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Abstract – The integration of the Internet of Vehicles (IoV) into 

the Intelligent Transportation System (ITS) has significantly 

improved its operations, leading to a reduction in road traffic 

accidents, efficient traffic control, and a decrease in carbon 

emissions for a more sustainable environment aligned with the 

Sustainable Development Goals (SDGs). However, the adoption 

of IoV networks introduces privacy and security challenges. 

Although cryptographic techniques such as public-key 

infrastructure (PKI) proposed by standardization bodies like 

IEEE and ETSI provide protection against outsider attackers, 

they fail to address the threat posed by insider attackers. To 

overcome this limitation, researchers have proposed data-centric 

machine learning-based misbehavior detection frameworks that 

focus on identifying and mitigating insider attacks. However, 

existing approaches primarily rely on the Basic Safety Message 

(BSM) data received from a single vehicle, which allows 

attackers to manipulate the BSM data without being detected. In 

this paper, we present a novel data-centric misbehavior detection 

framework specifically designed to detect false data injection 

attacks in IoV networks. Our approach leverages neighboring 

public transportation vehicles (NPTVs) to enhance the detection 

capabilities. By incorporating the BSM data from NPTVs, we 

demonstrate the effectiveness of our proposed framework in 

different scenarios using deep learning, decision tree, and 

random forest algorithms. Through extensive evaluation, we 

achieved precision, recall, F1-Score, and accuracy rates of up to 

99%, showcasing the superior performance of our approach. 

Index Terms – Machine Learning, Internet of Vehicles, 

Misbehavior Detection System, Intrusion Detection, Intelligent 

Transportation System, Basic Safety Message. 

1. INTRODUCTION 

As countries worldwide strive to combat road traffic accidents 

and set ambitious targets of achieving zero traffic fatalities by 

2050 [1], it becomes imperative for the transportation system 

to leverage cutting-edge technologies in conjunction with 

stringent laws and policies to realize this goal. In response to 

this need, the Intelligent Transportation System (ITS) has 

emerged, with the Internet of Vehicles (IoV) serving as the 

foundational framework. The overarching objectives of the 

ITS encompass accident reduction, traffic management, 

optimal road utilization, substantial reduction in vehicle 

emissions to mitigate air pollution, and enhanced passenger 

experience [2]. 
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The IoV plays a pivotal role in enabling the comprehensive 

functionality of the ITS by facilitating various advanced 

forms of communication. These include intra-vehicle 

communication such as vehicle-to-sensors (V2S); and inter-

vehicle communication or vehicle-to-vehicle (V2V), as well 

as other types of communication, such as vehicle-to-

infrastructure (V2I), vehicle-to-cloud (V2C), vehicle-to-

pedestrian (V2P), and vehicle-to-smart-electric-grid (V2G). 

Collectively referred to as vehicle-to-everything (V2X) 

communication, these mechanisms empower connected and 

autonomous vehicles (CAVs) to exchange crucial information 

with their surrounding environments, thus promoting 

improved traffic management and monitoring capabilities[3], 

[4]. 

Wireless communications within the IoV environment are 

achieved through the utilization of the IEEE 802.11P 

standard, an amendment to the IEEE 802.11 (Wi-Fi standard). 

This standard gave rise to the IEEE 1609 family, which 

encompasses protocols such as Wireless Access in Vehicular 

Environments (WAVE) and Dedicated Short-Range 

Communication (DSRC). Alternatively, IoV communications 

can also take place via cellular mobile networks, including 

4G/LTE, 5G, and future iterations [5], [6]. 

The intricate nature of communication within the Intelligent 

Transportation System (ITS) and the Internet of Vehicles 

(IoV) renders the latter susceptible to cyberattacks. Given that 

vehicles transmit vital basic safety messages (BSMs) over 

vehicle-to-everything (V2X) communication channels for the 

protection of drivers, passengers, and vulnerable road users 

(VRUs), proactive security measures have been established to 

safeguard against malicious attackers attempting to tamper 

with the content of these BSMs. 

1.1. Problem Statement 

To fortify the cooperative intelligent transportation system (c-

ITS) against security threats, cryptographic techniques 

employing public-key-infrastructure (PKI) have been 

implemented. This cryptographic framework is designed to 

address critical security requirements encompassing 

authentication, confidentiality, integrity, availability, non-

repudiation, and privacy [7].  

However, while these cryptographic security measures 

effectively shield the IoV from external attackers, they do not 

adequately tackle the potential risks posed by insider threats. 

Consequently, there arises a pressing need for a data-centric 

misbehavior detection system that can intelligently identify 

and flag any aberrant behavior exhibited by authenticated 

vehicles within the network. 

1.2. Motivation 

The research community has made significant contributions to 

proposing diverse data-centric machine learning-based 

approaches for the detection and mitigation of cyberattacks 

and other types of anomalous behavior displayed by malicious 

attackers within IoV networks. However, existing approaches 

in the literature heavily rely on the data (features) of 

individual BSMs for machine learning training and inference, 

thereby allowing a malicious attacker to effectively 

manipulate BSMs to evade detection. These approaches fail to 

emulate the cooperative nature of the ITS environment, 

resulting in a high rate of false negative and false positive 

alarms. This research proposes a novel misbehavior detection 

system (MDS) by utilizing neighboring public transport 

vehicles. 

1.3. Objective 

It is important to note that the primary contribution of this 

paper lies not in designing a novel machine learning 

algorithm but in introducing the concept of utilizing combined 

features from BSMs of two neighboring vehicles, one of 

which being a public transport vehicle, to train machine 

learning classifiers. The proposed approach demonstrates 

superior performance compared to existing methods, even 

when utilizing the same dataset and some similar machine 

learning algorithms. The key contributions of this study are as 

follows: 

 We propose a novel, computationally efficient, and robust 

data-centric machine learning-based framework that 

utilizes BSM data from licensed neighboring public 

transportation vehicles (NPTVs), such as public transport 

buses and trams, to detect false data injection attacks in the 

IoV network. 

 Generate a novel vehicular misbehavior dataset based on 

NPTV from the original Burwood SUMO Traffic 

Australian Dataset for Misbehavior Detection (BurST-

ADMA) dataset 

 Furthermore, our proposed approach investigates distinct 

scenarios based on the number of NPTVs present at a 

given time instance. 

 Finally, we conduct a comparative study involving several 

misbehavior detection frameworks from the literature, 

utilizing the BurST-ADMA dataset, to assess the 

effectiveness of our proposed framework. 

1.4. Organization of the Paper 

The remainder of this paper is organized as follows: Section 2 

provides a comprehensive review of related work. Section 3 

presents our proposed data-centric machine learning-based 

framework for detecting false data injection attacks in the 

IoV. In Section 4, we discuss the simulation studies 

conducted and present the obtained results. The paper 

concludes with a discussion on future research directions in 

Section 5. 
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2. RELATED WORK 

The development of a data-centric misbehavior detection 

framework within the Intelligent Transportation System (ITS) 

has garnered significant attention within the research 

community. Various scholars have made valuable 

contributions to this field, as evidenced in recent surveys, 

articles and review publications such as those by the authors 

in [8], [9], [10], [11]and [12]. However, it is important to note 

that these existing frameworks predominantly rely on the data 

of a single vehicle’s BSM, which may include data from 

potential attackers, for both training and prediction purposes. 

This approach inadvertently grants malicious attackers’ 

complete freedom to manipulate falsified Basic Safety 

Messages (BSMs). In this section, we aim to provide an 

overview of some of the state-of-the-art works available in the 

literature and conduct a comparative analysis with our own 

work. 

The authors in [13] presented a supervised learning- based 

MDS to identify position falsification attacks by changing 

the VeReMi dataset [14] to produce another dataset 

comprising two successive BSMs features for ML training. 

In comparison to earlier research, they trained binary 

classifiers and multi-class classifiers utilizing decision tree, 

logistic regression, random forest, K-Nearest Neighbor, 

and Naive bayes machine learning (ML) algorithms to 

achieve superior performance using recall, F1-Score, and 

precision measures. The proposed MDS was designed to 

be installed on RSUs with a shared database for storing and 

retrieving consecutive BSMs. While this approach 

recorded significant performance, it made the assumption 

that internal attacker always disseminates falsified BSMs 

which is incorrect in real-world scenario. A location 

spoofing attack was detected in a similar effort by the same 

authors in [15]. 

Moreover, the authors in [16] presented a machine learning 

based misbehavior detection system to identify position 

falsification attacks using VeReMi dataset. The approach 

utilized with 20 features from BSM data based on position 

differences between sending vehicles and receiving 

vehicles.  The limitation of this approach is in the obtained 

result and computation for the differences in position 

between the vehicles tend to be expensive for time-

sensitive IoV environment. 

In addition, the authors in [17] proposes a data-centric 

machine learning approach by integrating six supervised 

ML algorithms with plausibility checks against the normal 

behavior (data) of benevolent vehicles in the network 

before passing to ML for final prediction. The approach 

demonstrates the effect of plausibility checks on the raw 

BSM data with the only shortcoming being relatively low 

precision and recall, implying high rate of false alarm. 

Further, the authors in [18] proposed a supervised learning 

approach in which support vector machine (SVM) and 

logistic regression (LR) classifiers with and without 

normalization are employed. Feature selection of x,y,z 

speed and position coordinates were used as the selected 

features for training the classifiers. Even though SVM with 

normalization outperformed the rest of the used classifiers, 

the obtained accuracy of a little over 96% need further 

improvement to suit IoV. 

Furthermore, the authors in [19] proposed a broad learning 

system (BLS) that takes raw BSM data from the vehicles and 

extracts six critical features: vehicle speed, position, heading, 

transmission delay, broadcast speed, and vehicle acceleration. 

A deep learning algorithm, specifically stacked long short-

term memory (LSTM) recurrent neural network (RNN) is 

trained using these features. While the approach recorded a 

superior performance, it is only suitable for edge servers 

deployed near roadside units (RSUs) for its computational 

requirements. 

Moreover, the authors presented a novel hyperparameter-

tuned ensemble Random Forest (RF) classifier based on 

majority voting in [20] to detect bogus basic safety messages 

(BSM) in IoV. The RF was hyper-tuned by iterative process 

of selection among an array of hyper-parameters for training 

using the VeReMi dataset. The approached achieved great 

result but the model-centric approach of the approach might 

not generalize well with other datasets or real-world data. 

Similar to the prior work, the authors in [21] suggested an 

approach based on Randomized Search Optimization 

(RSO) that used majority voting to train an ensemble of 

random forest to identify           fake BSM transmission by 

suspicious vehicles in the IoV network using BurST-

ADMA dataset. Similar to the previous work, the authors 

in [19] proposed an ensemble of AdaBoost that uses 

weighted majority vote on several weak predictions to 

detect false messages in IoV using BurST-ADMA 

dataset and evaluated and compared their results in 

terms of accuracy, recall, precision, and F-measure 

metrics. The limitation of those approaches is that they 

are dataset-specific approach with tendency of failing 

against real-world data. 

The approach in [22] uses supervised machine learning to 

detect false data injection attack. BSM data is collected form 

vehicles in traffic based on IoV context before undergoing 

preprocessing stages. The proposed approach used NGSIM 

dataset. The limitation of this approach is the modification of 

dataset to contain attacks by introducing noise by the authors 

hence repeatability and comparison become an issue. 

The authors in [23] proposed a scheme that uses (i) a deep 

learning binary classification model deployed at the RSU 
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edge server to detect message trustworthiness based on the 

vehicle dependability score (VDS) assigned by the Trusted 

Authority (TA) at a time when a vehicle joined the network 

and (ii)  a graph temporal network (GTN) with attention to 

detect potentially malicious vehicles based on time sequential 

data. The shortcoming of this approach is added overhead for 

assigning dependability score. 

The authors of the work in [24] offered two classification 

models for binary classification of sequence data supplied by 

the network's vehicles. Stacked LSTM and convolutional 

neural network (CNN)-LSTM models are trained, and CNN-

LSTM finally outperforms stacked LSTM. DeepADV, the 

suggested framework, takes a succession of signals classified 

as legitimate, attacks, or defects. The remarkable result 

obtained is limited by the high computational needs which 

introduce additional cost of edge servers. 

Furthermore, the authors in [25] proposed a supervised 

machine learning approach for detection of BSM falsification 

attack in IoV using the augmented features contained in 

BSMs collected from trusted neighbor vehicles and the 

suspicious vehicle at every time instance. The approach 

achieved high precision and recall but the drawback of this 

approach is the assumption that some vehicles are trusted in 

the network. 

Finally, the authors in [26] proposed an unsupervised learning 

approach to detect position falsification attacks using VeReMi 

dataset to train two deep learning algorithms: gated neural 

network (GRU) and LSTM. The first model consists of 1-

layer GRU and 1- layer LSTM stacked together and the other 

models consists of a stacked 2-layers LSTM and a stacked of 

5 layers LSTM. They evaluated the models based on recall 

and F1-Score and suggested deploying the proposed model on 

the edge. The major shortcoming of this approach is the 

computational requirements. 

The comparison table of the reviewed literature in this study 

is present in Table 1. Error! Reference source not found.As 

it can be observed from the table, the existing literature on 

data-centric misbehavior detection frameworks in the 

Intelligent Transportation System (ITS) has primarily focused 

on utilizing features from a single BSM data for training and 

prediction. However, this approach leaves room for potential 

attackers to manipulate and falsify Basic Safety Messages 

(BSMs) without detection. Therefore, there is a clear need for 

a new approach that takes into account the limitations of 

existing frameworks and addresses the challenge of 

identifying and mitigating misbehavior in a more robust 

manner. 

Table 1 Comparison of Related Works in the Literature with the Proposed Approach 

Ref Dataset 

Used 

ML 

algorithms 

Used 

Training 

Speed 

measured? 

Prediction 

Speed 

measured? 

Precision >99 Recall >99? MDS does not 

depend on 

individual 

vehicle’s BSM 

Data 

[13] VeReMi KNN, DT, 

LR, SVM, 

RF 

× × √ √ × 

[15] VeReMi NB, KNN, 

DT, RF 

× × × × × 

[27] VeReMi LR, DT, 

RF, NB, 

KNN, SVM 

× × × × × 

[16] VeReMi LR, 

Ensemble, 

RF, NB, 

KNN, SVM 

× × √ × × 

[18] VeReMi SVM and 

LR 

× × × × × 

[28] VeReMi Deep 

Learning 

× × × × × 
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3. THE PROPOSED NEIGHBOR PUBLIC 

TRANSPORTATION VEHICLE APPROACH 

In this section, the IoV network model, the dataset used, data 

preprocessing, proposed approach and the methodology are 

discussed. 

3.1. IoV System Model 

In this paper, we consider a fully functional ITS with licensed 

public transportation vehicles, such as public busses and 

trams, having a unique pseudonym pattern different from 

other vehicles without compromising their privacy. Each 

vehicle in the network uses its OBU to exchange BSM with 

other vehicles (V2V). Vehicles also communicate with 

strategically located RSUs in the network (V2I) and are also 

capable of communicating with pedestrians via vehicle-to-

pedestrian (V2P) and vice-versa via dedicated short-range 

communication (DSRC) or cellular V2X [31]. The RSUs are 

also connected to the cloud using a high-speed 

communication link as shown in Figure 1. The RSUs also 

maintain a small database for storing previously received 

BSMs with the vehicle pseudo-ID of all sender vehicles to 

allow easy query and retrieval of public transportation 

vehicles BSMs using their special pseudo-ID. 

3.1.1. Attack Model 

The attacker model in this paper is categorized into four (4) 

based on how the attacker is involved in the IoV network as 

follows: 

a. Active attackers are the malicious attackers that participate 

in performing attack in the IoV network by sending bogus 

information and manipulating some parameters over 

communication, for example replay attack 

b. Passive attackers monitor and collect traffic data such as 

personally identifiable information (PII) from the network. 

For example, vehicle tracking  

c. An outsider (External) attacker is an attacker who does not 

possess any cryptographic security credentials for 

authentication to communicate in the network. 

d. An insider (internal) attacker is most dangerous attacker 

because this attacker possesses all cryptographic security 

credentials and therefore authenticated to communicate in 

the network. In the case of IoV, an internal attacker is 

registered by TA and thus has all the privileges of all other 

users in the network, making it very challenging to detect 

this type of attacker. This type of attacker can only be 

detected using a data-centric detection system such as the 

one proposed in this paper. 

In the intelligent transportation system (ITS) domain, attacks 

(or misbehavior) can be malicious or benevolent. Malicious 

attacks are intentional with the aim of causing mayhem, while 

misbehavior can be as a result of faulty vehicle sensor such as 

geographic information system (GPS) sensors mounted on 

vehicles. In this paper, we detect all forms of attacks, whether 

malicious or misbehavior, due to faulty vehicle sensors. 

3.2. Dataset Description 

The dataset used in this study is the popular public dataset 

known as BurST-ADMA[32]. The dataset was generated 

using the Burwood simulation of urban mobility (SUMO) 

[33] traffic scenario in the suburb of Burwood in Melbourne, 

Victoria, Australia over a period of 1000 seconds with BSMs 

recorded after 1-second interval. Each BSM contains the 

longitude (x), latitude (y), vehicle’s ID, timestep, speed, 

acceleration, heading and label. These kinematic features are 

[20] VeReMi Ensemble 

RF 

√ √ √ × × 

[21] BurST-

ADMA, 

VeReMi 

Ensemble 

learning 

√ √ √ × × 

[29] BurST-

ADMA 

AdaBoost √ √ √ × × 

[22] NGSIM CNN, LR 

and SVM 

× × × × × 

[23] VeReMi GTN × × √ √ × 

[24] VeReMi 

Extension 

Deep 

learning 

√ √ √ × × 

[30][26] VeReMi 

Extension 

Deep 

Learning 

× × √ √ × 

Proposed 

Method 

BurST-

ADMA 

DL, DT, RF √ √ √ √ √ 
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all important for detecting the attacks in this dataset because 

all the attacks are related to falsifying position or speed data 

in the BSM as shown in Table 2. The dataset simulated a 

traffic scenario consisting of cars, trucks, motorcycles, public 

buses, public trams and pedestrians. It consists of 207,315 

BSMs of which 28,189 are attack. New attacks were added 

compared to the previous vehicular public dataset for false 

data injection, making it suitable for IoV scenarios. There are 

8 categories of attacks, as can be seen in Table 2Error! 

Reference source not found. and the distribution of each 

attack category is also presented in that table. 

The first attack presented in the dataset is a constant random 

position attack in which the attacker increments the x and y 

(latitude and longitude values) of the vehicle by random 

value. This attack is similar to constant random speed attack 

with the only difference being incrementing the vehicle speed 

rather than position. On the other hand, in both positive and 

negative position offset attacks, the attacker increments or 

decreases the radius 500m from the original position, while in 

positive and negative speed offset attacks, the attacker 

increments or decreases 10m/s from the original speed of the 

vehicle. Finally, the last attack in this dataset is reversed 

heading attack in which the attacker adds 180 degrees offset 

to the original heading in the BSM data to make it look as if a 

vehicle traveling forward is actually reversing. 

3.2.1. Dataset Creation 

The three datasets (1-NPTV, 2-NPTV, and 3-NPTV datasets) 

used in this study were generated from the BurST-ADMA 

dataset using Algorithm 1.  

The first dataset generated is the 1-NPTV dataset, which 

depicts a scenario in which a vehicle is near a single NPTV (a 

low traffic scenario). This dataset consists of all the features 

of non-NPTV (simply referred to as vehicle in this paper) 

BSM, nearest NPTV BSM, and the distance between them. 

Therefore, 1-NPTV dataset contains the following features: (i-

ii) both vehicle and neighbor transport vehicle (NPTV) IDs, 

(iii-vi) latitude and longitude of vehicle and NPTV, (vii-xii) 

their speed, heading and acceleration, (xiii) the distance 

between NPTV and the vehicle, and (xiv) the label of the 

vehicle. 

The second dataset is the 2-NPTV dataset which portrays a 

medium traffic scenario in which a vehicle is close to two 

NPTV in traffic. The dataset consists of vehicle BSM 

features, two nearest NPTV BSM features, and the distance 

between the vehicle and each of the nearest NPTV. The 2-

NPTV dataset comprises of: (i-iii) vehicle and two neighbor 

transport vehicle (NPTV) IDs, (iv-viii) latitude and longitude 

of the vehicle and NPTVs, (ix-xv) their speed, heading, and 

acceleration (xvi-xvii) the distance between the two nearest 

NPTVs and the vehicle, and (xviii) the label of the vehicle. 

Finally, the 3-NPTV dataset is also generated the same way as 

1-NPTV and 2-NPTV datasets. This generated dataset 

illustrates a high traffic scenario in which the vehicle is near 

three different NPTVs. Therefore, the generated 3-NPTV 

dataset contain features from vehicle’s BSM, three NPTV 

BSMs, and the distance between the vehicle and the nearest 

three NPTVs as follows: (i-iv) vehicle and the three neighbor 

transport vehicles (NPTV) IDs, (v-xii) latitude and longitude 

of vehicle and the three NPTVs, (xiii-xxiv) their speed, 

heading and acceleration, (xxv-xxvii) the distance between 

the three nearest NPTV and the vehicle, and (xxviii) the label 

of the vehicle. 

 
Figure 1 IoV System Model 

Table 2 BurST-ADMA Dataset Attack Type Distribution 
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Label Type  Number of samples 

0 Normal 179126 

1 constant random position 2110 

2 positive position offset 4130 

3 negative position offset 4512 

4 constant random speed 4106 

5 positive speed offset 4720 

6 negative speed offset 4755 

7 reversed heading 3856 

3.3. Proposed Approach 

In the context of the Internet of Vehicles (IoV), vehicles 

disseminate Basic Safety Messages (BSMs) to exchange 

important information for safety applications and traffic 

management in intelligent transportation system. These BSMs 

contain various features that characterize the vehicle's 

behavior, position, and other relevant data. 

To determine the closest neighboring public transport vehicle 

(NPTV), the proposed approach utilizes the haversine 

formula[34] given by equation (1),(2) and (3). This formula 

calculates the distance between two points on the Earth's 

surface, considering their latitude and longitude coordinates. 

By applying the haversine formula, the distance between a 

sending vehicle and an NPTV can be determined accurately. 

Mathematically, let BSMveh represent the BSM disseminated 

by the sending vehicle (non-NPTV), containing a feature set F 

= {f1, f2, ..., fn}. Additionally, let BSMnptv represent the BSM 

disseminated by the closest NPTV, containing a feature set G 

= {g1, g2, ..., gn}. The proposed approach combines these two 

BSMs, specifically in the 1-NPTV scenario, to form an 

augmented feature set H = {F ∪ G}. This union operation 

merges the feature sets from both BSMveh and BSMnptv, 

resulting in a comprehensive feature set for training the 

machine learning classifiers. 

In the 2-NPTV scenario, let BSMnptv1 and BSMnptv2 represent 

the BSMs disseminated by the two closest NPTVs, with 

feature sets G1 = {g1, g2, ..., gn} and G2 = {h1, h2, ..., hn}, 

respectively. The sending vehicle's (non-NPTV) BSM, 

BSMveh, has the feature set F = {f1, f2, ..., fn}. To create the 

augmented feature set H for training the machine learning 

classifiers, we perform the union operation H = {F ∪ G1 ∪ 

G2}. This combines the features from the sending vehicle and 

both NPTVs into a single augmented feature set. 

Similarly, for the 3-NPTV scenario, let BSMnptv1, BSMnptv2, 

and BSMnptv3 represent the BSMs disseminated by the three 

closest NPTVs, with feature sets G1 = {g1, g2, ..., gn}, G2 = 

{h1, h2, ..., hn}, and G3 = {i1, i2, ..., in}, respectively. The 

sending vehicle's BSM, BSMveh, has the feature F = {f1, f2, ..., 

fn}. The augmented feature set H for training the machine 

learning classifiers is obtained by performing the union 

operation: H = {F ∪ G1 ∪ G2 ∪ G3}. 

In all cases, the merging of the feature sets from the non 

NPTV vehicle and the NPTVs results in an augmented feature 

set that encompasses the characteristics of all vehicles 

involved. This expanded feature set provides a more 

comprehensive representation of the data, enabling the 

machine learning classifiers to capture a wider range of 

patterns and relationships. 

By merging the feature sets, the proposed approach takes 

advantage of the cooperative nature of IoV. It prevents a 

single vehicle's BSM data, which could be manipulated or 

maliciously tuned by attackers, from solely determining the 

prediction outcome. Instead, the combined feature set 

provides a more reliable basis for prediction, incorporating 

information from both the sending vehicle and the closest 

NPTV. 

The advantages of this approach in an Intelligent 

Transportation Systems (ITS) environment are numerous. 

Firstly, it enhances the accuracy of attack detection and 

classification by utilizing a broader range of features. By 

considering the behavior of both the sending vehicle and the 

NPTV, the models can capture more diverse patterns and 

relationships. 

Secondly, the cooperative nature of the approach aligns well 

with the principles of ITS. It leverages the collective 

information from multiple vehicles to improve the overall 

detection capability and prevent an individual vehicle's data 

from dominating the prediction outcome. 

In summary, the proposed approach utilizes BSMs 

disseminated by vehicles in the IoV. The haversine formula is 

employed to determine the closest NPTV accurately. By 

merging the feature sets of the sending vehicle and the closest 

NPTV, the approach creates an augmented feature set for 

training machine learning classifiers. This cooperative 
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approach not only enhances the accuracy of attack detection 

and classification but also aligns with the principles of ITS, 

utilizing the collective information from multiple vehicles. 

𝑎 = sin2 (
𝜑𝐵−𝜑𝐴

2
) + cos 𝜑𝐴 ∗ cos 𝜑𝐵 ∗ sin2 (

𝜆𝐵−𝜆𝐴

2
 ) (1)  

𝑐 =  2 ∗  arcsin ( √𝑎)  (2) 

𝐷 =  𝑅 ⋅  𝑐                              (3)                                                                                                                            

Where φA is latitude of BSM received from non-NPTV ( 

BSMveh), φA is the latitude of BSM received from NPTV 

(BSMNPTV ), λA is longitude of BSMveh  , λB is longitude of 

BSMNPTV and R is earth’s radius (mean radius = 6,371km), 

and D is the distance calculated between BSMveh and 

BSMNPTV.

 

Figure 2 Methodology of the Proposed Approach 

In a typical IoV environment, the operation mechanism of the 

proposed method is described step-by-step in the flowchart 

shown in Figure 3. In a nutshell, an RSU receives BSM from 

a random vehicle at time t, BSMVeh, and queries a database, 

DB-BSM, for all the BSMs received from NPTV, BSMNPTVi 

at the same timeframe (from t-α to t) using NPTV pseudonym 

(assumed to have a certain pattern for all NPTVs) , where i is 

the number of BSMNPTV received within t-α timeframe. The 

distance Di between BSMVT and BSMNPTVi. is calculated, 

sorted and mapped to the corresponding BSMNPTV. The new 

dataset consists of BSMVT, n number of BSMNPTVi with their 

corresponding distances Di according to the traffic scenario, 

explained in the dataset description section. The augmented 

feature set obtained is passed on for selection of important 

features before the features are scaled. Furthermore, the 

proposed MiDFUPTVA is used to make prediction on the 

data to determine whether the BSM is received from a benign 

vehicle or an attacker. If the BSM is predicted to be an attack, 

the BSM data is forwarded to the misbehavior authority (MA) 

in a misbehavior report (MR) for appropriate action, such as 

blacklisting or certificate revocation. This framework is 

encouraged to be deployed at RSUs for their computational 

advantage and stricter security. 

While the NPTV approach proposed in this study may exhibit 

similarities to the methodology described by the authors of 

[25], their approach relies on the assumption of trusted 

vehicles, which may not align with a zero-trust policy. This 

assumption introduces vulnerabilities if trust flags are 

compromised or falsified, potentially leading to unauthorized 

manipulation within the IoV network. In contrast, NPTV 

approach does not rely on pre-established trust flags 

associated with specific types of vehicles. Instead, it utilizes 

neighbor public transport vehicles with no assumption of pre-

established trust. By considering the dynamic interactions 

between vehicles and their surrounding environment, our 

approach adopts a more adaptive and context-aware approach 

to security, mitigating the reliance on static trust assumptions 
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and aligning with the principles of zero-trust security, where 

every interaction is verified and authenticated, regardless of 

the source. 

In addition, the work in [25] also introduces scalability issues 

due to the centralized nature of the shared database and trust 

verification process. Managing and updating trust flags for 

every registered vehicle can become challenging as the size of 

the IoV network grows, potentially leading to delays or 

inefficiencies in trust verification processes. In contrast, our 

approach adopts a decentralized approach to security and 

decision-making, leveraging the cooperative nature of the IoV 

network. By distributing the computation and analysis tasks 

across roadside units (RSUs), our approach can scale more 

effectively to accommodate a larger number of vehicles and 

dynamic traffic conditions. 

 

Figure 3 Flowchart for MiDFUPTVA Operation Mechanisms 

Begin 

Input: 

BSM ← 𝐵𝑢𝑟𝑆𝑇 − 𝐴𝐷𝑀𝐴 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 

OUTPUTS: 

1-NPTV-dataset, 2-NPTV-dataset, 3-NPTV-dataset  

dataset ← list of BSMveh, BSMNPTV, and the distance between 

them concatenated together along column axis to form one 

row of data 

STEPS: 

BSMNPTV ← BSM [id ==”ptv” | ”p-tram”] 

BSMVeh ← BSM[~BSMNPTV] 

for each time in ( BSM[timestep]) do 

For each bsm, i in enumerate(BSM[time]) do 

If (bsm== BSMveh) then 

distance=calculate_distance(bsm,BSMNPTVi) 

dataset[i]=concat(bsm,BSMNPTVi,distance, axis=column) 

End If 

1-NPTV-dataset ←  𝑛𝑝𝑡𝑣𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 (dataset,nptv=1) 

2-NPTV-dataset ← nptv_creation (dataset,nptv=2) 

3-NPTV-dataset← nptv_creation(dataset,nptv=3) End for 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224442                 Volume 11, Issue 2, March – April (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       168 

     

RESEARCH ARTICLE 

End for 

Algorithm 1 NPTV Dataset Creation Pseudocode from 

BurST-ADMA 

3.4. The Methodology 

In this section, the methodology adopted in this paper is 

discussed in terms of dataset generation, data preprocessing, 

model selection, training and validation, hyperparameter 

tuning and model testing. 

The first phase of the methodology starts with dataset 

generation based on n NPTVs (where n=1…3) using 

algorithm 1, as shown in Figure 1. The algorithm takes as 

input the BurST-ADMA labeled dataset described in section 

3.2 and searches the ID column for BSMs with ptv (stands for 

public transportation vehicle) or p-tram (stands for public 

tram) in the vehicle ID at every time instance in the timestep 

column (these BSMs are termed BSMNPTV). In addition, the 

algorithm (i) uses the Haversine formula to calculate the 

distance between a non-NPTV BSM (termed as BSMveh) and 

all BSMNPTV received at the same timeframe (ii) maps the 

calculated distances to the corresponding BSMNPTV and (iii) 

sorts the BSMNPTV from closest to BSMveh to farthest. 

Therefore, For 1-NPTV dataset, only the BSMveh and closest 

BSMNPTV with its mapped distance are considered and for 2-

NPTV dataset, BSMveh and two nearest BSMNPTV with their 

mapped distances are considered. Likewise, for the 3-NPTV 

scenario dataset, the BSMveh and three nearest BSMNPTV with 

their mapped distances make up the dataset. 

The data preprocessing phase takes the labelled datasets 

generated from the previous phase, checks for missing values, 

and imputes them with appropriate values based on domain 

knowledge. Moreover, in this phase, duplicate records are also 

removed to prevent the model from being biased. 

Furthermore, synthetic minority oversampling technique 

(SMOTE) is employed to balance the imbalanced dataset 

generated. In this phase, feature scaling is performed using 

scikit-learn’s MinMaxScaler according to the equation (4) to 

ensure that all the features are of the same scale. 

Xscaled = Xi−Xmin

Xmax−Xmin
                        (4) 

where XScaled is the scaled feature, Xi is the ith feature, 

Xmax and Xmin are maximum and minimum values of the ith 

feature, respectively. The phase concludes with data split into 

70% for training and the remaining 30% for testing using the 

scikit-learn library with a stratify sampling for equal 

representation of each attack category. The testing data is 

further split into 70% for training and 30% for validation. The 

hyper-parameter tuning phase sets up the chosen machine 

learning classifiers with their corresponding hyper-parameters 

such as criterion, n_estimators, min_samples_split 

,max_depth, number of hidden layers, activation function, 

number of epochs, and batch-size with possible values and the 

best score parameters are selected as illustrated in Table 3. 

The hyperparameters are sampled using the scikit-learn’s 

RandomizedSearchCV and validated using K-Fold cross-

validation. Random Forest (RF), Decision Tree (DT), and 

deep learning (DL) models were selected for their excellent 

performance as observed in the literature. 

The training phase uses the hyperparameters with the best 

score from the previous phase according to selected ML 

classifier and trains each of the ML classifiers and the DL on 

the training data with scikit-learn’s  K-Fold cross-validation  

employed for validation of the model’s performance using the 

validation data. The learned models are also saved using the 

pickle library. 

Finally, the model testing phase concludes the workflow by 

loading the learned models to make predictions on the test 

data. Because accuracy is not a sufficient metric to measure 

our models due to the imbalanced nature of  the ratio of 

attacks  to benign samples in real-world scenarios, the macro-

average of precision, recall,F1-Score, and accuracy are used 

as evaluation metrics. Results visualization is performed using 

Python’s matplotlib and Seaborn libraries. 

Table 3 Randomized Search CV Result for Hyper-Parameters used in this Paper 

ML Classifier Hyperparameters Possible Values Hyperparameters Best Values 

 N_estimators={50,100,200} N_estimators=50 

RF criterion={gini,entropy, log loss } criterion=gini 

 min_samples_split={2,4,8} min_samples_split=2 

   

 max depth={20,50,100} max_depth=50 

DT criterion={gini,entropy, log loss } criterion=’log loss’ 

 Min_samples split={2,4,8}  Min_samples_split=4 
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3.5. Experimental Setup 

This section explains the experimental setup used in this 

paper. We employed the use of scikit-learn library for (i) data 

split into training and testing (ii) Training, validation, hyper-

parameter tuning and testing of traditional machine learning 

algorithms (Random Forest and Decision tree classifiers) and 

(iii) Evaluation of model performance. We also used Keras 

from TensorFlow library for training, testing and visualizing 

accuracy and loss. The machine learning and deep learning 

models were trained on Dell Precision 5520 with Processor 

Intel(R) Core (TM) i7-7820HQ CPU @ 2.90GHz, 2901 Mhz, 

4 Core(s), 8 Logical Processor(s) and 16GB of RAM. All the 

algorithms are trained as multiclass classifiers (label 0-7) as 

shown in Figure 2. Each classifier is trained and tested using 

four scenarios namely zero-Neighbor public transport vehicle 

(zero-NPTV), i.e. the raw dataset, one-Neighbor public 

transport vehicle (1-NPTV), two-Neighbor public transport 

vehicle (2-NPTV) and three-Neighbor Public Transport 

Vehicle (3-NPTV) to investigate different scenarios a vehicle 

can find itself in real world traffic and examine the effects on 

detection rate which demonstrates the adaptability and 

flexibility of the proposed framework. The training and 

prediction time per samples are calculated and the 

performance of the three models (multiclass) are evaluated 

using macro average of accuracy, precision, recall and f1-

score according to the following equations (5 -8): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                      (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                 (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                       (7) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒+𝑅𝑒𝑐𝑎𝑙𝑙
                 (8) 

Where TP, TN, FP, and FN are true positive, true negative, 

false positive and false negative respectively. 

4. RESULT ANALYSIS AND DISCUSSION 

This section presents the results obtained from the experiment 

carried out employing the proposed misbehavior detection 

framework using neighbor public transport vehicle approach 

(MiDFUPTVA). The experiment was conducted using the 

Python programming language’s scikit-learn library and 

TensorFlow. The result analysis and visualization were 

performed using Python’s matplotlib and Seaborn library. The 

selection of RF and DT as the chosen machine learning 

algorithms was based on their frequent usage in the literature 

and their superior performance compared to other algorithms 

employed in the dataset used by the authors in [32]. 

4.1. Zero-Neighbor Public Transport Vehicle 

In this section, we conducted experiments using the BurST-

ADMA dataset to train Deep Learning (DL), Random Forest 

(RF), and Decision Tree (DT) classifiers. However, it is 

important to note that these classifiers were trained solely on 

individual Basic Safety Message (BSM) data without 

incorporating the neighbor public transport (NPTV) approach 

proposed in this study.  

Among the three classifiers, the RF classifier achieved the 

highest accuracy score of 97.86%. However, its precision was 

only 96.38%, and the recall was even lower at 91.36%. This 

indicates that in a real-world Internet of Vehicles (IoV) 

scenario, the RF classifier would likely exhibit a high rate of 

false negatives, potentially compromising the effectiveness of 

misbehavior detection.  

The DT classifier, on the other hand, achieved an accuracy 

score of 96.52%, with slightly over 92% precision and recall. 

While these metrics are relatively better compared to the RF 

classifier, they still fall short in terms of performance. 

The DL classifier, which was trained on the raw dataset 

without applying the NPTV approach, exhibited relatively 

low performance across all metrics. It achieved approximately 

92% accuracy, precision, recall, and F1-Score. This can be 

attributed to the limited number of features available in the 

raw dataset before the incorporation of the NPTV approach.  

Overall, the performance scores obtained by the classifiers, as 

depicted in Figure 5, strongly indicate the necessity of the 

proposed NPTV approach. The results underscore the 

importance of leveraging the NPTV approach to enhance the 

performance and effectiveness of misbehavior detection in the 

IoV environment. 

4.2. 1-Neighbor Public Transport Vehicle (1-NPTV) 

In this particular scenario, the proximity of the sending 

vehicle to a single neighboring public transport vehicle (1-

NPTV) was considered. The performance of three classifiers, 

namely Random Forest (RF), Decision Tree (DT), and Deep 

Learning (DL), was evaluated in this context. The 

experimental setup section of this paper provided insights into 

   

 Num_hidden_layers={2,3,4}  Num_hidden_layers=4 

  Epochs={20,50,100}  Epochs=50 

DL Batch_size={32,64,128}  Batch_size=64 

 Activation_func={tanh,relu} Activation function=relu 
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the architecture of the deep learning model used throughout 

the study.  

During the training and testing phases, the classifiers were 

trained on a dataset consisting of 145,120 samples and tested 

on 62,195 observations. The results revealed that both DT and 

RF classifiers outperformed the DL model in terms of 

accuracy, precision, recall, and F1-score. DT achieved scores 

of 98.64%, 95.55%, 95.45%, and 95.47% in these metrics, 

while RF achieved scores of 99.36%, 99.76%, 99.46%, and 

97.99% respectively, as presented in Table 3. On the other 

hand, the DL model attained accuracy, precision, recall, and 

F1-score scores of 92.62%, 94.30%, 53.75%, and 59.85% 

respectively. The DL model's relatively poor recall 

performance in misclassifying attack type 3 (negative position 

offset) and attack type 7 (reversed heading) contributed to its 

lower overall performance. The limited number of features 

available in the dataset might have hindered the DL model's 

ability to effectively learn the patterns of the attacks, 

highlighting the need for our proposed approach to 

incorporate more features in the dataset and improve the DL 

model's performance. 

It should be noted that while RF demonstrated the best overall 

performance, DT exhibited the highest training and prediction 

speed, making it a favorable choice for embedded 

environments like vehicles' On-Board Units (OBU). This 

observation is further supported by the data presented in 

Table 4. Additionally, a comparison of the three models 

across all metrics is depicted in Figure 4, providing a visual 

representation of their respective performance. 

4.3. 2-Neighbor Public Transport Vehicle (2-NPTV) 

In this particular scenario, we considered a situation where a 

sending vehicle is surrounded by two neighboring public 

transport vehicles simultaneously (2-NPTV). The evaluation 

of the classifiers in this context revealed interesting findings. 

The DL model, which was enhanced with the inclusion of 

additional features to learn attack patterns, demonstrated 

significant improvements in performance. This can be 

observed in Table 3, where the DL model exhibited excellent 

scores across various metrics. However, it is worth noting that 

this enhancement came at a cost, as the DL model 

experienced a drawback in terms of training speed, measured 

by the number of training samples per second, as well as 

prediction speed. Both training and prediction speeds were 

more than twice as slow compared to the 1-NPTV scenario, as 

indicated in the same table. 

On the other hand, the DT model achieved nearly perfect 

scores in all metrics, indicating its exceptional performance. 

Additionally, the DT model boasted the highest training and 

prediction speeds among the three classifiers. However, it is 

important to mention that the DT model recorded a recall 

score of 98.8%, primarily due to misclassifying attack type 6 

(negative speed offset). 

Meanwhile, the RF model delivered outstanding results, 

surpassing the 99% threshold in all metrics. Its performance 

was commendable across the board. A visual comparison of 

the three models in terms of accuracy, precision, recall, and 

F1-Score is presented in Figure 5, providing a comprehensive 

understanding of their respective performances. 

These findings highlight the trade-offs associated with each 

classifier and shed light on their strengths and limitations in 

the 2-NPTV scenario. The DL model showcased improved 

performance with the incorporation of additional features but 

suffered from slower training and prediction speeds. The DT 

model exhibited exceptional accuracy and speed, but 

experienced challenges in correctly classifying attack type 6. 

On the other hand, the RF model excelled in all metrics, 

demonstrating its robustness and reliability in this scenario. 

4.4. 3-Neighbor Public Transport Vehicle (3-NPTV) 

In this scenario, the machine learning (ML) algorithms were 

trained using Basic Safety Messages (BSMs) collected from 

the sending vehicle as well as three neighboring public 

transport vehicles (3-NPTV). The performance of the DL, RF, 

and DT models was evaluated in this context, yielding 

interesting results. Notably, both the DL and RF models 

outperformed the DT model, which can be attributed to the 

availability of sufficient features in the dataset to effectively 

learn the patterns of attacks, including the more sophisticated 

attack type 7. A detailed analysis of the performance metrics 

can be found in Table 3. 

Compared to the previous scenarios, it is important to 

highlight that all models showcased slower training and 

prediction speeds in this scenario. This can be attributed to the 

increased number of features included in the dataset, as 

presented in Table 4. Despite the slower speeds, the DL and 

RF models demonstrated exceptional performance, surpassing 

the DT model in terms of accuracy, precision, recall, and F1-

score. The availability of a more comprehensive dataset with 

a richer feature set contributed to the improved performance 

of these models. 

Interestingly, although the DT model obtained a lower overall 

score, it exhibited the best prediction and training speeds 

among the three models. This suggests that the DT model 

may be a favorable choice in scenarios where speed is a 

critical factor, such as embedded environments like vehicles' 

On-Board Units (OBU). 

A visual comparison of the three models' performance in this 

scenario is presented in Figure 6, providing a clear illustration 

of their relative strengths. Additionally, Table 4 provides 

detailed information on the prediction and training speeds 

achieved by the models throughout the study. It is worth 
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noting that the dataset sizes varied across the different 

scenarios, with 145,120 samples used for training and 62,195 

samples for testing in the 1-NPTV scenario, 16,624 samples 

for training and 1,851 samples for testing in the 2-NPTV 

scenario, and 29,210 samples for training and 12,530 samples 

for testing in the 3-NPTV scenario. The training and testing 

speeds were measured in terms of the number of observations 

processed per second, providing insights into the 

computational efficiency of the models in each scenario. 

4.5. Discussion 

In this research, we employed Random Forest (RF), Decision 

Tree (DT), and Deep Learning (DL) models, keeping them 

unchanged throughout the study. The primary objective was 

to showcase the impact of our proposed data-centric approach. 

Unlike the model-centric approach, which focuses on 

tweaking model parameters to improve performance, our 

approach centers around enhancing the data itself to achieve 

better results. 

Our data-centric approach involved incorporating features 

from multiple Basic Safety Message (BSM) data in different 

IoV scenarios, namely 1-NPTV, 2-NPTV, and 3-NPTV. By 

utilizing BSM data from one or more neighboring public 

transport vehicle (NPTV), we aimed to capture a broader 

range of information and increase the model's ability to detect 

and classify attacks accurately. 

The results of our study consistently demonstrated that 

incorporating features from more than one BSM data yielded 

superior performance compared to the zero-NPTV scenario. 

This finding underscores the power of our proposed approach. 

By leveraging the information from multiple NPTVs, we 

provided the models with a more comprehensive and diverse 

set of features, enabling them to learn and recognize attack 

patterns more effectively. 

Our data-centric approach offers several advantages. Firstly, it 

allows us to leverage the collective knowledge and 

information from multiple sources, enhancing the overall 

understanding of the data. This holistic perspective enables 

the models to capture a broader range of attack patterns, 

including more complex and sophisticated attacks. 

Secondly, the inclusion of features from NPTVs provides a 

more robust and reliable foundation for the models' training 

and prediction processes. The incorporation of diverse data 

helps mitigate biases and limitations that may be present in 

individual data from one BSM, leading to improved 

generalization and performance. It is important to note that 

our approach does not rely on fine-tuning the model 

parameters but rather focuses on enriching the data itself. This 

distinction highlights the significance of the data-centric 

perspective in addressing the challenges associated with 

attack detection and classification. In summary, our data-

centric approach, which incorporates features from NPTVs, 

has proven to be powerful in enhancing the performance of 

the RF, DT, & DL models (Table 5). By expanding the scope 

and depth of the data, we provide the models with a richer 

understanding of the attack patterns, resulting in improved 

accuracy and effectiveness. This approach offers valuable 

insights into the field of attack detection and classification, 

highlighting the importance of considering the data itself as a 

critical factor in achieving superior performance. 

Table 4 Average Performance of the Classifiers in Relation to Different Number of NPTVs 

Traffic Scenario ML Classifier Accuracy Precision Recall F1-Score 

zero-NPTV 

RF 0.97.86 0.9638 0.9136 0.9436 

DT 0.9652 0.9218 0.9203 0.9210 

DL 0.9185 0.9228 0.9236 0.9232 

1-NPTV 

RF 0.9936 0.9976 0.9636 0.9799 

DT 0.9864 0.9551 0.9545 0.9547 

DL 0.9262 0.9430 0.5375 0.5985 

2-NPTV 

RF 0.9995 0.9997 0.9941 0.9968 

DT 0.9989 0.9997 0.9881 0.9936 

DL 0.9897 0.9474 0.9615 0.9537 

3-NPTV 

RF 0.9992 0.9965 0.9861 0.9909 

DT 0.9681 0.9933 0.9757 0.9831 

DL 0.9998 0.9996 0.9995 0.9961 
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Table 5 Comparison between DL, DT and RF for Training and Prediction Speed 

Traffic Scenario ML Classifier Training Speed (Obs/s) Prediction Speed (obs/s) 

zero-NPTV 

RF 2605.85 035009.85 

DT 32684.68 144639.54 

DL 64.74 1150.1 

1-NPTV 

RF 4520.87 16365.10 

DT 290821.64 698820.22 

DL 735.16 18846.97 

2-NPTV 

RF 8749.473 4883.91 

DT 99544.91 31372.88 

DL 557.85 8731.13 

3-NPTV 

RF 3489.85 3952.68 

DT 27819.05 21237.29 

DL 379.70 6265 

 

 

Figure 4 Average Performance Comparison for DL, DT and RF in zero-NPTV Scenario 
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Figure 5 Comparison of Average Performance for DL, DT and RF in 1-NPTV Scenario 

 

Figure 6 Comparison of Average Performance for DL, DT and RF in 2-NPTV Scenario 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224442                 Volume 11, Issue 2, March – April (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       174 

     

RESEARCH ARTICLE 

 

Figure 7 Comparison of Average Performance for DL, DT and RF in 3-NPTV Scenario 

4.6. Comparison with State-of-the-art Techniques 

To justify our proposed work, we compared our proposed 

misbehavior detection framework using the public transport 

vehicle approach (MiDFUPTVA) with related works in the 

literature that used the same BurST-ADMA public dataset in 

their proposed frameworks for the detection of false data 

injection attacks in IoV. We found that our proposed approach 

obtained higher scores in all the metrics, as shown in Table 6. 

To the best of our knowledge, the chosen state-of-the-art 

works are the most recently published works that used the 

same dataset to evaluate their work; hence, we chose these 

works for justification. We first compared our approach 

against the raw BurST-ADMA dataset [32], in which DT and 

RF obtained the best results among other ML classifiers and 

only their work measured all the metrics. Furthermore, we 

compared our work against the optimized AdaBoost work in 

[21] , and finally ,we compare the results presented by the 

authors of the work presented in [29]. 

Table 6 Comparison between our Work and Prior Work  

5. CONCLUSION AND FUTURE WORK 

The emergence of IoV and its integration into cooperative 

intelligent transportation system has improved ITS in safety 

and non-safety applications. In this paper, we proposed a 

novel data-centric misbehavior detection framework using a 

public transport vehicle approach for the detection of false 

data injection attacks. We successfully displayed different 

scenarios in which a sending vehicle may find itself in a 

traffic to demonstrate the flexibility and scalability of the 

proposed framework. We used deep learning, decision tree, 

and random forest classifiers and obtained a near- perfect 

score using our approach. We also observed that the reason 

for the almost perfect score in our work and the related work 

found in the literature that used the same dataset is due to the 

low noise and few features in the dataset (all the features have 

high correlation with the attacks). However, our approach 

Ref ML Used Accuracy Precision Recall F1-Score 

BurST-ADMA RF 99.63% 99.88% 97.75% 98.75% 

[32] DT 99.01% 96.63% 96.75% 96.75% 

[21] RSO-FDS 99.90% NA NA NA 

[29] AdaBoost 98.9% NA NA NA 

Proposed 

Method 

DT(2-NPTV) 99.89% 99.97% 98.81% 99.36% 

RF(3-NPTV) 99.92% 99.65% 98.61% 99.09% 

DL(3-NPTV) 99.98% 99.96% 99.95% 99.61% 
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used all the important features related to position and speed 

(since all the attacks are related to speed and position data 

falsification) and augmented the features with NPTV’s 

position and speed data for a more robust model and to 

mitigate the effect of low noise and few features in the 

dataset. In the future, we plan to explore more attacks in IoV, 

especially attacks on safety applications such as adaptive 

cruise control. We would also work to analyze how using 

licensed public transport vehicles or high occupancy vehicles 

(HOV) can enhance security and optimize traffic and reduce 

carbon emissions by reducing the number of vehicles on the 

roads, thereby pushing us toward green transportation. 
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