energy aware modeling and analysis framework 

tailored for the inherent time-varying nature of these 

networks.  

“Delay-Aware Green Routing for Mobile-Sink-Based 

Wireless Sensor Networks (Delay-Aware Green Routing)” 

[16] is a revolutionary approach to optimize routing in WSNs 

employing mobile sinks. Integration of delay-awareness into 

the routing strategy, stirves the research to enhance the 

efficiency of data transmission without compromising energy 

conservation.  “Energy-Efficient Mobile Sink-Based 

Intelligent Data Routing Scheme for Wireless Sensor 

Networks (EEMI-DS)” [17] the paper introduces a 

groundbreaking paradigm in WSNs with its Energy-Efficient 

Mobile Sink-Based Intelligent Data Routing Scheme. By 

leveraging mobile sinks judiciously, the protocol minimizes 

communication distances, enhancing energy efficiency 

without compromising data collection. “Energy-Efficient 

Tour Optimization of Wireless Mobile Chargers for 

Rechargeable Sensor Networks (EETO)” [18] identifies an 

innovative strategy in WSNs. By introducing a sophisticated 

optimization framework, the research focuses on enhancing 

energy sustainability in rechargeable sensor networks. This 

optimization process aims to minimize energy consumption 

while ensuring the timely and effective recharging of sensor 

nodes. “MWCRSF: Mobility-based weighted cluster routing 

scheme for FANETs (MWCRSF)” [19] the paper presents a 

Mobility-based Weighted Cluster Routing Scheme for Flying 

Ad Hoc Networks (FANETs). It optimizes cluster formation 

by assigning weighted values based on node mobility, 

facilitating efficient communication.  

“Efficient method to identify hidden node collision and 

improving Quality-of-Service (QoS) in wireless sensor 

networks (QoSGuard)” [20] the paper introduces a proficient 

solution to detect hidden node collisions and enhance Quality-

of-Service (QoS) in WSNs. QoSGuard employs advanced 

techniques to mitigate collisions, improving overall QoS in 

WSNs. “An optimal cluster-based routing algorithm for 

lifetime maximization of Internet of Things (LifeMax IoT)” 

[21] the paper proposes an optimal cluster-based routing 

algorithm designed to maximize the lifetime of Internet of 

Things (IoT) devices. The protocol employs intelligent 

clustering mechanisms that consider factors such as energy 

levels and communication distances, ensuring an efficient 

distribution of network load. “Decision fusion for multi-route 

and multi-hop Wireless Sensor Networks over the Binary 

Symmetric Channel (BinaryNet Fusion)” [22] the paper 

introduces a valuable solution for WSNs. BinaryNet Fusion 

optimizes data transmission by intelligently fusing decisions 

from multiple routes and hops. This sophisticated decision 

fusion process that strategically integrates information from 

diverse routes, mitigating the impact of channel 

imperfections.  

“A high-scalability and low-latency cluster-based routing 

protocol in time-sensitive WSNs using genetic algorithm 

(GenRoute)” [23] presents a high-scalability, low-latency 

cluster-based routing protocol for time-sensitive WSNs using 

genetic algorithms. By dynamically evolving clusters through 

genetic algorithms, the protocol significantly improves 

scalability and reduces latency in WSNs, particularly crucial 

for time-sensitive applications. “A cluster-tree-based energy-

efficient routing protocol for wireless sensor networks with a 

mobile sink (ClusterFlow)” [24] proposes a cluster-tree-based 

energy-efficient routing protocol designed for WSNs 

featuring a mobile sink. ClusterFlow's working mechanism 

involves organizing sensor nodes into a hierarchical cluster-

tree, with each cluster led by a cluster head. The mobile sink 

strategically traverses these clusters to collect data, 

minimizing energy consumption by leveraging the organized 

structure.  
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“EARP: An Enhanced ACO-Based Routing Protocol for 

Wireless Sensor Networks with Multiple Mobile Sinks 

(AntRoute)” [25] introduces EARP, an Enhanced ACO-Based 

Routing Protocol designed for WSNs with support for 

multiple mobile sinks by enhancing the efficiency of ACO in 

selecting optimal paths, particularly catering to scenarios with 

multiple mobile sinks. “A review on distributed cluster based 

routing approaches in mobile wireless sensor networks 

(ClusterScope)” [26] conducts a comprehensive review of 

distributed cluster-based routing approaches tailored for 

MWSNs. The key contribution lies in synthesizing and 

evaluating various methodologies used in distributed 

clustering, shedding light on their strengths and weaknesses. 

“A Competent Ad-hoc Sensor Routing Protocol for Energy 

Efficiency in Mobile Wireless Sensor Networks (EcoAdapt)” 

[27] introduces a Competent Ad-hoc Sensor Routing Protocol 

designed for optimizing energy efficiency in MWSNs. The 

working mechanism involves real-time assessment of energy 

levels, allowing nodes to selectively participate in routing to 

conserve energy. 

“Energy balanced routing protocol based on improved particle 

swarm optimisation and ant colony algorithm for museum 

environmental monitoring of cultural relics (ECOG)” [28] the 

protocol introduces an innovative approach to energy-efficient 

routing tailored for museum environmental monitoring of 

cultural relics. The key contribution lies in integrating 

improved particle swarm optimization and ant colony 

algorithms, optimizing data paths to balance energy 

consumption among sensor nodes. Its working mechanism 

involves leveraging swarm intelligence to find optimal routes, 

considering both the efficiency of particle swarm optimization 

and the adaptability of ant colony algorithms. This hybrid 

approach ensures that the routing protocol adapts dynamically 

to changing environmental conditions, enhancing the 

reliability of data collection while preserving energy 

resources.  

“MOCRAW: A Meta-heuristic Optimized Cluster head 

selection based Routing Algorithm for WSNs (MERT)” [29] 

the paper details a novel routing algorithm named MOCRAW 

designed for WSNs. The key contribution lies in its meta-

heuristic optimized cluster head selection mechanism. 

MetaRoute employs advanced meta-heuristic algorithms to 

dynamically select cluster heads, optimizing network 

performance. The working mechanism involves the use of 

meta-heuristic optimization techniques to adaptively choose 

cluster heads, considering factors such as energy efficiency 

and network connectivity. This approach enhances the overall 

efficiency and prolongs the network lifespan by ensuring 

balanced energy consumption. The comparison of related 

literature is shown in Table 1. 

Table 1 Comparison of Related Literature 

State-of-the-Art 

Algorithms 
Merits Demerits 

NMSFRA [13] 
Optimizes energy consumption for 

balanced usage in heterogeneous MWSNs 

Possible scalability challenges and 

dependency on accurate node information 

may impact effectiveness. 

LEACH-RN [14] 

Enhances data collection efficiency through 

strategic use of rendezvous nodes, 

optimizing network performance. 

Increased implementation complexity due 

to the integration of rendezvous nodes, 

potential deployment challenges. 

REAMAT [15]  

Excels in energy optimization through 

adaptive strategies and introduces dynamic 

scheduling for efficient data transfer. 

Implementation complexity due to 

adaptive scheduling, potential overhead 

in certain computational scenarios. 

Delay-Aware Green 

Routing [16] 

Prioritizes energy-efficient paths, 

contributing to prolonged network 

operation and minimizing environmental 

impact. 

Complex implementation may affect ease 

of deployment, and prioritizing energy 

efficiency may lead to potential latency 

concerns in certain scenarios. 

EEMI-DS  [17] 
Enhances energy efficiency and minimizes 

latency through optimized design strategies. 

Implementation complexity and potential 

resource overhead may be considerations 

in specific scenarios. 

EETO [18] 

Optimizes energy consumption, 

contributing to prolonged network 

operation with prioritized energy-efficient 

routing paths. 

Complexity in implementation due to the 

optimization focus, and challenges in 

adapting to diverse network conditions 

may arise. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224446                 Volume 11, Issue 2, March – April (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       195 

     

RESEARCH ARTICLE 

MWCRSF [19] 
Mobility-based weighted cluster routing for 

FANETs enhances adaptability. 

The mobility-based approach may 

introduce implementation complexities, 

and scaling to larger networks might pose 

challenges. 

QoSGuard [20] 
Ensures quality of service in WSNs with 

intelligent monitoring. 

Increased computational overhead may be 

a consideration in resource-constrained 

environments. 

Lifemax IoT [21] 
Maximizes the lifetime of IoT devices 

through optimized energy consumption. 

The consideration of potential complexity 

arises when implementing lifecycle 

optimization strategies. 

Binary Net Fusion 

[22] 

Optimizes information fusion in WSNs for 

improved decision accuracy. 

The possibility of increased 

computational complexity may influence 

real-time performance in scenarios with 

constrained resources. 

GenRoute [23]  
Improves routing efficiency with a genetic 

algorithm, improving network performance. 

Improved implementation complexity 

may affect ease of deployment in certain 

scenarios. 

Cluster Flow [24] 
Enhances data flow efficiency via 

optimized clustering in WSNs. 

Difficulty in dynamic clustering 

implementation may pose challenges in 

certain network scenarios. 

Ant Route [25] 

Boosts routing efficiency through ant 

colony optimization for enhanced network 

performance. 

Execution difficulties could affect 

straightforward deployment in certain 

network settings. 

Cluster Scope [26] 

Increases network efficiency by optimizing 

communication within defined clusters in 

WSNs. 

Consideration may be given to potential 

challenges in adapting to dynamic 

network conditions. 

EcoAdapt  [27] 
Excels in energy efficiency through 

adaptive mechanisms in WSNs. 

Challenges in certain deployment 

scenarios may arise due to intricacies in 

implementation. 

ECOG [28] 

Prioritizes environmental conservation and 

implements energy-efficient protocols for 

prolonged network life. 

Focusing on environmental conservation 

and adapting to diverse network 

conditions may introduce implementation 

challenges, affecting overall efficiency. 

MERT  [29] 

Optimizes routing paths for enhanced 

network efficiency with dynamic 

adaptability to changing conditions. 

Potential overhead and implementation 

complexity may be considerations in 

deployment. 

 

Table 1 depicts the merits and demerits of the existing works, 

the consolidated table gives a clear vision about the existing 

work which proposes the solution for the problem that has 

been engaged. 

The existing literature presents several notable contributions 

to routing optimization in Wireless Sensor Networks (WSNs). 

However, a critical research gap persists in comprehensively 

addressing the dynamic nature of energy consumption and 

routing efficiency in Mobile Wireless Sensor Networks 

(MWSNs), particularly within Healthcare Mobile Wireless 

Sensor Networks (H-MWSNs). While various protocols and 

schemes have been proposed to optimize energy consumption 

and enhance routing efficiency, a comprehensive solution 

integrating adaptive energy management, efficient routing 

strategies, and real-time monitoring tailored specifically for 

healthcare applications is lacking.  

Thus, there is a clear need for a novel approach that 

seamlessly integrates these components to ensure balanced 

energy consumption, efficient data collection, and enhanced 

network performance in healthcare-focused MWSNs. 
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3. INVIGORATED CHAMELEON SWARM 

OPTIMIZATION-BASED AD HOC ON-DEMAND 

DISTANCE VECTOR (ICSO-AODV) 

3.1. Ad Hoc On Demand Distance Vector (AODV) 

Ad Hoc On-Demand Distance Vector (AODV) is a dynamic 

and decentralized routing protocol specifically designed for 

wireless ad hoc networks. In AODV, routes between nodes 

are established on-demand, meaning that they are created only 

when needed for communication. The protocol operates 

efficiently in environments characterized by frequent node 

mobility and changing network topologies, such as mobile ad 

hoc networks (MANETs) and WSNs. AODV employs a 

reactive approach where, upon initiation of communication 

between source and destination nodes, a Route Request 

(RREQ) is broadcasted through the network.  

This RREQ propagates dynamically, seeking a path to the 

destination. Once the RREQ reaches either the destination or 

a node with a valid route to the destination, a Route Reply 

(RREP) is generated, establishing the route. Primarily it 

combines the mechanisms for route maintenance and error 

handling. In a wireless network if there is a failure in node or 

link then AODV sends a Route Error (RERR) message to the 

source. This triggers a process of new route discovery if it is 

required. AODV is an effective one because of its adaptability 

in the dynamic conditions of wireless ad hoc networks, 

minimising control overhead, and utilising resources 

efficiently. 

3.2. Enhanced Floyd-Warshall Based Ad Hoc On Demand 

Distance Vector (FW-AODV): 

The 𝐹𝑙𝑜𝑦𝑑 − 𝑊𝑎𝑟𝑠ℎ𝑎𝑙𝑙  (FW) algorithm is a method for 

finding the shortest paths between the vertices in a weighted 

graph,it is for both directed and undirected graphs. To 

represent the path the matrix will be marked with values and 

updated. When the FW is combined with AODV protocol 

then the routing efficiency and resilience in WSNs will be 

enhanced. This integration results in Floyd-Warshall based 

AODV (FW-AODV) a new methodology for finding a 

shortest path. 

3.2.1. Initialization 

The integration of the FW Algorithm with the AODV 

protocol is the initial process, a new mathematical approach is 

used for calculating the shortest paths between all pair of 

nodes in a weighted graph. In which it denotes the set of 

nodes in the MWSNs as 𝑉 and the set of directed edges as 𝐸. 

Let 𝑊𝑖𝑗 represent the weight associated with the directed edge 

from node 𝑖 to node 𝑗. The FW algorithm seeks to construct a 

matrix 𝐷(0)  where 𝑑𝑖𝑗
(0)

 denotes the initial shortest path 

distance from node 𝑖 to node 𝑗. This initialization process is 

expressed with the Eq.(1). 

𝐷(0) ∶= [

𝑑11
(0)

⋯ 𝑑1[𝑉]
(0)

⋮ ⋱ ⋮

𝑑[𝑉]1
(0)

⋯ 𝑑[𝑉][𝑉]
(0)

] (1) 

This initialization sets the foundation for subsequent iterations 

and ensures an initial representation of the network's pairwise 

shortest path distances. The resulting 𝐷(0) matrix serves as the 

starting point for the adaptive routing capabilities of the 

subsequent AODV protocol, fostering efficient and context-

aware route discovery in the dynamic WSNs. 

3.2.2. Route Discovery with AODV 

The integration of the FW Algorithm with the AODV 

protocol initiates the route discovery process. A source node 𝑠 

in the network seeks a route to a destination node 𝑑. If the 

precomputed FW matrix 𝐷(0)𝑖 ndicates an existing optimal 

path or the absence of a route, the AODV protocol is triggered 

to initiate route discovery. This is realized through the 

broadcast of a Route Request (RREQ) packet. The broadcast 

of the RREQ packet is described mathematically in Eq.(2). 

RREQSD

∶= {s, d, RREQID,   LastHop, NodeSeqNum, BroadcastID} (2) 

where 𝑅𝑅𝐸𝑄𝑆𝐷 represents the RREQ packet from source 𝑠 to 

destination 𝑑, 𝑅𝑅𝐸𝑄𝐼𝐷 is a unique identifier for the RREQ, 

𝐿𝑎𝑠𝑡𝐻𝑜𝑝  is the last node that forwarded the RREQ, 

𝑁𝑜𝑑𝑒𝑆𝑒𝑞𝑁𝑢𝑚  is the sequence number associated with the 

source node, and 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝐼𝐷 is the broadcast identifier. 

3.2.3. Optimal Path Selection 

It involves evaluating AODV Route Reply (RREP) packets 

received by the algorithm to identify the most efficient route 

from a source node s to a destination node d. When presented 

with multiple potential paths, the algorithm seeks to 

determine the route that minimizes the cumulative path cost. 

This path selection prcess is mathematically expressed in 

Eq.(3). 

𝑃𝑎𝑡ℎ𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =𝑀𝑖𝑛𝑃𝑎𝑡ℎ𝑖
∑ 𝑤𝑖𝑗

𝑁

𝑗=1
 (3) 

where, 𝑃𝑎𝑡ℎ𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 signifies the chosen path, and 𝑃𝑎𝑡ℎ𝑖  

traverses all possible paths from the source 𝑠 to destination 𝑑. 

The summation incorporates the weights 𝑤𝑖𝑗  associated with 

the edges along each path. 

3.2.4. Route Maintenance 

Route Maintenance with Floyd-Warshall, the algorithm 

periodically updates the FW matrix 𝐷(𝑡) to adapt to changes 

in the dynamic WSNs. This maintenance process ensures the 

accuracy of the matrix in representing all-pairs shortest paths 

over time. The update equation is expressed in Eq.(4). 
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𝐷𝑖𝑗
(𝑡)

= min(𝐷𝑖𝑗
(𝑡−1)

, 𝐷𝑖𝑘
(𝑡−1)

+ 𝐷𝑘𝑗
(𝑡−1)

) (4) 

where, 𝐷𝑖𝑗
(𝑡)

 denotes the updated shortest path distance from 

node 𝑖 to node 𝑗 at time 𝑡. The update involves comparing the 

existing shortest path 𝐷𝑖𝑗
(𝑡)

 with the sum of paths through an 

intermediate node 𝑘 , represented by 𝐷𝑖𝑘
(𝑡−1)

+ 𝐷𝑘𝑗
(𝑡−1)

. The 

minimum of these values is then selected to update the matrix. 

3.2.5. Adaptive Path Switching 

The algorithm dynamically switches between available paths 

by assessing their costs and selecting the most optimal route. 

Let 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛} represent the set of potential paths 

from a source node to a destination node, and ∫(𝑃𝑖) denote 

the cost associated with each path 𝑃𝑖  which is shown 

mathematically in Eq.(5). 

𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =  𝑚𝑖𝑛𝑃𝑖∈𝑃 ∫(𝑃𝑖) (5) 

The cost function ∫(𝑃𝑖) can incorporate various metrics, such 

as the sum of link weights, available bandwidth, or residual 

energy. For example, considering the sum of link weights as 

the cost. 

∫(𝑃𝑖) =  ∑ 𝑤𝑖𝑗

𝑁

𝑗=1
 (6) 

where in Eq.(6), 𝑤𝑖𝑗 represents the weight associated with the 

link from node 𝑖 to node 𝑗. The algorithm dynamically selects 

the path 𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙  that minimizes the overall cost, which 

indicates the most efficient route based on the specified 

criteria. The adaptive switching process may involve 

monitoring of the real time conditions of the network and 

updating the cost function dynamically. 

∫(𝑃𝑖) = 𝛼. 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑖) + 𝛽. 𝐿𝑖𝑛𝑘𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑃𝑖) (7) 

In Eq.(7), 𝛼  and 𝛽  are the weighting factors, 

𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑖), and 𝐿𝑖𝑛𝑘𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑃𝑖)  represent the length 

of the path, and the quality of its links. It adopts more flexible 

approach by enabling the algorithm to evaluate various factors 

for the best path selection. 

3.2.6. Energy Aware Routing 

This step integrates energy considerations into the routing 

decision process, aiming to minimize energy consumption and 

prolong the network's operational lifespan. This involves 

integrating an energy aware costfunction ∫ 𝑒𝑛𝑒𝑟𝑔𝑦(𝑃𝑖) into 

the path selection mechanism is shown in Eq.(8). 

∫ 𝑒𝑛𝑒𝑟𝑔𝑦(𝑃𝑖) =  ∑ 𝐸𝑖𝑗

𝑁

𝑗=1

 (8) 

where 𝐸𝑖𝑗  represents the energy consumption associated with 

the link from node 𝑖 to node 𝑗. The algorithm aims to select 

paths that minimize the cumulative energy consumption 

across the network. A trade-off between energy consumption 

and path length may be considered by introducing a weighting 

factor represented mathematically with Eq.(9). 

∫ 𝑡𝑟𝑎𝑑𝑒_𝑜𝑓𝑓(𝑃𝑖) =  𝛼. 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑖) + 𝛽. 𝐸(𝑃𝑖) (9) 

where 𝛼  and 𝛽  are weighting factors, 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑖) 

represents the length of the path, and 𝛽. 𝐸(𝑃𝑖) is the energy 

consumption associated with the path. To balance the 

considerations of energy efficiency and path length, providing 

a flexible approach to energy-aware routing. The optimization 

objective is to select paths that achieve an steadiness between 

minimizing energy consumption and ensuring effective data 

transmission within the WSNs. 

3.2.7. Dynamic Network Reconfiguration 

In the Dynamic Network Reconfiguration the algorithm 

leverages AODV decisions to adaptively modify the network 

structure based on real-time changes. This involves updating 

routing tables 𝑅𝑇𝑖𝑗  and responding to alterations identified by 

the AODV protocol which is shown mathematically in 

Eq.(10). 

𝑅𝑇𝑖𝑗(𝑡 + 1) =  𝑅𝑇𝑖𝑗(𝑡) + ∆ 𝑅𝑇𝑖𝑗  (10) 

Where 𝑅𝑇𝑖𝑗(𝑡)  represents the routing table entry between 

nodes 𝑖 and 𝑗 at time 𝑡, and ∆ 𝑅𝑇𝑖𝑗  denotes the change in this 

entry due to AODV decisions. The algorithm dynamically 

adjusts routing information, ensuring the network remains 

synchronized with changing conditions. Moreover, adaptive 

responses to network alterations involve executing functions 

𝐹𝑎𝑑𝑎𝑝𝑡. 

𝐹𝑎𝑑𝑎𝑝𝑡(𝑡 + 1) =  𝐹𝑎𝑑𝑎𝑝𝑡(𝑡) + ∆ 𝐹𝑎𝑑𝑎𝑝𝑡  (11) 

In Eq.(11), 𝐹𝑎𝑑𝑎𝑝𝑡(𝑡)  represents the state of adaptive 

functions at time 𝑡 , and ∆ 𝐹𝑎𝑑𝑎𝑝𝑡  signifies the change in 

function states. These equations encapsulate the continuous 

process of network reconfiguration, where routing tables and 

adaptive functions evolve to accommodate the dynamic nature 

of the WSNs. This adaptability enhances the network's 

resilience and responsiveness to varying environmental and 

operational factors. 

3.2.8. Cross Layer Optimization 

Cross-layer Optimization integrates information and 

functionality across different layers of the network protocol 

stack to enhance overall system performance. This involves 

optimizing a Joint Objective Function (𝐽𝑂𝐹) that incorporates 

metrics from multiple layers shown mathematically in 

Eq.(12). 
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𝐽𝑂𝐹 =  𝛼. 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 + 𝛽. 𝐸𝑛𝑑_𝑡𝑜_𝐸𝑛𝑑_𝐷𝑒𝑙𝑎𝑦
+ 𝛾. 𝐸𝑛𝑒𝑟𝑔𝑦_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

(12) 

Where 𝛼 , 𝛽 , and 𝛾  are weighting factors representing the 

importance assigned to throughput, end-to-end delay, and 

energy efficiency, respectively. The algorithm seeks to find a 

configuration that maximizes the joint objective function. 

Cross-layer optimization exploits inter-layer dependencies, 

ensuring that decisions made in one layer impact and improve 

performance metrics in other layers. By considering multiple 

metrics simultaneously, this approach strives to achieve a 

balanced and globally optimized network operation, 

transcending individual layer optimizations and improving the 

overall efficiency, delay, and energy consumption of the 

WSNs. 

Step 1: Initialization with FW 

function initialize_network(): 

network_topology = create_topology() 

node_weights = assign_weights() 

floyd_warshall_matrix = 

initialize_floyd_warshall(network_topology, node_weights) 

return floyd_warshall_matrix 

End function initialize_network() 

Step 2: Route Discovery with AODV 

function route_discovery(source, destination, 

floyd_warshall_matrix): 

if optimal_path_exists(source, destination, 

floyd_warshall_matrix): 

return get_optimal_path(source, destination, 

floyd_warshall_matrix) 

else: 

aodv_route = initiate_aodv_route_discovery(source, 

destination) 

return aodv_route 

End function route_discovery(source, destination, 

floyd_warshall_matrix) 

Step 3: Optimal Path Selection 

function optimal_path_selection(aodv_routes, 

floyd_warshall_matrix): 

for route in aodv_routes: 

evaluate_criteria(route, floyd_warshall_matrix) 

selected_path = select_optimal_path(aodv_routes) 

return selected_path 

End function optimal_path_selection(aodv_routes, 

floyd_warshall_matrix) 

Step 4: Route Maintenance with FW 

function route_maintenance(floyd_warshall_matrix): 

updated_matrix = 

update_floyd_warshall_matrix(floyd_warshall_matrix) 

handle_link_failures(updated_matrix) 

End function route_maintenance(floyd_warshall_matrix) 

Step 5: Adaptive Path Switching 

function adaptive_path_switching(network_changes, 

available_paths): 

monitor_network(network_changes) 

assessed_paths = assess_paths(available_paths) 

optimal_path = select_optimal_path_realtime(assessed_paths) 

return optimal_path 

End function adaptive_path_switching(network_changes, 

available_paths) 

Step 6: Dynamic Network Reconfiguration 

function dynamic_network_reconfiguration(aodv_decisions): 

update_routing_tables(aodv_decisions) 

adapt_to_changes(aodv_decisions) 

End function 

dynamic_network_reconfiguration(aodv_decisions) 

Step 7: Energy-Aware Routing 

function energy_aware_routing(paths, energy_costs): 

calculate_energy_costs(paths, energy_costs) 

energy_optimal_path = select_energy_optimal_path(paths) 

return energy_optimal_path 

End function energy_aware_routing(paths, energy_costs) 

Step 8: Security Enhancement 

function security_enhancement(): 

perform_security_analysis() 

implement_security_measures() 

End function security_enhancement() 

Step 9: Data Aggregation 

function data_aggregation(): 

identify_aggregation_points() 
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aggregate_data() 

transmit_aggregated_data() 

End function data_aggregation() 

Step 10. Repeat Steps if Required 

function repeat_steps(): 

initialize_network() 

route_discovery() 

optimal_path_selection() 

route_maintenance() 

adaptive_path_switching() 

dynamic_network_reconfiguration() 

energy_aware_routing() 

security_enhancement() 

data_aggregation() 

End function repeat_steps() 

Algorithm 1 FW-AODV 

The Algorithm 1 follows a comprehensive 9-step process for 

WSNs management and 10th step is progressed only if it is 

necessary based on network output. It begins with initializing 

the network topology, assigning weights, and computing 

initial paths using the FW algorithm. Subsequent steps 

involve dynamic route discovery, optimal path selection, and 

real-time adaptive path switching. Network reconfiguration 

and energy-aware routing adapts to changes, while security 

enhancements strengthen the system. Data aggregation 

optimizes information exchange. The process is designed to 

be repeatable for ongoing adaptability. The technical 

enhancement ensures the iterative execution of the specified 

steps, reinforcing the network's responsiveness and efficiency 

in evolving scenarios. 

3.3. Chameleon Swarm Optimization (CSO) 

Chameleon Swarm Optimization (CSO) is a nature-inspired 

optimization algorithm that draws inspiration from the color-

changing ability of chameleons and the collaborative behavior 

of swarms. The algorithm involves a population of agents, 

each representing a potential solution to an optimization 

problem. These agents mimic the adaptive color-changing 

nature of chameleons to communicate and collaborate within 

the swarm, aiming to collectively find optimal solutions. 

The algorithm initiates with an initial population of agents in 

a randomly distributed solution space. Each agent adjusts its 

position based on its own experience, and the information 

obtained from neighboring agents, symbolized by color 

changes. These color-coded signals convey the quality of 

solutions and guide the swarm towards regions of higher 

fitness. The agents adapt their movement patterns 

dynamically, balancing exploration and exploitation to 

navigate the solution space effectively. 

CSO incorporates social interactions, allowing agents to share 

information about promising regions in the solution space 

through color signals. This collaborative learning enhances 

the collective intelligence of the swarm. The algorithm 

continuously evaluates and updates its solutions, iteratively 

refining the population. CSO leverages the principles of self-

organization, emergence, and adaptability to navigate 

complex optimization landscapes effectively. Through the 

interplay of color-coded communication and adaptive 

movement, Chameleon Swarm Optimization showcases its 

ability to efficiently explore and exploit solution spaces, 

making it a robust and versatile optimization technique. 

3.3.1. Features of CSO 

a) Initialization: Chameleon Swarm Optimization (CSO) 

begins with the initialization of a diverse population of 

agents in the solution space. These agents represent 

potential solutions to the optimization problem, and their 

initial distribution sets the starting point for the 

algorithm. 

b) Color-Based Communication: In CSO the agents 

communicate by changing colors, inspired by the 

adaptive color-changing nature of chameleons. This 

color-based communication serves as a symbolic 

language, conveying information about the quality of 

solutions and guiding the swarm towards regions of 

higher fitness. 

c) Adaptive Movement: Agents in the swarm exhibit 

adaptive movement patterns, adjusting their positions 

based on their own experiences and the information 

received from neighboring agents. This dynamic 

adaptation helps the swarm efficiently explore the 

solution space, balancing exploration and exploitation. 

d) Social Interaction: CSO incorporates social interactions 

among agents. They share information about promising 

regions in the solution space through color signals. This 

collaborative learning enhances the collective intelligence 

of the swarm, facilitating efficient convergence towards 

optimal solutions. 

e) Environmental Sensing: Agents possess the ability to 

sense the environment, responding to changes in the 

problem landscape. Environmental sensing influences the 

decision-making process of each agent, ensuring 

adaptability to evolving conditions during the 

optimization process. 

f) Dynamic Exploration-Exploitation Trade-off: The swarm 

dynamically adjusts its balance between exploration and 
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exploitation based on environmental cues and the success 

of neighboring agents in finding optimal solutions. This 

trade-off ensures effective navigation through the 

solution space. 

g) Temperature Regulation (Inspired by Thermoregulation): 

CSO incorporates a temperature-like parameter that 

influences the exploration rate of the swarm. Higher 

"temperatures" encourage more exploration, while lower 

temperatures promote exploitation, providing a 

mechanism for adaptive and dynamic exploration. 

h) Dynamic Neighborhoods: The concept of neighborhoods 

within the swarm is dynamic, changing based on the 

current state of the algorithm. Agents selectively interact 

with others based on their color patterns and success 

rates, fostering adaptive collaboration. 

i) Adaptive Memory Mechanism: Agents maintain an 

adaptive memory of successful solutions and experiences. 

This memory is continuously updated based on observed 

changes in the environment and the success of 

neighboring agents, ensuring a dynamic learning process. 

3.4. Invigorated Chameleon Swarm Optimization 

Invigorated Chameleon Swarm Optimization represents a 

refined and dynamic algorithm, building upon the principles 

of Chameleon Swarm Optimization (CSO). ICSO introduces a 

rejuvenating mechanism to enhance the vitality and 

adaptability of the swarm throughout the optimization 

process. 

a) Initialization and Rejuvenation: ICSO initializes a diverse 

swarm of agents, each representing a potential solution. 

Uniquely, the algorithm incorporates periodic 

rejuvenation events, injecting freshness into the swarm by 

introducing new individuals or reinitializing certain 

parameters. 

b) Dynamic Color-Based Communication: ICSO relies on 

dynamic color-based communication among agents, 

emulating the adaptive color-changing nature of 

chameleons. This symbolic language conveys not only 

the quality of solutions but also the recent vitality of 

information, enriching the adaptability of the swarm. 

c) Adaptive Movement and Energy Conservation: Agents 

within the swarm exhibit adaptive movement patterns, 

responding to the vitality of neighboring agents. The 

algorithm introduces energy conservation mechanisms, 

ensuring dynamic responsiveness while conserving 

energy for sustained exploration. 

d) Environmental Sensing and Adaptability: ICSO endows 

agents with heightened environmental sensitivity, 

enabling them to adapt their strategies to changes in the 

problem landscape. This adaptability ensures swift 

responses to environmental shifts, aligning with the 

overall theme of rejuvenation. 

e) Dynamic Exploration-Exploitation Trade-off with 

Revitalization: ICSO dynamically balances the 

exploration-exploitation trade-off, introducing periodic 

revitalization events. These events inject heightened 

exploration enthusiasm into the swarm, fostering 

innovation and preventing stagnation in solution space 

exploration. 

f) Social Interaction and Collective Revitalization: 

Encouraging social interactions among agents, ICSO 

facilitates the sharing of both solution-related and 

vitality-related information. The algorithm introduces 

collective revitalization events, synchronizing renewal 

processes among agents and fostering synergistic effects. 

g) Temperature Regulation for Revitalization: Inspired by 

the temperature parameter in CSO, ICSO incorporates a 

similar parameter influencing exploration rates and the 

frequency of revitalization events. Higher "temperatures" 

correspond to more frequent revitalization, injecting 

renewed vigor into the swarm. 

h) Dynamic Neighborhoods with Regeneration: ICSO 

maintains the concept of dynamic neighborhoods, 

adapting based on the energy levels and vitality of agents. 

The algorithm introduces regeneration mechanisms, 

periodically infusing new individuals into neighborhoods, 

stimulating collaborative rejuvenation. 

i) Adaptive Memory Mechanism with Memory 

Regeneration: Extending the adaptive memory 

mechanism from CSO, ICSO ensures agents maintain a 

continuous and evolving memory of successful solutions 

and vitality experiences. This memory is consistently 

regenerated, preventing stagnation and fostering a 

dynamic learning process. 

ICSO redefines swarm intelligence by infusing constant 

vitality. Its dynamic color-based communication, adaptive 

movement, and periodic rejuvenation foster continuous 

innovation. ICSO stands as a resilient optimization approach, 

ensuring adaptability and optimal exploration, propelling it 

beyond conventional swarm algorithms. 

3.4.1. Initialization and Rejuvenation 

The optimization process commences with the generation of a 

diverse population of agents representing potential solutions. 

This population is denoted as 𝑃𝑡  at iteration . Each agent 

symbolized as 𝐴𝑖, is defined as a vector in the solution space, 

𝐴𝑖 = (𝑥𝑖1, 𝑥𝑖2, … . . 𝑥𝑖𝑛) where n is the dimensionality of the 

solution space. The swarm's initial state is crucial for a robust 

optimization process and is represented as 𝑆𝑡  at iteration 𝑡. 
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The rejuvenation process involves the introduction of new 

individuals or the reinitialization of specific parameters in the 

swarm, promoting continuous adaptability and preventing 

premature convergence. The rejuvenation term denoted as 𝑅𝑡 

is dynamically determined based on the overall vitality of the 

swarm. A rejuvenation factor 𝑅𝐹 , influences the rate of 

rejuvenation. The rejuvenation process can be expressed 

mathematically with Eq.(13). 

𝑅𝑡 = 𝑅𝐹. 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) (13) 

Where 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡)  represents a measure of the swarm's 

vitality at iteration 𝑡. The swarm's vitality is influenced by 

factors such as the diversity of solutions and the recent 

success in exploring the solution space. The diversity of the 

swarm, denoted as 𝐷𝑡  is calculated using a diversity measure 

that considers the Euclidean distances between individual 

solutions within the population. 

𝐷𝑡 = ∑ ∑
1

[𝐴𝑖 − 𝐴𝑗]

𝑁

𝑗=𝑖+1

𝑁

𝑖=1
 (14) 

Where in Eq.(14), 𝑁  is the number of agents in the 

population. The overall energy 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) is a combination 

of the diversity measure and a success metric that gauges the 

swarm's recent performance. The success metric, denoted as 

𝑆𝑀𝑡 can be expressed as a weighted sum of the fitness values 

of the top-performing agents represented mathelatically in 

Eq.(15). 

𝑆𝑀𝑡 = ∑ 𝜔𝑖 ∙ ∫(𝐴𝑖)

𝑘

𝑖=1

 (15) 

Where ∫(𝐴𝑖)  represents the fitness of agent 𝐴𝑖 , 𝑘  is the 

number of top-performing agents, and 𝜔𝑖  is the weight 

associated with each agent. 

The overall 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡)  is then calculated as a combination 

of diversity and success shown in Eq.(16). 

𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡)  =  𝛼. 𝐷𝑡 + (1 − 𝛼) ∙ 𝑆𝑀𝑡 (16) 

Where 𝛼  is a parameter that balances the contribution of 

diversity and success to the overall vitality. 

3.4.2. Dynamic Color-Based Communication 

This optimization algorithm introduces a sophisticated 

communication mechanism among agents inspired by the 

adaptive color-changing behavior of chameleons. Each agent 

𝐴𝑖 communicates through a dynamic color variable 𝐶𝑖,𝑡 which 

represents the agent's signaling information at iteration 𝑡. This 

color variable dynamically evolves based on the agent's own 

characteristics and interactions with neighboring agents. 

The evolution of the color variable is governed by an adaptive 

updating mechanism that combines the agent's historical color 

information 𝐻𝑖,𝑡  and the influence from neighboring agents. 

Mathematically, the dynamic color variable can be expressed 

in Eq.(17). 

𝐶𝑖,𝑡+1 = 𝛽 ∙ 𝐻𝑖,𝑡 +  𝛾 ∙ ∑ 𝑤𝑖𝑗

𝑁

𝑗=1

∙ 𝐶𝑖𝑗 (17) 

Where 𝛽  and 𝛾  are parameters controlling the influence of 

historical color and neighboring color information, 

respectively. 𝑁  represents the total number of agents in the 

population, and 𝑤𝑖𝑗  is the weight associated with the 

interaction between agents 𝐴𝑖  and 𝐴𝑗. 

The historical color information 𝐻𝑖,𝑡 is updated based on the 

agent's own success, incorporating a feedback mechanism that 

emphasizes successful color choices. This update can be 

formulated in Eq.(18). 

𝐻𝑖,𝑡+1 = (1 − 𝛿) ∙ 𝐻𝑖,𝑡 + 𝛿 ∙ ∫(𝐴𝑖) (18) 

Where 𝛿  is a parameter determining the weight of the 

feedback mechanism, and ∫(𝐴𝑖) is the fitness of agent 𝐴𝑖. 

To ensure diversity and prevent color convergence, an entropy 

term 𝐸𝑖,𝑡 is introduced, representing the diversity of colors in 

the neighborhood of agent 𝐴𝑖 expressed with Eq.(19). 

𝐸𝑖,𝑡 = − ∑ 𝑤𝑖𝑗 ∙ log(𝑤𝑖,𝑗)

𝑁

𝑗=1

 (19) 

The overall color update equation is modified to include the 

entropy term. 

𝐶𝑖,𝑡+1 = 𝛽 ∙ 𝐻𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖𝑗 ∙ 𝐶𝑗,𝑡 + 𝛼 ∙ 𝐸𝑖,𝑡

𝑁

𝑗=1

 

(20) 

Where in Eq.(20), 𝛼 is a parameter controlling the influence 

of the entropy term on the color update. This dynamic color-

based communication mechanism ensures that agents 

continuously adapt their signaling information based on both 

individual success and collective interactions, promoting 

diversity and effective exploration in the optimization 

process. 

3.4.3. Adaptive Movement and Energy Conservation 

A dynamic movement strategy for each agent, inspired by the 

adaptability observed in chameleons. The movement of an 

agent 𝐴𝑖 is influenced by its historical movement vector 𝑀𝑖,𝑡 

the impact of neighboring agents, and an innovative adaptive 

energy conservation mechanism. 

The adaptive movement vector undergoes continuous updates 

through a combination of historical movement information 

and the influence from neighboring agents. Mathematically, 
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the dynamic movement vector is expressed mathematically in 

Eq.(21). 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖𝑗 ∙ 𝑀𝑗,𝑡

𝑁

𝑗=1
 (21) 

Where 𝛽 and 𝛾 are parameters that regulate the influence of 

historical movement and neighboring movement information, 

respectively. 𝑁  signifies the total number of agents in the 

population, and 𝑤𝑖𝑗 represents the weight associated with the 

interaction between agents 𝐴𝑖 and 𝐴𝑗. 

To incorporate adaptability based on an agent's success, a 

feedback mechanism is introduced to update the historical 

movement information 

𝑀𝑖,𝑡+1 =  (1 − 𝛿) ∙ 𝑀𝑖,𝑡 + 𝛿 ∙ ∫(𝐴𝑖) (22) 

In Eq.(22), 𝛿 is a parameter that determines the weight of the 

feedback mechanism, and ∫(𝐴𝑖)  represents the fitness of 

agent 𝐴𝑖. 

To maintain diversity in the movement strategy and prevent 

premature convergence, an entropy term 𝐸𝑖,𝑡  is introduced. 

This term represents the diversity of movement vectors in the 

neighborhood of agent 𝐴𝑖  expressed mathematically in 

Eq.(23). 

𝐸𝑖,𝑡 = − ∑ 𝑤𝑖𝑗 ∙ log(𝑤𝑖𝑗)
𝑁

𝑗=1
 (23) 

The overall movement update equation is then adjusted to 

include the entropy term 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖𝑗 ∙ 𝑀𝑗,𝑡 + 𝛼 ∙ 𝐸𝑖,𝑡

𝑁

𝑗=1
 (24) 

In Eq.(24), where 𝛼 is a parameter determining the influence 

of the entropy term on the movement update. 

The ICSO introduces an energy conservation mechanism to 

regulate the movement of agents. Each agent possesses an 

energy level 𝐸𝑖,𝑡 influencing its movement. The energy level 

undergoes updates based on the agent's historical success and 

the effort expended in the current iteration. 

𝐸𝑖,𝑡+1 = (1 − η) ∙ 𝐸𝑖,𝑡 −  λ ∙ ‖𝑀𝑖,𝑡‖ ∙ ∫(𝐴𝑖) (25) 

In Eq.(25), the symbol η is a parameter controlling the decay 

of energy over time, λ  influences the energy consumption 

during movement, and ‖𝑀𝑖,𝑡‖ represents the magnitude of the 

movement vector. 

3.4.4. Environmental Sensing and Adaptability 

Environmental Sensing and Adaptability intention is to 

enhance the swarm's responsiveness to variations in the 

optimization landscape. The environmental sensing process 

involves agents gathering information about the local 

environment, enabling them to adapt their behaviors 

accordingly. Let 𝑆𝑖,𝑡  represent the sensing information of 

agent 𝐴𝑖  at iteration 𝑡 . This information is accumulated 

through interactions with the environment and neighboring 

agents. The sensing information is updated based on the 

fitness of the agent and the historical sensing information is 

expressed in mathematical form with Eq.(26). 

𝑆𝑖,𝑡+1 = (1 − ∅) ∙ 𝑆𝑖,𝑡 + ∅ ∙ ∫(𝐴𝑖) (26) 

Where ∅ is a parameter controlling the weight of the fitness 

information in the sensing update, and ∫(𝐴𝑖) is the fitness of 

agent 𝐴𝑖. 

To ensure diversity in the sensing information and prevent 

convergence, an entropy term 𝐸𝑖,𝑡  is introduced, similar to 

previous steps. This term represents the diversity of sensing 

information in the neighborhood of agent 𝐴𝑖  shown in 

Eq.(27). 

𝐸𝑖,𝑡 = − ∑ 𝑤𝑖𝑗 ∙ log(𝑤𝑖𝑗)
𝑁

𝑗=1
 (27) 

The overall sensing update equation is then adjusted to 

include the entropy term. 

𝑆𝑖,𝑡+1 = (1 − ∅) ∙ 𝑆𝑖,𝑡 + ∅ ∙ ∫(𝐴𝑖) + 𝛼 ∙ 𝐸𝑖,𝑡 (28) 

In Eq.(28), 𝛼 is a parameter determining the influence of the 

entropy term on the sensing update. 

The adaptability of agents is further enhanced by 

incorporating the sensing information into the movement 

strategy. The movement vector 𝑀𝑖,𝑡+1 is updated based on the 

sensing information. 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖𝑗 ∙ 𝑀𝑗,𝑡 + 𝛼 ∙ 𝑆𝑖,𝑡

𝑁

𝑗=1
 (29) 

In Eq.(29), where 𝛼  represents the weight of the sensing 

information in the movement update. The algorithm also 

introduces a mechanism to adjust the energy conservation 

process based on the sensing information. The energy level 

𝐸𝑖,𝑡+1 is updated which is expressed in Eq.(30). 

𝐸𝑖,𝑡+1 = (1 −  η) ∙ 𝐸𝑖,𝑡 −  λ ∙ ‖𝑀𝑖,𝑡‖ ∙ ∫(𝐴𝑖) + 𝛽 ∙ 𝑆𝑖,𝑡 (30) 

Where 𝛽 is a parameter controlling the influence of sensing 

information on the energy update. 

These mathematical expressions jointly ensures that the 

agents in ISCO not only sense changes in the environment but 

also adapt their movement and energy conservation strategies 

based on this sensed information.  
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3.4.5. Dynamic Exploration-Exploitation Trade-off with 

Revitalization 

A dynamic mechanism to balance exploration and 

exploitation, emphasizing the significance of a well-tuned 

trade-off in different phases of the optimization process. The 

exploration-exploitation trade-off is governed by a dynamic 

parameter λ𝑡  representing the balance between exploration 

and exploitation at iteration 𝑡 . This parameter is updated 

based on the historical success of the swarm. 

λ𝑡 = (1 − 𝜌) ∙ λ𝑡−1 + 𝜌 ∙ ∫(𝑆𝑡−1) (31) 

In Eq.(31), where 𝜌 is a parameter controlling the weight of 

the historical success in the update, and ∫(𝑆𝑡−1) is the overall 

fitness of the swarm at the previous iteration. The dynamic 

exploration-exploitation parameter is then utilized to adjust 

the movement vector update equation. 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾

∙ ∑ 𝑤𝑖𝑗 ∙ 𝑀𝑗,𝑡 + 𝛼 ∙ 𝑆𝑖,𝑡 + λ𝑡 ∙ 𝜎𝑡

𝑁

𝑗=1
 

(32) 

In Eq.(32), λ𝑡 ∙ 𝜎𝑡  introduces a dynamic component in the 

movement update influenced by the exploration-exploitation 

trade-off. 𝜎𝑡  represents a random term that contributes to 

exploration, and its magnitude is dynamically adjusted based 

on λ𝑡. 

To prevent premature convergence and introduce periodic 

exploration revitalization, a revitalization factor 𝑅𝑡  is 

introduced. The revitalization factor is influenced by the 

diversity of the sensing information and the overall vitality of 

the swarm. 

Rt = ω ∙ Esense,t + (1 − ω) ∙ vitality(St) (33) 

Where in Eq.(33), 𝐸𝑠𝑒𝑛𝑠𝑒,𝑡  represents the diversity of the 

sensing information, and 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡)  is a measure of the 

overall vitality of the swarm. 𝜔 is a parameter controlling the 

weight of diversity in the revitalization factor. 

The exploration-exploitation trade-off parameter is then 

utilized to adjust the overall vitality of the swarm, ensuring a 

dynamic interplay between exploration and exploitation, 

which is clearly depicted in Eq.(34). 

𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) = 𝛼 ∙ 𝐷𝑡 + (1 − 𝛼) ∙ 𝑆𝑀𝑡 + 𝛽 ∙ 𝑅𝑡 (34) 

Where 𝛼 controls the influence of diversity and success in the 

overall vitality measure. The overall movement update 

equation, considering both exploration-exploitation dynamics 

and periodic revitalization is 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖𝑗 ∙ 𝑀𝑗+𝑡 + 𝛼 ∙ 𝑆𝑖,𝑡 +
𝑁

𝑗=1
λ𝑡

∙ 𝜎𝑡 + 𝛽 ∙ 𝑅𝑡 

(35) 

The Eq.(35), collectively ensure that the exploration-

exploitation trade-off in ISCO is dynamically adjusted based 

on historical success, and periodic revitalization events inject 

exploration enthusiasm, preventing premature convergence. 

3.4.6. Social Interaction and Collective Revitalization 

By Integrating social interaction and collective revitalization 

the swarm's exploration and convergence capabilities will be 

enhanced. These mechanisms draw inspiration from social 

behaviors observed in nature, fostering collaboration among 

agents and periodically injecting vitality into the entire 

swarm. 

3.4.6.1. Social Interaction 

Social interaction in ISCO involves the exchange of 

information among agents to facilitate collective learning and 

adaptation. 𝐼𝑖,𝑡  denote the information held by agent 𝐴𝑖  at 

iteration 𝑡. The information is updated based on the agent's 

historical information and the shared information from 

neighboring agents. 

𝐼𝑖,𝑡+1 = (1 − 𝜃) ∙ 𝐼𝑖,𝑡 +  𝜃 ∙ ∑ 𝑤𝑖,𝑗 ∙ 𝐼𝑗,𝑡

𝑁

𝑗=1
 (36) 

In Eq.(36), where 𝜃 is a parameter controlling the influence of 

neighboring information on the update, 𝑁 represents the total 

number of agents, and 𝑤𝑖,𝑗  signifies the weight associated 

with the interaction between agents 𝐴𝑖 and 𝐴𝑗. 

3.4.6.2. Collective Revitalization 

It introduces periodic events to rejuvenate the entire swarm 

aiming to prevent premature convergence and maintain 

diversity.  

The revitalization factor 𝑅𝑡  is determined by combining the 

diversity of the information within the swarm 𝐸𝑖𝑛𝑓𝑜,𝑡 and the 

overall vitality of the swarm 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡)  which is 

mathematicaly represented in Eq.(37). 

𝑅𝑡 = 𝜔 ∙ 𝐸𝑖𝑛𝑓𝑜,𝑡 + (1 − 𝜔) ∙ 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) (37) 

The diversity of information 𝐸𝑖𝑛𝑓𝑜,𝑡 is calculated based on the 

entropy of the information shared among agents shown in 

Eq.(38). 

𝐸𝑖𝑛𝑓𝑜,𝑡 = − ∑ ∑ 𝑤𝑖,𝑗

𝑁

𝑗=1

𝑁

𝑖=1
∙ log(𝑤𝑖,𝑗) (38) 

The overall vitality of the swarm is a combination of 

diversity, success metrics, and the revitalization factor 

𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) = 𝛼 ∙ 𝐷𝑡 + (1 − 𝛼) ∙ 𝑆𝑀𝑡 + 𝛽 ∙ 𝑅𝑡 (39) 

In Eq.(39), where 𝛼  controls the influence of diversity on 

vitality 𝐷𝑡represents the diversity of the swarm, and 𝑆𝑀𝑡 is a 

success metric based on the fitness values of top-performing 

agents. 
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3.4.6.3. Integration of Social Interaction and Revitalization  

The social interaction information 𝐼𝑖,𝑡+1  is incorporated into 

the overall movement update equation to enhance adaptability 

and convergence 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑡 + 𝛾 ∙ ∑ 𝑤𝑖,𝑗 ∙ 𝑀𝑗,𝑡

𝑁

𝑗=1
+ 𝛼 ∙ 𝐼𝑖,𝑡+1 + λ𝑡

∙ 𝜎𝑡 + 𝛽 ∙ 𝑅𝑡 

(40) 

In Eq.(40), 𝛼  represents the weight of social interaction 

information in the movement update, and λ𝑡 ∙ 𝜎𝑡 introduces a 

dynamic component influenced by the exploration-

exploitation trade-off. 

Step 1: Initialize Parameters 

 Set thresholds and conditions for interaction and 

revitalization. 

Step 2: For each Chameleon in the swarm 

 ExchangeInformationWithPeers(): 

- Share information with nearby chameleons. 

 AssessRevitalizationConditions(): 

- Evaluate if conditions for collective revitalization are met. 

 If collective revitalization conditions are met: 

 InitiateCollectiveRevitalizationEvent(): 

- Trigger a collective revitalization event. 

 ParticipateInCollectiveRevitalization(): 

- Engage in the collective revitalization process. 

Step 3: End Algorithm 

Algorithm 2 Social Interaction and Collective Revitalization 

Algorithm 2 depicts the process of chameleon interactions by 

exchanging information. When conditions for collective 

revitalization are met, chameleons trigger a joint revitalization 

event, enhancing collaboration and overall swarm adaptability 

in response to environmental changes. 

3.4.7. Temperature Regulation for Revitalization: 

In Temperature Regulation for Revitalization the algorithm 

presents a temperature-based mechanism to control the 

frequency and intensity of the revitalization process. The 

concept of temperature regulation draws inspiration from 

simulated annealing where the temperature parameter 

influences the exploration-exploitation trade-off. The 

temperature is utilized to dynamically modulate the 

revitalization strategy, ensuring a balanced and controlled 

rejuvenation of the swarm. 

3.4.7.1. Temperature Regulation:  

The temperature parameter is denoted as 𝑇𝑡 , represents the 

current temperature of the swarm at iteration 𝑡 . The 

temperature is dynamically updated based on the overall 

success of the swarm and a cooling schedule 

𝑇𝑡+1 = 𝛼 ∙ 𝑇𝑡 + (1 − 𝛼) ∙ ∫(𝑆𝑡) (41) 

In Eq.(41), 𝛼 is a parameter controlling the influence of the 

current temperature on the update and ∫(𝑆𝑡)  is a success 

metric based on the fitness values of top-performing agents in 

the swarm. 

3.4.7.2. Revitalization Factor 

The revitalization factor 𝑅𝑡  is determined by combining the 

diversity of the swarm 𝐷𝑡  and the overall vitality of the swarm 

𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) is expressed with Eq.(42). 

𝑅𝑡 = 𝜔 ∙ 𝐷𝑡 + (1 − 𝜔) ∙ 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) (42) 

The diversity of the swarm 𝐷𝑡  is calculated based on the 

entropy of the information shared among agents is shown in 

Eq.(43). 

𝐷𝑡 = − ∑ ∑ 𝑤𝑖,𝑗

𝑁

𝑗=1

𝑁

𝑖=1
∙ log(𝑤𝑖,𝑗) (43) 

3.4.7.3. Integration of Temperature Regulation and 

Revitalization 

The overall revitalization factor 𝑅𝑡  is modulated by the 

temperature parameter 𝑇𝑡  to control the magnitude of the 

revitalization process 

Revitalization Magnitude = 𝑅𝑡 ∙ 𝑒 −
1

𝑇𝑡

 (44) 

In Eq.(44), where the exponential term 𝑒 −
1

𝑇𝑡
 acts as a cooling 

schedule, ensuring that as the temperature decreases, the 

magnitude of revitalization diminishes, creating a controlled 

and gradual revitalization process. 

3.4.7.4. Overall Movement Update:  

The temperature-regulated revitalization magnitude is 

incorporated into the movement update equation to influence 

the exploration-exploitation dynamics 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖,𝑗 ∙ 𝑀𝑗,𝑡 + 𝛼 ∙ 𝐼𝑖,𝑡+1 +
𝑁

𝑗=1
λ𝑡

∙ 𝜎𝑡 + 𝛽
∙ 𝑅𝑒𝑣𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

(45) 

In Eq.(45), where 𝛽 represents the weight of the revitalization 

magnitude in the movement update, and λ𝑡 ∙ 𝜎𝑡  introduces a 

dynamic component influenced by the exploration-

exploitation trade-off. 

Step 1 : Initialize Parameters: 

 Set performance thresholds and temperature limits. 
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Step 2: For each Chameleon in the swarm (Iterate): 

 AssessChameleonPerformance(): 

 Evaluate the individual chameleon's performance. 

If performance is below a threshold: 

 IncreaseSwarmTemperature(): 

 Raise the overall temperature of the swarm. 

If temperature exceeds a limit: 

 InitiateRevitalizationEvent(): 

 Trigger a collective revitalization event. 

Else if performance is above a threshold: 

 DecreaseSwarmTemperature(): 

 Lower the overall temperature of the swarm. 

End Algorithm 

Algorithm 3 Temperature Regulation for Revitalization 

The Algorithm 3 depicts the temperature regulation for 

revitalization process in which dynamically adjusts a swarm's 

temperature based on individual chameleon performance. If a 

chameleon's performance falls below a threshold, the swarm 

temperature increases, triggering revitalization. Else if 

performance is high, the temperature decreases, ensuring 

adaptive optimization in varying conditions. 

3.4.8. Dynamic Neighborhoods with Regeneration 

In Dynamic Neighborhoods with Regeneration the algorithm 

introduces a dynamic neighborhood mechanism coupled with 

regeneration to enhance the collaborative and adaptive nature 

of the swarm. The concept of dynamic neighborhoods 

involves agents adjusting their interaction patterns, promoting 

collaboration with different subsets of the swarm over time. 

Regeneration complements this by periodically refreshing the 

neighborhood structure to foster exploration and prevent 

stagnation. 

3.4.8.1. Dynamic Neighborhood Formation 

The dynamic neighborhood formation is governed by the 

interaction weight 𝑤𝑖,𝑗,𝑡 between agents 𝐴𝑖  and 𝐴𝑗 at iteration 

𝑡 . This weight is modulated by a dynamic factor 𝐷𝑖,𝑗,𝑡 

representing the diversity of the information exchanged 

between the agents are mathematically expressed in Eq.(46). 

𝑤𝑖,𝑗,𝑡+1 = (1 − 𝜌) ∙ 𝑤𝑖,𝑗,𝑡+𝜌 ∙ 𝐷𝑖,𝑗,𝑡 (46) 

Where 𝜌 is a parameter controlling the influence of diversity 

on the interaction weight, and 𝐷𝑖,𝑗,𝑡 is calculated based on the 

entropy of the information shared between agents are 

expressed with Eq.(47). 

𝐷𝑖,𝑗,𝑡 = − ∑ log(𝑤𝑖,𝑘,𝑡)
𝑁

𝑘=1
∙ log(𝑤𝑗,𝑘,𝑡) (47) 

3.4.8.2. Dynamic Neighborhood Update  

The dynamic neighborhood update influences the overall 

movement vector 𝑀𝑖,𝑡+1. Agents adjust their movement based 

on the dynamically changing interaction weights within their 

neighborhoods. 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖,𝑗,𝑡

𝑁

𝑗=1
∙ 𝑀𝑗,𝑡 + 𝛼 ∙ 𝐼𝑖,𝑡+1

+ λ𝑡 ∙ 𝜎𝑡 + 𝛽
∙ 𝑅𝑒𝑣𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

(48) 

In Eq.(48), where 𝛾  represents the weight of the dynamic 

neighborhood in the movement update andλ𝑡 ∙ 𝜎𝑡 introduces a 

dynamic component influenced by the exploration-

exploitation trade-off. 

3.4.8.3. Regeneration of Dynamic Neighborhoods 

Regeneration involves periodically refreshing the dynamic 

neighborhood structure to introduce novelty and exploration 

enthusiasm. The regeneration factor 𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟,𝑡 is influenced 

by the success metrics and the diversity of the current 

dynamic neighborhood configuration is shown in Eq.(49). 

𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟,𝑡 =  𝜔 ∙ 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) + (1 − 𝜔)

∙ 𝐸𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟,𝑡 
(49) 

The diversity of the dynamic neighborhood 

configuration 𝐸𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟,𝑡  is calculated based on the entropy 

of the interaction weights shown in Eq.(50).  

𝐸𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑡,𝑡 = − ∑ ∑ 𝑤𝑖,𝑗,𝑡

𝑁

𝑗=1
∙ log(𝑤𝑖,𝑗,𝑡)

𝑁

𝑖=1
 (50) 

3.4.8.4. Integration of Dynamic Neighborhoods and 

Regeneration 

The overall movement update is adjusted based on the 

regeneration factor, ensuring that regeneration events 

influence the exploration-exploitation dynamics 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖,𝑗,𝑡

𝑁

𝑗=1
∙ 𝑀𝑗,𝑡 + 𝛼 ∙ 𝐼𝑖,𝑡+1

+ λ𝑡 ∙ 𝜎𝑡 + 𝛽
∙ 𝑅𝑒𝑣𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
+ 𝛿 ∙ 𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟,𝑡 

(51) 

In Eq.(51), where 𝛿 represents the weight of the regeneration 

factor in the movement update. 

3.4.9. Adaptive Memory Mechanism with Memory 

Regeneration 

An adaptive memory mechanism to enhance the retention and 

utilization of valuable information acquired during the 
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optimization process. The adaptive memory is coupled with a 

memory regeneration process, ensuring that the stored 

information remains relevant and diverse. 

3.4.9.1. Adaptive Memory Mechanism 

The adaptive memory for each agent 𝐴𝑖 at iteration 𝑡 is 

denoted as 𝑀𝑎𝑑𝑎𝑝𝑡,𝑖,𝑡. This memory is updated based on the 

current information 𝐼𝑖,𝑡 and the historical memory 

𝑀𝑎𝑑𝑎𝑝𝑡,𝑖,𝑡−1. 

𝑀𝑎𝑑𝑎𝑝𝑡,𝑖,𝑡 = (1 − η) ∙ 𝑀𝑎𝑑𝑎𝑝𝑡,𝑖,𝑡−1 + η ∙ 𝐼𝑖,𝑡 (52) 

In Eq.(52), where η is a parameter controlling the influence of 

the current information on the memory update. The adaptive 

memory mechanism allows agents to gradually accumulate 

valuable information over time. 

3.4.9.2. Memory Regeneration 

To refresh the adaptive memory and to ensure that stored 

information remains diverse and relevant. The regeneration 

factor 𝑅𝑚𝑒𝑚𝑜𝑟𝑦,𝑡  is determined based on the success metrics 

and the diversity of the current adaptive memory are 

represented mathematically with Eq.(53). 

𝑅𝑚𝑒𝑚𝑜𝑟𝑦,𝑡 = 𝜔 ∙ 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦(𝑆𝑡) + (1 − 𝜔) ∙ 𝐸𝑚𝑒𝑚𝑜𝑟𝑦,𝑡 (53) 

The diversity of the adaptive memory configuration 𝐸𝑚𝑒𝑚𝑜𝑟𝑦,𝑡 

is calculated using the entropy of the memory entries are 

shown in Eq.(54). 

𝐸𝑚𝑒𝑚𝑜𝑟𝑦,𝑡 = ∑ log(𝑀𝑎𝑑𝑎𝑝𝑡,𝑖,𝑡)
𝑁

𝑖=1
 (54) 

3.4.9.3. Integration of Adaptive Memory and Memory 

Regeneration 

The overall movement update incorporates the adaptive 

memory with a regeneration term, ensuring that the stored 

information influences the exploration-exploitation dynamics 

while undergoing periodic revitalization. 

𝑀𝑖,𝑡+1 = 𝛽 ∙ 𝑀𝑖,𝑡 + 𝛾 ∙ ∑ 𝑤𝑖,𝑗,𝑡 ∙
𝑁

𝑗=1
𝑀𝑗,𝑡 + 𝛼 ∙ 𝑀𝑎𝑑𝑎𝑝𝑡𝑖,𝑡

+ λ𝑡 ∙ 𝜎𝑡 + 𝛽
∙ 𝑅𝑒𝑣𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
+ 𝛿 ∙ 𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 + 𝜖 ∙ 𝑅𝑚𝑒𝑚𝑜𝑟𝑦𝑡  

(55) 

In Eq.(55), where 𝛼  represents the weight of the adaptive 

memory in the movement update, and 𝜖 represents the weight 

of the memory regeneration factor. 

Step 1: Initialization and Rejuvenation 

 Initialize the swarm with Chameleon agents. 

 Set the initial temperature for the swarm. 

 

Step 2: Dynamic Color-Based Communication 

For each Chameleon in the swarm: 

 Update the color of the Chameleon. 

 Communicate with neighboring Chameleons based on 

color. 

Step 3: Adaptive Movement and Energy Conservation 

For each Chameleon in the swarm: 

 Adapt the movement strategy based on the current 

environment. 

 Conserve energy during movement. 

Step 4: Environmental Sensing and Adaptability 

For each Chameleon in the swarm: 

 Sense the environment and adapt to changes. 

Step 5: Dynamic Exploration-Exploitation Trade-off with 

Revitalization 

 Update the exploration-exploitation strategy of the swarm. 

 Revitalize the swarm periodically. 

Step 6: Social Interaction and Collective Revitalization 

For each Chameleon in the swarm: 

 Exchange information with nearby Chameleons. 

 Participate in collective revitalization events. 

Step 7: Temperature Regulation for Revitalization 

 Regulate the swarm temperature based on performance. 

 Control the frequency and intensity of revitalization. 

Step 8: Dynamic Neighborhoods with Regeneration 

For each Chameleon in the swarm: 

 Adjust the dynamic neighborhood based on information 

exchange. 

 Periodically regenerate the neighborhood structure. 

Step 9: Adaptive Memory Mechanism with Memory 

Regeneration 

For each Chameleon in the swarm: 

 Update adaptive memory based on learned information. 

 b. Periodically regenerate the adaptive memory to 

maintain diversity. 

Algorithm 4 Invigorated Chameleon Swarm Optimization 

(ICSO) 
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The Algorithm 4 depicts the Invigorated Chameleon Swarm 

Optimization (ICSO) algorithm emulates chameleon behavior 

in a collective optimization process. Chameleons adaptively 

communicate, move, and revitalize, fostering a dynamic and 

collaborative swarm with temperature regulation, social 

interaction, and memory adaptation, the algorithm achieves 

robust and effective optimization in complex environments. 

3.5. Union of FW-AODV and ICSO 

The merging of the FW based AODV (FW-AODV) and 

Invigorated Chameleon Swarm Optimization (ICSO) creates a 

broad paradigm for adaptive and efficient routing. At first 

FW-AODV the network undergoes meticulous initialization, 

computing all-pairs shortest paths. During Route Discovery 

with AODV optimal paths are sought using the precomputed 

FW matrix, dynamically invoking AODV when necessary. 

The Optimal Path Selection phase strategically amalgamates 

AODV Route Reply (RREP) assessments with FW paths, 

ensuring the selection of the most efficient route. This 

cooperative integration extends to Route Maintenance with 

FW, where periodic matrix updates accommodate dynamic 

shifts in network topology. Adaptive Path Switching, 

influenced by both AODV and FW, enables nodes to 

dynamically transition to alternative optimal paths in response 

to link failures or network alterations. Energy-Aware Routing 

introduces energy considerations into path selection, 

accounting for node energy levels and enhancing the 

network's endurance. 

In ICSO the focus pivots to swarm-based optimization. 

Initialization and Rejuvenation instill diversity and periodic 

infusion of new entities into the swarm. Dynamic Color-

Based Communication, analogous to data exchange, conveys 

not only the solution quality but also the vitality of the 

solution. Adaptive Movement and Energy Conservation 

ensure responsiveness, vital in the context of mobile sensors. 

Environmental Sensing and Adaptability resonate with 

adaptability, with strategies evolving based on environmental 

shifts. 

The dynamic Exploration-Exploitation Trade-off with 

Revitalization amplifies innovation enthusiasm, mirroring the 

vigor required in dynamic scenarios. Social Interaction and 

Collective Revitalization embody collaborative synergy, 

aligning with collective rejuvenation events. The 

incorporation of Temperature Regulation for Revitalization 

introduces a parameter influencing exploration and 

revitalization frequencies. Dynamic Neighborhoods with 

Regeneration adapts neighborhoods based on energy and 

stimulates collaboration. The Adaptive Memory Mechanism 

with Memory Regeneration maintains an adaptive memory, 

preventing stagnation and ensuring continuous learning. This 

amalgamation of FW-AODV and ICSO underscores 

adaptability, resilience, and efficiency, offering a promising 

paradigm for dynamic environments. 

Step 1: Initialization and Adaptive Formation: 

 ICSO: Initializes a diverse swarm of agents, injecting 

diversity into the network. 

 FW-AODV: Concurrently computes optimal paths using 

the FW algorithm during the network initialization. 

Step 2: Dynamic Communication and Collective Decision-

Making: 

 FW-AODV: Leverages precomputed paths for efficient 

route discovery and optimal path selection. 

 ICSO: Facilitates dynamic color-based communication 

among swarm agents, exchanging information on solution 

quality and vitality. 

Step 3: Adaptation and Maintenance Synergy: 

 FW-AODV: Periodically updates the FW matrix, 

accommodating changes in network topology. 

 ICSO: Adapts swarm movement patterns based on agent 

vitality, ensuring continuous dynamic responsiveness. 

Step 4: Energy-Aware Routing with Sustainability: 

 ICSO and FW-AODV: Collaboratively integrate energy 

considerations into path selection, optimizing routing 

decisions based on node energy levels. 

 ICSO: Introduces energy conservation mechanisms, 

ensuring the swarm's dynamism while conserving energy 

resources. 

Step 5: Collective Exploration and Path Switching: 

 ICSO and FW-AODV: Collaboratively contribute to 

collective revitalization events, injecting increased 

exploration enthusiasm into both the swarm and the 

network. 

 FW-AODV: Utilizes revitalization triggers for intensified 

exploration, fostering innovation in optimal path 

discovery. 

Step 6: Environmental Sensing and Adaptability: 

 ICSO: Enhances adaptability by sensing changes in the 

environment, dynamically adjusting swarm strategies. 

 FW-AODV: Contributes to dynamic network 

reconfiguration based on AODV decisions, aligning the 

network with changing environmental conditions. 

Algorithm 5 ICSO based FW-AODV in MWSN 

Thus the above Algorithm 5 depicts the overall functionality 

of the ICSO based FW-AODV protocol in the MWSNs. This 

refined approach emphasizes the shared responsibilities and 

collaboration between ICSO and FW-AODV, ensuring that 

each contributes to the overall efficiency and resilience of the 
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network. The roles are distributed, with FW-AODV handling 

routing-centric tasks and ICSO providing swarm-based 

adaptability and diversity. Together, they create a symbiotic 

relationship, leveraging the strengths of both approaches for 

enhanced performance in WSNs. 

3.6. Advantages of ICSO based FW-AODV 

The fusion of Invigorated Chameleon Swarm Optimization 

(ICSO) and FW based Ad-hoc On-Demand Distance Vector 

(FW-AODV) in Mobile Wireless Sensor Networks (MWSNs) 

offers several advantages: 

 Adaptive Resilience: The combination provides adaptive 

resilience to dynamic changes in the network. FW-

AODV's path-centric approach aligns with ICSO's swarm-

based adaptability, ensuring robustness in challenging 

environments. 

 Optimal Path Exploration: ICSO injects increased 

exploration enthusiasm into the swarm, complementing 

FW-AODV's route discovery. This synergy fosters 

innovation in optimal path exploration and selection. 

 Energy-Efficient Routing: FW-AODV integrates energy 

considerations into routing decisions, while ICSO 

introduces energy conservation mechanisms for the 

swarm. This shared focus ensures energy-efficient routing, 

extending the network's operational lifetime. 

 Collective Decision-Making: It promotes collective 

decision-making. FW-AODV and ICSO collaboratively 

contribute to revitalization events, enhancing exploration 

enthusiasm both at the node and swarm levels. 

 Dynamic Network Reconfiguration: The combined 

approach enables dynamic network reconfiguration based 

on both AODV decisions and swarm intelligence. This 

ensures that the network can quickly adapt to changes in 

topology and environmental conditions. 

 Enhanced Synergy: It capitalizes on the strengths of both 

algorithms, creating a symbiotic relationship. FW-AODV 

handles node-centric routing tasks, while ICSO contributes 

swarm-based adaptability and diversity, resulting in an 

enhanced overall performance. 

The collaborative fusion of ICSO and FW-AODV creates a 

comprehensive solution that combines the strengths of 

individual approaches, resulting in a more adaptive, efficient, 

and resilient WSNs. 

4. SIMULATION SETTINGS AND PARAMETERS 

Simulation process helps to replicate real-world processes in a 

controlled environment, this simulation performs testing, 

analysis, and prediction without physical implementation. It 

makes complex systems simpler for easy understanding, 

performance improvement, and informed decision-making 

without real-world consequences. This is especially valuable 

in situations where actual testing is difficult, expensive, or 

time-consuming. NS-3 which is also known as Network 

Simulator 3 plays a crucial role in academia and research for 

simulating network scenarios. As an open-source tool it 

provides a platform for modeling various networks, including 

wired and wireless setups. NS-3's modular structure allows 

for tailored simulations, aiding researchers in analyzing and 

refining network protocols and algorithms. The Simulation 

Setting table 2 contains the simulation settings and potential 

metrics for an ns-3 simulation involving the integrated ICSO 

and FW-AODV in a MWSN. 

Table 2 Simulation Setting 

Setting/Metric Value/Description 

Network Size 50 nodes 

Simulation Time 100 seconds 

Mobility Model 
Random Walk 2D Mobility 

Model 

Mobility Trace 
Enabled, with trace file 

"mobility_trace.tr" 

Network Protocol 

Implementations 
ICSO and FW-AODV 

Application Layer 
Data generation and 

transmission applications. 

Simulation Stop Time 100 seconds. 

Tracing Enabled for mobility. 

Bandwidth 94 Hz 

Boundary of Network 750m x 750m x 750m 

Data Transmission Rate 21 kbps 

Initial Energy per Node 1 Joule 

Idle State Power 164 mW 

Layer Width ≤150m 

MAC Protocol CW-MAC 802.11 DCF 

Number of Nodes 400 

Node Voltage 3.0V 

Number of Sinks ≥4 
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Runtime 300 seconds 

Size of Packet 78 bytes 

These values represent specific settings for the simulation 

parameters such as bandwidth, network size, energy, and 

other relevant details. 

5. RESULTS AND DISCUSSION 

The integration of the FW with the AODV protocol, resulting 

in the FW-AODV, was undertaken to a severe evaluation in 

MWSNs. The fusion successfully demonstrated enhanced 

routing efficiency and adaptability in dynamic and 

challenging WSNs environment. The incorporation of ICSO 

into FW-AODV particularly within H-MWSNs has 

showcased remarkable attributes such as resilience, 

adaptability, and operational efficiency. The results indicate 

that the adaptive paradigm introduced by FW-AODV 

contributes to the optimization of path computation and 

dynamic routing. 

5.1. Packet Delivery and Drop Analysis 

The Figure 1, depicts the Packet Delivery in ICSOP signifies 

a robust mechanism for ensuring that data packets are 

efficiently transmitted and reach their intended destination 

with a high success rate. It is very crucial for applications 

demanding reliable communication in MWSNs. Packet Loss, 

in the context of ICSOP, is minimal, indicating the protocol's 

ability to effectively manage and transmit a significant 

majority of packets without disruptions. 

 

Figure 1 Packet Delivery & Drop Ratio 

The Packet Delivery Ratio in ICSOP, standing at an 

impressive 65.12%, highlights its superior performance in 

successfully delivering a substantial portion of transmitted 

packets. This high PDR showcases ICSOP's reliability, 

making it a favorable choice for scenarios where data integrity 

and delivery are dominant. The Packet Drop Ratio for ICSOP 

is the lowest among the compared protocols at 34.88%. This 

low PDR emphasizes the protocol's efficiency in minimizing 

packet loss, showcasing its robustness in maintaining data 

integrity throughout the transmission process. ICSOP's 

proficiency in minimizing packet drop ensures a dependable 

communication channel, crucial for applications sensitive to 

data loss. ICSOP excels in both Packet Delivery Ratio and 

Packet Drop Ratio, making it a highly reliable routing 

protocol for WSNs. Its superior performance underscores its 

suitability for applications where data accuracy, efficiency, 

and minimal packet loss are critical considerations. ICSOP's 

robustness positions it as a promising choice for scenarios 

demanding dependable and efficient communication within 

the WSN infrastructure.  

5.2. Throughput Analysis 

In Figure 2, it depicts the throughput which refers to the rate 

of successful data transmission over the network. It is a 

critical metric that quantifies the efficiency and capacity of 

the network to deliver data accurately within a given time 

frame. The performance of the ICSOP is evaluated based on 

the number of nodes involved in the network. As the number 

of nodes increases from 50 to 500, the throughput for ICSOP 

shows a consistent upward trend. This indicates that ICSOP 

effectively manages larger networks, showcasing its 

scalability and capacity to handle increased data transmission 

demands. 

 

Figure 2 Throughput 
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Comparing the average throughput values across the specified 

protocols ECOG, MERT, and ICSOP. While compares with 

the existing protocols the ICSOP stands out with the highest 

throughput of 63.371. This signifies its efficiency in 

facilitating data transmission within the WSNs. ICSOP's 

notable performance in throughput underlines its effectiveness 

in optimizing data transmission and network efficiency. The 

protocol demonstrates the capability to handle larger 

networks, ensuring that data is efficiently and reliably 

transmitted, contributing to a higher overall throughput. This 

is particularly crucial in scenarios where real-time data 

delivery is essential, such as in industrial applications, 

environmental monitoring, or healthcare. The performance of 

ICSOP, as indicated by its throughput values, positions it as a 

promising routing protocol for WSN. Its superior average 

throughput compared to ECOG and MERT suggests its 

efficacy in managing and optimizing data transmission which 

demands high-performance communication in large-scale 

sensor networks. 

5.3. Delay Analysis 

Figure 3, depicts delay refers to the time it takes for a packet 

of data to travel from the source to the destination. It is an 

important metric that directly impacts the responsiveness and 

efficiency of the network in delivering information. 

Analyzing the performance of ICSOP based on the delay 

values across different numbers of nodes reveals noteworthy 

insights. As the number of nodes increases from 50 to 500, 

ICSOP consistently maintains lower delay values compared to 

ECOG and MERT. This suggests that ICSOP excels in 

minimizing the time it takes for data to traverse the network, 

ensuring prompt communication even in larger-scale 

deployments. 

 

Figure 3 Delay 

Comparing the average delay values across the specified 

protocols ECOG, MERT, and ICSOP. The proposed protocol 

ICSOP stands out with the lowest average delay of 9308.978. 

This indicates its effectiveness in reducing packet travel time, 

resulting in improved real-time responsiveness. ICSOP's 

impressive delay reduction, particularly as the number of 

nodes increases, positions it as a robust routing protocol for 

WSNs. Its ability to minimize communication latency is 

crucial in applications where real-time data is essential, such 

as in monitoring critical infrastructure, healthcare, or disaster 

response. ICSOP's outstanding performance in reducing delay 

values showcases its efficiency in ensuring swift and 

responsive communication within MWSNs. Its superior delay 

management, especially in larger-scale deployments, 

highlights its potential for applications demanding low-

latency and real-time data delivery. 

5.4. Energy Consumption Analysis 

Figure 4, shows the rate of energy consumption a critical 

metric in WSNs, directly influencing the operational 

longevity of sensor nodes and overall network sustainability. 

Examining the performance of the ICSOP in terms of energy 

consumption across different numbers of nodes provides 

valuable insights. As the number of nodes increases from 50 

to 500, ICSOP consistently exhibits lower energy 

consumption values compared to ECOG and MERT. This 

trend emphasizes ICSOP's efficiency in managing energy 

resources, contributing to prolonged network operation and 

reduced environmental impact. 

 

Figure 4 Energy Consumption 

Analyzing the average energy consumption values across the 

specified protocols ECOG, MERT, and ICSOP. The proposed 

protocol ICSOP stands out with the lowest average 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224446                 Volume 11, Issue 2, March – April (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       211 

     

RESEARCH ARTICLE 

consumption of 58.0676352. This underscores ICSOP's 

effectiveness in optimizing energy utilization, making it an 

environmentally friendly and sustainable choice for WSNs. 

ICSOP's notable performance in minimizing energy 

consumption aligns with the growing demand for sustainable 

and energy-efficient solutions in MWSNs. Its ability to 

maintain lower energy consumption even as the network 

scales makes it particularly suitable for applications where 

battery-powered sensor nodes are deployed in remote or 

challenging environments. ICSOP's. Its ability to optimize 

energy utilization aligns with the increasing emphasis on 

green technologies and positions ICSOP as a promising 

routing protocol for energy-efficient and environmentally 

conscious applications. 

6. CONCLUSION 

The integration of Invigorated Chameleon Swarm 

Optimization (ICSO) with the Floyd-Warshall-based Ad-hoc 

On-Demand Distance Vector (FW-AODV) in Mobile 

Wireless Sensor Networks (MWSNs) marks an innovative 

advancement in routing efficiency. The collaborative 

paradigm introduces a resilient and adaptive protocol, 

optimizing path computation and enhancing network efficacy. 

FW-AODV's dynamic computation of optimal paths 

synergizes with ICSO's rejuvenating dynamics, fostering 

adaptability to network changes. The fusion, particularly in H-

MWSNs, demonstrates reliability, minimal packet loss, and 

efficient data transmission. Results reveal exemplary Packet 

Delivery Ratios, minimal Packet Drop Ratios, impressive 

Throughput, reduced Delays, and sustainable Energy 

Consumption, affirming ICSO's efficiency in managing larger 

networks. The collaborative protocol emerges as a compelling 

choice for applications requiring reliable communication, 

minimal latency, and sustainable energy consumption in 

diverse scenarios. 
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