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Abstract – The research focuses on enhancing the performance 

of Mobility Enabled Wireless Sensor Networks (ME-WSNs) 

through the introduction of a novel routing protocol named 

Sophisticated Eagle Search Optimization-Based Gaussian Ad 

Hoc On-demand Distance Vector (SESO-GAODV). ME-WSNs 

pose unique challenges due to their dynamic and rapidly 

changing network topologies. To address these challenges, 

SESO-GAODV leverages the intelligent optimization techniques 

of Sophisticated Eagle Search Optimization and the dynamic 

route discovery capabilities of Gaussian Ad Hoc On-demand 

Distance Vector (GAODV). The proposed protocol undergoes 

extensive evaluations and comparisons with other existing 

routing protocols. Through comprehensive performance 

analysis, SESO-GAODV demonstrates superior results, 

including reduced delay, increased throughput, minimized 

packet loss, and lower energy consumption. The protocol's 

adaptability to changing network conditions and efficient 

handling of node mobility contribute to its energy-efficient 

nature, making it a promising solution for enhancing data 

transmission efficiency and reliability in ME-WSNs. SESO-

GAODV's ability to optimize energy consumption ensures a 

prolonged network lifetime, facilitating seamless communication 

and optimized network performance in dynamic and challenging 

environments. 

Index Terms – AODV, Eagle Search Optimization, Gaussian, 

ME-WSNs, Routing, Sensor Network. 

1. INTRODUCTION 

Wireless Sensor Networks (WSNs) have emerged as a 

powerful technology in various fields, including 

environmental monitoring, industrial automation, healthcare, 

and smart cities. These networks consist of small, autonomous 

devices called wireless sensor nodes that communicate with 

each other and the base station using wireless communication 

protocols. Traditional WSNs often face limited coverage, 

connectivity, and energy consumption challenges [1]. To 

address these issues, the Mobility-Enabled Wireless Sensor 

Networks (ME-WSNs) concept has gained attention. ME-

WSNs incorporate mobility into the sensor nodes, allowing 

them to move within the network’s operating area [2]. This 

mobility introduces a dynamic element to the network, 

enabling better coverage, connectivity, and data collection. 

The nodes can be deployed on mobile vehicles, robots, or 

animals. By leveraging the mobility of these entities, ME-

WSNs offer several advantages over traditional WSNs [3]. 

One significant advantage of ME-WSNs is enhanced network 

coverage. In traditional WSNs, fixed sensor nodes may 

struggle to cover large areas, leading to coverage gaps or 

insufficient data collection. By introducing mobility, ME-

WSNs can adapt to the changing environment and ensure 

better coverage [4]. The nodes can move to areas where data 

collection is required or follow the movement of an object of 

interest. Connectivity is another crucial aspect addressed by 

ME-WSNs.  

Traditional WSNs often suffer from connectivity issues due to 

obstacles or node failures. In ME-WSNs, mobile nodes can 

act as intermediaries, relaying data between disconnected 

nodes and maintaining a connected network [5]. When a node 

moves out of range, a mobile node can bridge the 

communication gap by moving closer to both nodes, enabling 
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seamless data transfer. This dynamic connectivity ensures 

reliable and efficient data transmission, enhancing the 

network’s performance [6]. 

Energy efficiency is a critical consideration in WSNs due to 

the limited power resources of sensor nodes. ME-WSNs can 

optimize energy consumption by strategically deploying 

mobile nodes. For instance, a mobile node can move closer to 

energy-depleted nodes to collect their data, reducing the need 

for frequent recharge or replacement [7]. ME-WSNs can 

employ energy-aware routing protocols that leverage the 

mobility patterns of nodes to minimize energy consumption 

while maintaining connectivity. By intelligently managing 

energy resources, ME-WSNs can extend the network’s 

lifetime and reduce maintenance efforts. ME-WSNs enable 

targeted data collection. Due to their static nature, traditional 

WSNs often generate a vast amount of redundant or irrelevant 

data [8]. With mobility, ME-WSNs can focus on specific 

areas or objects of interest, collecting data where it is most 

valuable. For example, in disaster response scenarios, mobile 

nodes can be deployed to gather data from affected regions or 

monitor the movements of rescue teams. This targeted data 

collection enhances the network’s efficiency and reduces the 

burden of processing and storing irrelevant information [9]. 

Using bio-inspired optimization in routing for Wireless 

Sensor Networks (WSNs) brings several positive benefits. 

Firstly, it significantly improves energy efficiency by finding 

optimal paths for data transmission, leading to extended 

network lifetime and reduced maintenance costs. Secondly, 

these techniques enhance network reliability by adapting to 

dynamic environmental changes and network disruptions 

[10]–[12]. They provide robust and scalable solutions for 

efficient data delivery in large-scale WSN deployments. Bio-

inspired optimization enables WSNs to perform better in data 

throughput, latency, and packet delivery ratio, making them 

ideal for real-world applications such as environmental 

monitoring, disaster management, and precision agriculture. 

Figure 1 provides the overall process of bio-inspired 

optimization in routing. 

 

Figure 1 Overall Bio-Inspired Optimization Routing in ME-WSN 

Despite the numerous benefits, ME-WSNs also present 

challenges. Some complex tasks involve designing efficient 

mobility patterns, developing robust localization algorithms, 

and managing node mobility [13]. Ensuring secure and 

reliable communication between mobile nodes and the base 

station becomes crucial to prevent data loss or unauthorized 

access [14]. Mobility-Enabled Wireless Sensor Networks 

offer significant advantages over traditional WSNs by 

introducing mobility into the network. Enhanced coverage, 

improved connectivity, energy efficiency, and targeted data 

collection are some of the critical benefits of ME-WSNs. By 

leveraging the mobility of sensor nodes, these networks can 

adapt to dynamic environments and overcome the limitations 

of static networks. While challenges exist, ME-WSNs hold 

great potential [15]. 

1.1. Problem Statement 

The dynamic nature of Mobility-Enabled Wireless Sensor 

Networks (ME-WSNs) presents a significant challenge in 

ensuring application Quality of Service (QoS) requirements. 

With nodes constantly moving, maintaining reliable and 

efficient data transmission becomes complex, especially while 

meeting diverse QoS metrics such as low latency, high 

reliability, and real-time delivery. The intermittent 
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connectivity disruptions and varying link qualities caused by 

node mobility further complicate providing consistent and 

predictable QoS. Additionally, the limited power resources of 

sensor nodes add an energy efficiency dimension to the 

problem, requiring routing protocols that conserve energy 

while still meeting QoS requirements. Moreover, scalability 

becomes a concern in large-scale ME-WSNs, necessitating 

routing solutions that can handle the increasing complexity of 

network structures while maintaining QoS performance. 

1.2. Motivation 

The increasing demand for reliable and efficient data 

transmission in dynamic environments stems from the 

motivation to address the challenges of ensuring Quality of 

Service (QoS) in Mobility-Enabled Wireless Sensor Networks 

(ME-WSNs). ME-WSNs find applications in diverse domains 

such as healthcare, environmental monitoring, industrial 

automation, and smart cities, where real-time and accurate 

data delivery is crucial. Enabling QoS in ME-WSNs is 

essential for applications that rely on specific performance 

guarantees, such as timely patient monitoring in healthcare or 

real-time control and monitoring in industrial automation. The 

dynamic nature of ME-WSNs, characterized by node mobility 

and intermittent connectivity disruptions, necessitates the 

development of QoS-aware routing protocols that can adapt to 

changing network conditions while conserving energy and 

maintaining scalable performance. By addressing the 

challenges associated with QoS in ME-WSNs, we can unlock 

the full potential of these networks, enabling timely and 

accurate data delivery, enhancing system performance, and 

empowering various sectors with reliable and efficient 

wireless sensor network deployments. 

1.3. Objective 

The objective of addressing the Quality of Service (QoS) 

challenges in Mobility-Enabled Wireless Sensor Networks 

(ME-WSNs) is to develop efficient and adaptive routing 

strategies and protocols that ensure reliable and efficient data 

transmission in dynamic environments. The objective 

includes: 

 Designing QoS-aware routing algorithms: Develop 

innovative routing algorithms that can adapt to the 

dynamic nature of ME-WSNs, considering node mobility, 

intermittent connectivity disruptions, and varying link 

qualities. These algorithms should optimize the selection 

of routing paths based on QoS requirements such as low 

latency, high reliability, and real-time data delivery. 

 Energy-efficient routing: Develop energy-aware routing 

strategies that conserve the limited power resources of 

sensor nodes while still meeting the desired QoS metrics. 

This involves optimizing routing decisions to minimize 

energy consumption, prolong the network lifetime, and 

reduce maintenance efforts. 

 Scalable routing solutions: Design scalable routing 

protocols capable of handling large-scale ME-WSNs while 

maintaining QoS performance. The objective is to develop 

routing techniques that efficiently manage the increasing 

complexity and number of mobile nodes within the 

network. 

By achieving these objectives, ME-WSNs can provide 

reliable and efficient data transmission, enabling applications 

that rely on specific QoS requirements. Developing QoS-

aware routing solutions in ME-WSNs improves system 

performance, energy efficiency, and scalability, ultimately 

enhancing the overall effectiveness and usability of wireless 

sensor network deployments. 

1.4. Organization of the Paper 

In section 1, this paper discussed ME-WSN, Routing, and 

Bio-inspired Optimization along with the problem statement, 

highlighting the challenges faced in mobility-enabled wireless 

sensor networks, followed by the motivation behind 

addressing these challenges and the specific objectives of the 

study. Section 2, "Literature Review," provides a 

comprehensive overview of existing research in the field. 

Section 3 delves into the novel routing protocol proposed in 

this paper, offering an in-depth explanation of its design and 

functioning. In Section 4, "Simulation Settings and 

Performance Metrics", this paper details the experimental 

setup and the metrics used to evaluate the proposed protocol. 

Section 5, "Results and Discussion," presents the empirical 

findings and provides an extensive analysis, allowing for a 

better understanding of the protocol's performance 

enhancements. Lastly, the paper concludes in Section 6, 

summarizing the key findings and their implications and 

suggestions for future research directions in this domain. 

2. LITERATURE REVIEW 

“Fuzzy Logic Scheme” [16] is proposed for clustering the 

network using various factors in WSN. Experiments were 

conducted to prove its efficiency in energy usage and network 

lifetime with calculated accuracy. The node density and 

distance among base stations and nodes are measured for 

selecting the cluster. “Node Stability-based Routing” [17] is 

proposed to define the node’s stability and select the proper 

gateway. The entropy function defines the node, and the 

simulation output is retrieved through experimental study. 

The performance is compared with other techniques regarding 

Expected Transmission count, channel switching, and 

Reinforcement learning-based best path to the best gateway. 

“Reverse Glow-Worm Swarm Optimization” [18] is proposed 

for better energy consumption in the sensor network. The 

efficiency of the sensor network is also implemented based on 

the sensor movement and is positioned using the grid points. 

Simulation-based results are generated to prove its 

outperformance over existing algorithms. “Butterfly 
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Optimization Algorithm” [19] is proposed for selecting the 

cluster head for a group of nodes. The energy of the residual 

node and distance to the base station is optimized, and the 

routes are detected using the Ant Colony Optimization 

algorithm. Performance metrics are used to measure the 

efficiency of the proposed technique and output compared 

with baseline algorithms. “Multimodal Wireless Sensor 

Networks” [20] is proposed to track applications with low 

bandwidth using IoT. With the incorporation of an indoor-

based testbed, the performance was evaluated, and 

experiments were carried out. The data and energy 

transmission were efficiently saved using the broadcast-based 

wake-up structure portrayed using an experimental study. 

“Depth Based Routing (DBR)” [21] is proposed for handling 

acoustic communication in Underwater Wireless Sensor 

Networks. The routing protocol retrieves the performance-

based indices and measures the transmission rate. 

Optimization is carried out for trade-offs among energy usage, 

end-to-end delay, and delivery rate. “Multi-Radio Multi-

Channel Optimization” [22] is proposed for allocating the 

resources, power control, and channel distribution in WSN. 

Two-stage allocation of resources is performed to detect the 

dependency of different resources. A graph colouring 

algorithm is used for assigning the time slot, and a multi-

objective optimization issue is formulated to enhance the 

network’s efficiency. A multi-objective hybrid particle swarm 

optimization algorithm retrieves the optimal solutions through 

simulation output. “Application-Specific Routing Protocol” 

[23] is proposed for designing the model for managing health 

care applications. The performance increases in packet 

delivery ratio, packet loss, network lifetime, and end-to-end 

delay. The network’s lifetime is also enhanced by maximizing 

the throughput in data transmission. Comparison is done 

using the baseline techniques to prove its efficiency over 

traditional techniques. “Heat-Diffusion Collection Protocol” 

[24] is proposed for WSN to guarantee routing techniques in 

WSN. Evaluation is done by comparing the analysis using 

Collection Tree Protocol and Backpressure Collection 

Protocol. Findings are generated by comparing the results 

with traditional algorithms to prove their performance over 

other techniques. “Improved Gene Algorithm” [25] is 

proposed to position passengers at the airport in WSN. 

Optimization is performed for validating the passengers with 

data as input. Results are generated for accurate positioning of 

the flow of passengers, and performance is measured with the 

comparison of traditional algorithms. 

“Packet Forwarding” [26] is proposed for modelling the 

reporting event in the queuing network. The events are 

measured using jitter, and the minimum value is recorded. 

The queuing network is prioritized, and privacy is preserved, 

demonstrated using a simulator that portrays the temporal 

information about the traffic to the node. “Routing protocol 

using virtual infrastructure” [27] is proposed for solving the 

routing problem in sensor networks. The position of the sink 

node is updated and saved by creating the routing among 

clusters. Extensive experimental analysis is conducted using a 

simulator, and results are generated to prove its performance. 

“Video Encoding” [28] is proposed for optimizing the data 

generated for routing in Wireless Multimedia Sensor 

Networks. The network’s lifetime is maximized, and the 

shortest path routing protocol is used to maximize the 

network’s lifetime. Evaluation is carried out to prove its 

efficiency over other techniques, and simulation results are 

portrayed. “Clustered QoS Routing Protocol” [29] is proposed 

for handling the issue in wireless networks in which the nodes 

are grouped, and the cluster head is assigned with the link to 

avoid the issue of link failures. The cluster members 

communicate using the cluster head, and experimental results 

are generated to prove its efficiency. “Energy-Efficient and 

Reliable Routing Scheme” [30] is proposed for enhancing the 

reliability and stability of constrained Wireless Body Area 

Networks (WBAN). The adaptive static clustering method 

enhances the network lifetime, reliability, and stability 

through experimental evaluation.  

“Cluster Sub-graph Selection based Routing (CSSR)” [31] 

has been developed as a routing protocol tailored for wireless 

Ad Hoc networks, focusing on facilitating cluster-based 

communication. CSSR divides the network into clusters, each 

assigning a specific cluster head responsible for inter-cluster 

communication. This approach has resulted in reduced 

overhead of routing updates and improved scalability of the 

network. By leveraging the concept of sub-graph selection, 

CSSR optimizes routing paths, leading to decreased 

transmission delays and efficient data delivery. “Energy-

efficient Adaptive cum Cooperative Routing (EEACR)” [32] 

has been specifically designed to balance energy consumption 

and extend network lifetime in wireless sensor networks. 

EEACR employs adaptive techniques to adjust transmission 

power levels based on node proximity, thereby conserving 

energy and extending the operational time of individual 

nodes. Moreover, EEACR promotes cooperative 

communication among closely situated nodes, reducing the 

necessity for long-distance transmissions and enhancing 

energy efficiency. The adaptive and cooperative mechanisms 

of the protocol have contributed to the efficient utilization of 

energy, rendering it suitable for resource-constrained sensor 

networks. 

In the domain of ME-WSN, a significant research gap exists 

in developing routing protocols that can adeptly handle the 

dynamic mobility of sensor nodes, ensuring efficient data 

transmission while optimizing energy usage. Current routing 

strategies often struggle to adapt to the rapid node movements 

within these networks. Additionally, scalability poses a 

substantial challenge as ME-WSNs continue to expand in size 

and complexity, necessitating the creation of scalable routing 

solutions capable of accommodating large-scale networks 
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while maintaining reliability. Moreover, the absence of 

standardized evaluation metrics and benchmark datasets for 

ME-WSN [33] routing protocols hampers fair performance 

comparisons and inhibits the establishment of best practices. 

Addressing these research gaps is crucial to enhancing the 

capabilities and practicality of ME-WSNs in various real-

world applications. 

3. SOPHISTICATED EAGLE SEARCH OPTIMIZATION-

BASED GAUSSIAN AD HOC ON-DEMAND 

DISTANCE VECTOR (SESO-GAODV) 

3.1. Gaussian Ad Hoc On-demand Distance Vector 

(GAODV) 

3.1.1. Gaussian-Based Distance Estimation 

The predicted travel time from one node to another, denoted 

as 𝐷𝑒𝑠𝑡, can be represented mathematically. Eq.(1) models the 

probability distribution of 𝐷𝑒𝑠𝑡 using a Gaussian function. 

𝑃(𝐷𝑒𝑠𝑡) = (1/𝑠𝑞𝑟𝑡(2 ∗ 𝑝𝑖 ∗ 𝑠𝑖𝑔𝑚𝑎2)) ∗ 𝑒𝑥𝑝(−(𝐷𝑒𝑠𝑡 −

𝑚𝑢))
2

/(2 ∗ 𝑠𝑖𝑔𝑚𝑎2))                           (1) 

Here, mu represents the mean, and 𝑠𝑖𝑔𝑚𝑎2  represents the 

variance of the distribution. 

3.1.2. Selective Flooding with Gaussian Probabilities 

Nodes selectively flood Route Request (RREQ) packets based 

on the estimated distance. Each node calculates the 

probability of forwarding the RREQ packet, denoted as 

𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 . The probability can be derived from the Gaussian-

based distance estimation, and Eq.(2) represents the same. 

𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑃(𝐷𝑒𝑠𝑡)                               (2) 

Nodes closer to the estimated distance have a higher 

probability of forwarding the packet, while nodes farther 

away have a lower probability. 

3.1.3. RREQ Processing at Intermediate Nodes 

Intermediate nodes receiving an RREQ packet evaluate 

available routes based on link quality, residual energy, or 

latency metrics. Gaussian functions can be used to calculate 

probabilities for each metric, such as: 

3.1.3.1. Link Quality Probability (𝑃𝑙𝑖𝑛𝑘) 

The Link Quality Probability is denoted as 𝑃𝑙𝑖𝑛𝑘, is a metric 

representing the likelihood of a reliable and high-quality link 

between nodes. It is calculated using a Gaussian function 

based on the link quality metric. The link quality metric can 

incorporate signal strength, packet error rate, and signal-to-

noise ratio. The Gaussian function assigns a probability value 

to the link quality metric, indicating the probability that the 

link offers a good communication channel. A higher 𝑃𝑙𝑖𝑛𝑘  

signifies a higher probability of having a robust and reliable 

link. 𝑃𝑙𝑖𝑛𝑘 is calculated using Eq.(3). 

𝑃𝑙𝑖𝑛𝑘 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑙𝑖𝑛𝑘 𝑞𝑢𝑎𝑙𝑖𝑡𝑦)                             (3) 

3.1.3.2.. Residual Energy Probability (𝑃𝑒𝑛𝑒𝑟𝑔𝑦) 

The Residual Energy Probability is denoted as 𝑃𝑒𝑛𝑒𝑟𝑔𝑦 , is a 

metric that reflects the remaining energy in a node’s power 

source (e.g., battery). It is calculated using a Gaussian 

function based on the residual energy metric. The residual 

energy metric represents a node’s power source’s remaining 

energy level or capacity. By applying a Gaussian function to 

the residual energy metric, 𝑃𝑒𝑛𝑒𝑟𝑔𝑦  is determined, indicating 

the probability of having sufficient energy reserves in a node. 

A higher 𝑃𝑒𝑛𝑒𝑟𝑔𝑦  implies a higher probability of having nodes 

with ample energy to support communication and routing 

operations. 𝑃𝑒𝑛𝑒𝑟𝑔𝑦  is calculated using Eq.(4). 

𝑃𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦)                 (4) 

3.1.3.3. Latency Probability (𝑃𝑙𝑎𝑡𝑒𝑛𝑐𝑦) 

The Latency Probability, denoted as 𝑃𝑙𝑎𝑡𝑒𝑛𝑐𝑦 , is a metric 

representing the expected delay or latency in transmitting 

packets across the network. It is calculated using a Gaussian 

function based on the latency metric. The latency metric can 

encompass transmission, queuing, and processing delays. By 

applying a Gaussian function to the latency metric, 𝑃𝑙𝑎𝑡𝑒𝑛𝑐𝑦  is 

determined, indicating the probability of experiencing lower 

latency for packet transmission. A higher 𝑃𝑙𝑎𝑡𝑒𝑛𝑐𝑦 suggests a 

higher probability of achieving lower delays and faster 

communication across the network. 𝑃𝑙𝑎𝑡𝑒𝑛𝑐𝑦  is calculated 

using Eq.(5). 

𝑃𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑙𝑎𝑡𝑒𝑛𝑐𝑦)                               (5) 

The intermediate node chooses the path with the highest 

overall probability, considering the metrics evaluated using 

Gaussian probabilities. 

3.1.4. RREP Propagation and Route Maintenance 

When the RREQ reaches its final resting place or an 

intermediate node that knows how to reach the final resting 

place, the Route Reply (RREP) is returned to the sending 

node. The selected route is established and maintained for 

future data transmission. While no specific equations exist in 

this step, the Gaussian-based probabilities calculated in the 

previous step can determine the preferred route during the 

RREP propagation and subsequent route maintenance 

process. 

3.1.5. Dynamic Adjustment of Gaussian Parameters 

To adapt to the changing network conditions, the parameters 

of the Gaussian functions, such as mean (𝑚𝑢) and variance 

(𝑠𝑖𝑔𝑚𝑎2) , can be dynamically adjusted. This dynamic 

adjustment allows the routing protocol to adapt to variations 

in distance, link quality, energy levels, and latency, ensuring 

efficient route discovery and selection. Although no specific 
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equations are mentioned in this step, the dynamic adjustment 

process involves updating the values of mu and 𝑠𝑖𝑔𝑚𝑎2 based 

on real-time network measurements and feedback. Algorithm 

1 provides the pseudocode of Gaussian-based AODV 

Routing. 

Step 1: Initialization 

Initialize network parameters, including the mean (𝑚𝑢) and 

variance (𝑠𝑖𝑔𝑚𝑎2) for Gaussian distance estimation and other 

relevant metrics. 

Step 2: Route Request (RREQ) Broadcasting 

When a node wants to initiate route discovery, it broadcasts 

an RREQ packet. 

Step 3: Gaussian-based Distance Estimation 

Upon receiving the RREQ packet, each node estimates its 

distance to the destination using a Gaussian-based approach 

by calculating the estimated distance, 𝐷𝑒𝑠𝑡 , based on a 

probabilistic model considering the mean and variance. 

Step 4: Selective Flooding with Gaussian Probabilities 

Determine the probability of forwarding the RREQ packet 

based on the estimated distance. Assign a probability, 

𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 , to the RREQ packet, enabling selective flooding 

where nodes closer to the estimated distance have a higher 

probability of forwarding the packet. 

Step 5: RREQ Processing at Intermediate Nodes 

Using a probabilistic approach, intermediate nodes receiving 

the RREQ packet evaluate available routes based on metrics 

like link quality, residual energy, or latency. 

Step 6: Gaussian-based Route Selection 

Select the route with the highest overall probability, 

considering the evaluated metrics. Choose the route that 

maximizes the combined probabilities of link quality, residual 

energy, and latency. 

Step 7: Route Reply (RREP) Propagation and Maintenance 

An RREP is sent back to the sending node after the RREQ 

reaches its final stopping point or an intermediate node that 

knows how to reach the final node, establishing and 

maintaining the selected route for future data transmission. 

Step 8: Dynamic Adjustment of Gaussian Parameters 

Periodically monitor the network conditions and adapt the 

parameters (such as mean and variance) used in the 

probabilistic models, allowing the routing protocol to adapt to 

variations in distance, link quality, energy levels, and latency. 

Step 9: Repeat Route Discovery Process 

Repeat the process as needed for subsequent route discovery 

requests. 

Algorithm 1 Gaussian-Based AODV Routing 

3.2. Sophisticated Eagle Search Optimization (SESO) for 

Routing 

3.2.1. Eagle Search Optimization (ESO) 

Eagle Search Optimization (ESO) is a search algorithm that 

draws inspiration from the hunting techniques and 

cooperative intelligence observed in real eagles. It 

encompasses three distinct predation phases, namely the 

choosing phase, the search phase, and the swooping phase. 

Each phase contributes to the overall efficiency and 

effectiveness of the algorithm in various domains, including 

routing in WSN. 

3.2.1.1. Choosing Phase 

In the choosing phase (CHP), ESO aims to identify promising 

solutions within the search space based on their fitness values. 

The search space is typically represented as a set of candidate 

solutions, each encoded as a vector or a set of variables. The 

fitness function evaluates the quality or objective value of 

each solution. This function captures the problem-specific 

criteria and constraints that need to be optimized. ESO 

employs various selection strategies, such as tournament or 

roulette wheel selection, to choose the most promising 

solutions for further exploration. These strategies are based on 

fitness values, where solutions with higher fitness values are 

more likely to be selected. Algorithm 2 provides the 

pseudocode of CHP. 

In CHP, eagles initially choose the search region before 

zeroing in on the optimal predation spot based on the density 

and distribution of potential meals. As Eq.(6) implies, eagles 

will hunt in this region. 

𝑀𝑠,𝑛𝑒𝑤 = 𝑀𝑏𝑒𝑠𝑡 + 𝛿 ∗ 𝑏(𝑀𝑚𝑒𝑎𝑛 − 𝑀𝑠),                     (6) 

Wherein 𝛿 is a position-changing parameter with a range of 

1.2 to 2.3 and a random integer 𝑏 between (0, 1), and 𝑀𝑏𝑒𝑠𝑡  

indicates the best place found during the last search for eagles 

to choose an area. The eagle distribution average after the last 

search is located at 𝑀𝑚𝑒𝑎𝑛. The coordinates for the 𝑠𝑡ℎ pair of 

eagles are 𝑀𝑠. The eagles have moved to 𝑀𝑠,𝑛𝑒𝑤 . 

Input: 

 Search space: A set of candidate solutions 

 Fitness function: Evaluates the quality or objective value 

of each solution 

 Parameters: δ (position-changing parameter), b (random 

integer) 

 Previous best solution: Mbest 
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 Average distribution: Mmean 

Output: 

 Selected promising solutions for further exploration. 

Algorithm: 

Step 1: Initialize an empty set to store the selected promising 

solutions. 

Step 2: For each solution, Ms in the search space: 

a). Calculate the new position for the solution using 

Eq.(6). 

b). Evaluate the fitness value of the solution using the 

fitness function. 

c). Add the solution with its fitness value to the set of 

selected promising solutions. 

Step 3: Apply a selection strategy to choose the most 

promising solutions from the selected solutions. The 

selection probability for each solution can be based 

on its fitness value. 

Step 4: Return the selected promising solutions for further 

exploration in the subsequent phases of the ESO 

algorithm. 

Algorithm 2 CHP 

3.2.1.2. Searching Phase 

The Searching Phase (SHP) explores and refines the selected 

solutions. ESO uses various exploration and exploitation 

techniques to navigate the search space and discover better 

solutions. Exploration techniques, such as randomization or 

perturbation, introduce randomness into the search process to 

escape local optima. They enable ESO to explore new regions 

of the search space and diversify the solutions. Exploitation 

techniques, such as local search or crossover operators, 

exploit the information gained from the current solutions to 

refine and improve them. Algorithm 3 provides the 

pseudocode of SHP.  Local search explores the 

neighbourhood of a solution by making minor modifications, 

while crossover combines information from two or more 

solutions to create new offspring solutions. ESO iteratively 

applies these exploration and exploitation techniques to 

update and refine the solutions. The process involves 

evaluating the fitness of the new solutions and replacing the 

existing solutions if the new ones are better. Throughout the 

SHP, eagles continuously spiral and change directions in the 

air as they hunt for prey in the region they previously 

selected. Eq.(7) to Eq.(10) express the new coordinates. 

𝑀𝑠,𝑛𝑒𝑤 = 𝑀𝑠 + 𝑞(𝑠) ∗ (𝑀𝑠 − 𝑀𝑠+1) + 𝑝(𝑠) ∗ (𝑀𝑠 − 𝑀𝑚𝑒𝑎𝑛),  

                                                                                         (7) 

𝑝(𝑠) =
𝑝𝑏(𝑠)

𝑚𝑎𝑥(|𝑝𝑏|)
, 𝑞(𝑠) =

𝑞𝑏(𝑠)

𝑚𝑎𝑥(|𝑞𝑏|)
                                  (8) 

𝑝𝑏(𝑠) = 𝑏(𝑠) ∗ 𝑠𝑖𝑛(𝜌(𝑠)), 𝑞𝑏(𝑠) = 𝑏𝑠 ∗ 𝑐𝑜𝑠(𝜌(𝑠))     (9) 

 

𝜌(𝑠) = 𝑑 ∗ 𝜋 ∗ 𝑟𝑎𝑛𝑑 𝑎𝑚𝑑 𝑏(𝑠) = 𝜌(𝑠) + 𝐵 ∗ 𝑟𝑎𝑛𝑑         (10) 

Wherein the polar angle is indicated as 𝜌(𝑠) and the polar 

diameter is 𝑏(𝑠). The spiral trajectory is determined by the 

values of the parameters 𝑑 and 𝐵, which can vary between 5.2 

and 9.8 and 0.6 and 2.3, respectively. The polar coordinates of 

the eagle are given by 𝑝(𝑠) and 𝑞(𝑠), both range from -1 to 

+1, and the subsequently updated location of the 𝑠th eagle is 

given by 𝑀𝑠+1, 𝑟𝑎𝑛𝑑 is a random number that ranges from 0 

to 1. In absolute terms, 𝑝𝑏 is equal to |𝑝𝑏|.It's the same as 

writing |𝑞𝑏|  or |𝑝𝑏|. 

Input: 

 Selected solutions from the Choosing Phase: A set of 

candidate solutions 

 Exploration and exploitation parameters: d, B 

Output: 

 Updated and refined solutions 

Algorithm: 

Step 1: For each solution, Ms in the selected set: 

Step 2: Calculate the polar angle 𝜌(𝑠) and the polar diameter 

b(s) using Eq.(10). 

Step 3: Calculate the exploration factor 𝑝(𝑠)  and 

exploitation factor q(s) using Eq.(8) and Eq.(9). 

Step 4: Update the coordinates of the solution Ms using 

Eq.(7). 

Step 5: Evaluate the fitness value of the new solution M(s+1) 

using the fitness function. 

Step 6: Replace the existing solution Ms with the updated 

solution M(s+1) if the new solution has a better fitness 

value. 

Step 7: Return the updated and refined solutions. 

Algorithm 3 SHP 

3.2.1.3. Swooping Phase 

The Swooping Phase (SWP) focuses on decision-making 

using the information gathered during the search phase. ESO 

leverages the knowledge acquired to guide the selection and 

modification of solutions. ESO may incorporate strategies 

such as elitism or adaptive mechanisms in this phase. Elitism 

preserves the best solutions so far and ensures their inclusion 

in subsequent generations. Adaptive mechanisms dynamically 
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adjust the exploration and exploitation rates based on the 

progress of the optimization process. These strategies help 

maintain diversity in the solution set and prevent premature 

convergence. Algorithm 4 provides the pseudocode of SWP. 

ESO balances exploration and exploitation by adjusting the 

search parameters, such as mutation rates or crossover 

probabilities, based on the problem's complexity and 

characteristics. By intelligently combining these strategies, 

ESO aims to converge to high-quality solutions while 

maintaining diverse solutions. Eagles in ESO are in continual 

motion throughout the swooping Stage, with some eagles 

swooping in from the most advantageous position found 

during the prior search for prey while others do the same. 

Eq.(11) to Eq.(14) simulate the eagle behaviour. 

𝑀𝑠,𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑 ∗ 𝑀𝑏𝑒𝑠𝑡 + 𝑝1(𝑠) ∗ (𝑀𝑠 − 𝑢1 ∗ 𝑀𝑚𝑒𝑎𝑛) 
+𝑞1(𝑠) ∗ (𝑀𝑠 − 𝑢2 − 𝑀𝑏𝑒𝑠𝑡),                                           (11) 

𝑝1(𝑠) =
𝑝𝑏(𝑠)

𝑚𝑎𝑥(|𝑝𝑏|)
, 𝑞1(𝑠) =

𝑞𝑏(𝑠)

𝑚𝑎𝑥(|𝑞𝑏|)
                                (12) 

𝑥𝑟(𝑠) =  ∏ (𝑟(𝑠) ×
1

𝑐𝑜𝑠𝑒𝑐 (ℎ(𝑖))
)𝑖

𝑠=0                                    (13a) 

𝑦𝑟(𝑠)  =  ∑ (𝑟(𝑠) ×
1

sec(ℎ(𝑖))
 )𝑖

𝑠=0                                      (13b) 

𝑝𝑏(𝑠) = 𝑑 ∗ 𝜋 ∗ 𝑟𝑎𝑛𝑑and 𝑏(𝑠) = 𝜌(𝑠)                              (14) 

Wherein 𝑢1 and 𝑢2 all take values of one to two and enhance 

the eagles' movement intensity towards the best and centre 

places. 

Input: 

 Selected and updated solutions from the Searching Phase: 

A set of candidate solutions 

 Best solution found so far: Mbest 

 Average distribution: Mmean 

 Parameters: u1, u2 

Output: 

 Updated and refined solutions 

Algorithm: 

Step 1: Initialize an empty set to store the updated solutions. 

Step 2: For each solution M_s in the selected set: 

a). Generate random numbers r(s), xr(s), and yr(s) to 

determine the movement intensity. 

b). Calculate the exploration factor p1(s) and 

exploitation factor q1(s) based on Eq.(12) and 

Eq.(14). 

c). Calculate the new position for the solution using a 

combination of the best solution, the current solution, 

and the average distribution. 

d). Add the updated solution to the set of updated 

solutions. 

Step 3: Apply elitism or adaptive mechanisms to maintain 

diversity and prevent premature convergence. 

Step 4: Return the updated and refined solutions. 

Algorithm 4 SWP 

3.2.2. Sophisticated Eagle Search Optimization (SESO) 

The predation behaviour of eagles, characterized by their 

spiralling trajectory as they search for and attack prey, 

motivates the development of the SESO algorithm. In SESO, 

a polar coordinate system is defined and initialized for each 

individual in the population. The representation of each 

individual is done using a binary array, denoted as (𝜑𝑡 , 𝜌𝑡), 

where 𝜑𝑡  represents the polar angle and 𝜌𝑡  represents the 

polar diameter. By incorporating this representation, the 

SESO algorithm aims to capture the essence of the eagles' 

predatory behaviour. During the initialization phase, the 

population is established by including more individuals based 

on the polar coordinate system representation. This allows for 

diverse solutions to be considered in the search process. 

Unlike other algorithms, SESO does not involve coordinate 

system transformations during the fitness function calculation. 

Instead, the fitness value is directly computed in polar 

coordinates using the SESO method. This method includes 

updating each individual's polar angle and diameter based on 

their fitness values and the algorithm's specific mechanisms.  

The utilization of the polar coordinate system and direct 

computation of fitness values in polar coordinates in SESO 

contribute to its unique approach to optimization. By 

incorporating the eagles' spiralling trajectory and adapting it 

to the problem at hand, SESO aims to enhance the search and 

optimization process. This allows for the exploration of 

different regions in the search space and the identification of 

high-quality solutions. Using polar coordinates adds a distinct 

perspective to the algorithm and provides a framework for 

efficient and effective fitness evaluation. 

3.2.2.1. Mathematical Modelling of SESO 

During the setup step of the SESO algorithm, the polar angle 

(𝜑) and polar width (𝜌) are immediately assigned and stored 

as a list in the coordinate system for the polar regions. As part 

of this process, the original points in polar coordinates are 

transformed into Cartesian coordinates, leading to uneven 

distribution.  

To address the distortions introduced by the coordinate 

transformation, the SESO algorithm incorporates techniques 

based on the Archimedes theorem and the cumulative density 

function (CDF). These methods allow for accounting and 

compensating for the distortions, ensuring a more balanced 

distribution of points in the search space. 
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The Archimedes theorem, which relates the area of a sector to 

the length of the corresponding arc, can be utilized to 

calculate the appropriate polar width (𝜌) for each point. By 

considering the desired density of points and the size of the 

search space, an appropriate adjustment can be made to 

ensure a more uniform distribution. The cumulative density 

function (CDF) also plays a crucial role in compensating for 

the uneven distribution induced by the coordinate 

transformation. By inverting the CDF, an initialization 

formula can be derived to distribute the points in a manner 

that counteracts the distortions and achieves a more balanced 

representation in the Cartesian coordinate system. 

The initialization formula, derived from inverting the CDF, 

provides a systematic approach to distribute the points in the 

Cartesian coordinate system based on their desired density 

and the characteristics of the search space. This compensation 

mechanism ensures that the transformed points maintain a 

more even and representative distribution, enabling the SESO 

algorithm to explore the search space effectively. By 

incorporating these techniques, SESO overcomes the 

challenges posed by coordinate transformation-induced 

distortions and ensures a more uniform distribution of points. 

This enables the algorithm to make informed decisions and 

effectively navigate the search space, improving optimization 

results. Eq.(15) and Eq.(16) express the same. 

𝜑 = 𝑟𝑎𝑛𝑑 ∗ (𝑜𝑣 − 𝑧𝑏) + 𝑧𝑏,                                   (15) 

𝜌 = 𝛾 ∗ cos−1(2 ∗ 𝑟𝑎𝑛𝑑 − 1),                                 (16) 

Wherein 𝑜𝑣 is the maximum and 𝑧𝑣 is the minimum in SESO, 

and the rand is an arbitrary value between 0.02 and 1. The 

coefficient of disturbance, denoted by 𝛾 , can have values 

between 1.1 and 2. During initialization, the SESO algorithm 

must also maintain control over the border, and the population 

as a whole is free to be dispersed wherever in the search 

space. As a result, the values in the range (0,2𝜋) correspond 

to the polar angle 𝜌. For the SESO method to stay inside the 

boundary throughout the optimization phase, the polar 

diameter 𝜑 must also be established using boundaries. 

After the initial setup, the current locations of all individuals 

in SESO are recorded. In SESO, the refreshing of the polar 

angle (φ) and polar width (ρ) corresponds to updating the 

positions of each individual. Similar to the three phases in 

ESO, there are three updates to the polar angle (φ) in SESO. 

The current formula for updating the polar angle (φ) in SESO 

is Eq.(17). 

φnew = φold + {α * sin(β * φold)} + {γ * cos(δ * φold)}        (17) 

where φnew represents the updated polar angle, φold represents 

the current polar angle of an individual, and α, β, γ, and δ are 

coefficients that control the magnitude and direction of the 

update. The sinusoidal term, α * sin(β * φold), introduces 

oscillations and allows for exploration and diversification of 

the search space. It encourages individuals to explore different 

regions and helps prevent premature convergence. The cosine 

term, γ * cos(δ * φold), influences the direction and bias of the 

search by guiding individuals towards promising areas. It can 

assist in exploiting regions of the search space that show 

potential for optimal solutions. By updating the polar angle 

using this formula, SESO ensures that individuals explore and 

exploit the search space effectively. Combining the sinusoidal 

and cosine terms allows for a balanced exploration-

exploitation trade-off, promoting diversity and convergence 

towards high-quality solutions. 

3.2.2.2. Enhanced CHP (ECHP) 

The ECHP is the update providing strategy to the polar angle 

(φ) in the SWP of the SESO algorithm. The formula for 

updating the polar angle based on Eq.(18) is as follows: 

𝜑𝑠,𝑛𝑒𝑤 = 𝜑𝑏𝑒𝑠𝑡 + 𝛿 ∗ 𝑏(𝜑𝑚𝑒𝑎𝑛 − 𝜑𝑠),                           (18) 

where 𝜑𝑠,𝑛𝑒𝑤  represents the updated polar angle for the sth 

individual, 𝜑𝑏𝑒𝑠𝑡  represents the ideal polar angle determined 

as the best angle found in the previous search, 𝜑𝑚𝑒𝑎𝑛 

represents the average polar angle calculated from the 

individuals' polar angles, 𝜑𝑠 represents the current polar angle 

of the 𝑠 th individual, 𝛿  represents the position change 

parameter, and 𝑏  is a random integer with a value ranging 

from zero to one. 

The update of the polar angle is calculated by taking the 

difference between the average polar angle and the current 

polar angle of the individual, multiplied by the position 

change parameter δ and the random integer 𝑏 . This update 

allows the individual to adjust its polar angle towards the 

ideal angle determined by the best angle found during the 

previous search. The position change parameter δ controls the 

magnitude of the position change, influencing how much the 

individual's polar angle is adjusted towards the ideal angle. 

The random integer b introduces some randomness into the 

update process, adding diversity and exploration to the search. 

By updating the polar angle using Eq.(18), the SESO 

algorithm enables individuals to adapt their positions based on 

the best angle found, the average angle, and their current 

angle. This adjustment helps guide the individuals towards 

more promising regions in the search space and contributes to 

the optimization process of the algorithm. Algorithm 5 

provides the pseudocode of ECHP. 

Input: 

 Current polar angle of the sth individual: φs 

 Ideal polar angle determined from the previous search: 

φbest 

 Average polar angle calculated from the individuals' polar 

angles: φmean 
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 Position change parameter: 𝛿 

 Random integer b between 0 and 1 

Output: 

 Updated polar angle for the sth individual: φ(s,new) 

Algorithm: 

Step 1: Generate a random integer 𝑏 between 0 and 1. 

Step 2: Calculate the updated polar angle using Eq.(18). 

Step 3: Return the updated polar angle φ(s,new). 

Algorithm 5 ECHP 

3.2.2.3. Robust Searching Phase 

In the SESO algorithm's Searching Phase, the ECHP is a 

crucial step for adjusting the polar angles of the individuals. 

The following equations (19) to (22) guide this adjustment: 

𝜑𝑠,𝑛𝑒𝑤 = 𝜑𝑠 + 𝑐1 ∗ (𝜑𝑠 − 𝜑𝑚𝑒𝑎𝑛) + 𝑡1 ∗ (𝜑𝑠 − 𝜑𝑠+1),      (19) 

𝑐1 =
𝜋1

𝑚𝑎𝑥(|𝜋1|)
, 𝑡1 =

𝛼1

𝑚𝑎𝑥(𝛼1)
,                                               (20) 

𝜋1 = 𝑏1 ∗ 𝑠𝑖𝑛(𝜌), 𝛼2 = 𝑏1 ∗ 𝑐𝑜𝑠(𝜌),                                  (21) 

𝑏1 = 𝑑 ∗ 𝜋 ∗ 𝑟𝑎𝑛𝑑,                                                              (22) 

In these equations, 𝜌  represents the polar angle, 𝑑  is the 

control parameter for the spiral trajectory (ranging from 4 to 

12), 𝜋 is the mathematical constant 𝜋1, and 𝑟𝑎𝑛𝑑 is a random 

number between 0 and 1. The parameter 𝑏1 is calculated by 

multiplying 𝑑, 𝜋, and 𝑟𝑎𝑛𝑑. It controls the range of the polar 

diameter update, adding variability to the process. The control 

parameters 𝜋1 and 𝛼1 are derived from 𝑏1  by taking the sine 

and cosine of the polar angle 𝜌 , respectively. These 

parameters reflect the spiral trajectory and influence the 

adjustment of the polar angle. To ensure a balanced 

adjustment, the control parameters 𝜋1 and 𝛼1 are normalized 

by dividing them by their maximum absolute values. The 

resulting coefficients, 𝑐1 and 𝑡1, fall within the range of -1 to 

1, allowing for controlled adjustments of the polar angle. 

By incorporating these equations, the SESO algorithm 

updates the polar angles of the individuals based on the 

influence of the average angle (represented by 𝑐1 ) and the 

angle of the following individual (represented by 𝑡1 ). The 

randomness introduced through the control parameter 𝑏1 

contributes to exploration and diversity in the search process.  

The ECHP in the Searching Phase enables the algorithm to 

explore and refine the solutions by adjusting the polar angles 

based on the average angle, the angle of the following 

individual, and the randomness introduced by 𝑏1 . This 

iterative process aims to converge towards high-quality 

solutions in the routing optimization problem in WSN. 

Algorithm 6 provides the pseudocode of robust searching 

phase. 

Input: 

 Population: A set of individuals with their initial polar 

angles. 

 Control parameter d. 

 Termination condition: Specifies when to stop the iterative 

process. 

Output: 

 Updated population: Individuals with adjusted polar 

angles. 

Algorithm: 

Step 1: Initialize the population with initial polar angles for 

each individual. 

Step 2: Calculate the average polar angle (φmean) based on the 

polar angles of all individuals in the population. 

Step 3: Repeat until the termination condition is met: 

a). Normalize the control parameters: 

 Compute 𝑐1 and 𝑡1 using Eq.(20). 

b). Update the polar angle for the individual: 

 Compute 𝜑𝑠,𝑛𝑒𝑤  using Eq.(19) for updating the 

polar angle. 

 Calculate the new average polar angle (φmean) 

based on the updated polar angles of all 

individuals in the population. 

c). For each individual (s) in the population, perform 

the following steps: 

 Calculate the control parameters π1 and α1: 

 Compute 𝜋1 and 𝛼2 using Eq.(21). 

 Compute 𝑏1 using Eq.(22). 

Step 4: Return the updated population with adjusted polar 

angles. 

Algorithm 6 Robust Searching Phase 

3.2.2.4. Enhanced SWP (ESWP) 

In EWSP, the focus is on refining the individuals' positions 

using their polar angles (φ) and introducing disturbances 

through the polar angle disturbance coefficient (ρ). ESWP 

aims to improve the fitness values of individuals and 

approach the global ideal fitness value. 
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(i). Update of the Polar Angle 

The new polar angle ( 𝜑𝑠𝑛𝑒𝑤 ) for each individual ( 𝑠 ) is 

determined by the sum of three terms, which is 

mathematically expressed in Eq.(23). The first term, 𝑟𝑎𝑛𝑑 ∗
𝜑𝑏𝑒𝑠𝑡  introduces randomness and exploration by considering a 

random value between 0 and 1 (randomly) multiplied by the 

best polar angle (𝜑𝑏𝑒𝑠𝑡) found so far. In the second term, 𝑐2 ∗
(𝜑𝑠 − 𝑢1 ∗ 𝜑𝑚𝑒𝑎𝑛) , adjusts the current polar angle ( 𝜑𝑠 ) 

towards the average polar angle (𝜑𝑚𝑒𝑎𝑛) of the population, 

while 𝑢1  represents a coefficient (usually set to 2) that 

controls the intensity of this adjustment. In the third term, 𝑡2 ∗
(𝜑𝑠 − 𝑢2 ∗ 𝜑𝑏𝑒𝑠𝑡), guides the individual's polar angle towards 

the best polar angle (𝜑𝑏𝑒𝑠𝑡 ) found in the previous search, 

where 𝑢2 is another coefficient (also set to 2) determining the 

strength of this guidance. Eq.(23) expresses the same. 

𝜑𝑠𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑 ∗ 𝜑𝑏𝑒𝑠𝑡 + 𝑐2 ∗ (𝜑𝑠 − 𝑢1 ∗ 𝜑𝑚𝑒𝑎𝑛) + 𝑡2 ∗
(𝜑𝑠 − 𝑢2 ∗ 𝜑𝑏𝑒𝑠𝑡)                  (23) 

(ii). Normalization of Coefficients 

To ensure a balanced adjustment of the polar angle, the 

control parameters 𝜋2  and 𝛼2  (computed using Eq.(24)) are 

normalized. The coefficients 𝑐2  and 𝑡2  are calculated by 

dividing 𝜋2 and 𝛼2, respectively, by their maximum absolute 

values. This normalization restricts their values to -1 to 1, 

controlling the adjustments and avoiding extreme polar angle 

changes. 

𝑐2 =
𝜋2

𝑚𝑎𝑥(|𝜋2|)
, 𝑡2 =

𝛼2

𝑚𝑎𝑥(𝛼2)
                                          (24) 

(iii). Control Parameters 

The control parameters 𝜋2 and 𝛼2 are derived from the polar 

angle ρ, which represents a disturbance coefficient. 𝜋2  is 

computed as the product of a randomly generated value b_1 

(determined by the control parameter d in Eq.(22)) and the 

sine of ρ, while 𝛼2 is obtained similarly using the cosine of ρ. 

These parameters influence the magnitude and direction of the 

polar angle adjustments, enabling exploration and exploitation 

in the search space which is mathematically expressed in 

Eq.(25). 

𝜋2 = 𝑏1 ∗ 𝑠𝑖𝑛𝑙(𝜌); 𝛼2 = 𝑏1 ∗ 𝑐𝑜𝑠𝑙(𝜌),                        (25) 

(iv). Disturbance Coefficient 

The disturbance coefficient 𝜌𝑠  influences the polar angle 

adjustments by incorporating randomness. In each iteration, 

𝜌𝑠 is multiplied by a disturbance coefficient 𝛾 (ranging from 0 

to 2), and then a random value is added or subtracted (±) to 

the result. This randomness introduces diversity in the polar 

angle adjustments and prevents the algorithm from getting 

stuck in local optima. Eq.(26) mathematically expresses the 

disturbance coefficient. 

𝜌𝑠+1 = 𝛾 ∗ 𝜌𝑠 ± 2 ∗ cos−1(2 ∗ 𝑟𝑎𝑛𝑑 − 1),                 (26) 

By recalculating an individual's position using the most recent 

values of 𝜑 and 𝜌, we compute the fitness function values for 

each member of the population and compare them to the 

global ideal fitness value of 𝐺.  

The two possibilities are replacement and retention. Suppose 

the new fitness function value is better than the present fitness 

value. In that case, the first action is taken otherwise. Instead 

of using Cartesian coordinates, users of the SESO update their 

position using polar coordinates, namely 𝜑  and 𝜌 , to 

determine their exact location. This will significantly increase 

the convergence efficiency and the update speed of people. 

3.3. Analysis of Complexity for SESO 

The SESO algorithm employs various parameters to control 

its behaviour and optimize the search process. Let's discuss 

the time and space complexities of SESO based on these 

parameters: 

3.3.1. Time Complexity: 

Time complexity is mainly influenced by the number of 

iterations (𝑓)  required for the polar diameter modifications 

during the searching phase. The complexity is proportional to 

the product of the population size (𝑇) , problem dimension 

(𝑦), and the number of iterations (𝑓), represented as 𝐾(𝑇 ∗
 𝑦 ∗  𝑓). 

3.3.1.1. Configuration of Population and Parameters: 

During the initialization phase, SESO sets up the population 

with a specified number of search agents (𝑇) and defines the 

problem dimension (𝑦) based on the number of variables or 

dimensions in the search space. The time required for this 

configuration is denoted as 𝐾(𝑇 ∗  𝑦).  

Configuring the parameters, such as control and disturbance 

coefficients, is also done during this phase. The complexity 

for parameter setup is typically a constant time operation and 

does not significantly impact the overall time complexity. 

3.3.1.2. Modification of Polar Diameters 

The core of the SESO algorithm lies in the searching phase, 

where it iteratively updates the polar diameters of individuals 

to explore and exploit the search space. Each iteration 

involves all the search agents (𝑇) undergoing polar diameter 

modifications.  

The time complexity of modifying the polar diameters for 

each search agent is proportional to the problem dimension 

(𝑦) since each search agent's polar angle is represented by y 

variables. Additionally, the number of iterations 

(𝑓) influences the total number of polar diameter 

modifications. As a result, the time complexity for polar 

diameter updates is 𝐾(𝑇 ∗  𝑦 ∗  𝑓) , and it dominates the 

overall time complexity of SESO. 
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3.3.1.3. Termination Criteria 

SESO utilizes a termination criterion to decide when to stop 

the iterative search process. This criterion typically involves 

evaluating the convergence of the population or reaching a 

predefined number of iterations. The termination criteria are 

generally evaluated constantly, represented as 𝐾(1) , since 

they do not depend on the problem dimension or population 

size. 

3.3.2. Space Complexity 

Space Complexity is determined by the space required to 

store the search agents (population) and their positions in the 

search space. The space complexity depends on the number of 

search agents (𝑇) and the problem dimension (𝑦), leading to a 

space level of 𝐾(𝑇 ∗  𝑦). 

3.3.2.1. Search Agents 

The space complexity of SESO is mainly determined by the 

number of search agents (𝑇) , which corresponds to the 

population size. Each search agent's position in the search 

space requires memory allocation to store the polar angles 

(𝜑) and potentially other relevant information related to the 

solution. The space required to store each search agent's 

position is directly proportional to the problem dimension (𝑦) 

since it represents the number of variables needed to describe 

the solution accurately. 

3.3.2.2. Problem's Size 

The space complexity is also influenced by the problem's size 

(𝑦), which directly relates to the number of variables required 

to represent the solutions in the search space. As the problem 

dimension increases, the space required to store the 

individuals' positions and other relevant data grows 

proportionally. 

4. SIMULATION SETTINGS AND PERFORMANCE 

METRICS 

Table 1 Simulation Settings 

Setting Value 

Bandwidth 100Hz 

Initial energy level at nodes 10J 

MAC Protocol Version CW-MAC802.11DCF 

Network Boundary Limit 
1.5km x 1.5km x 

1.5km 

Node density 350 

Packet size 74 bytes 

Rate of data transmission 10kbps 

Runtime 300s 

Sensor node's transmission 

range 
≈350m 

Sink density 4 

Size of packet header 10 bytes 

Transmission power 20W 

 

A comprehensive analysis of routing protocols in Mobility 

Enabled Wireless Sensor Networks (MEWSN) involves the 

utilization of various simulations. To evaluate the 

effectiveness of the proposed routing protocol against the 

existing ones, NS3 simulations are employed. Researchers 

have faced significant challenges in modelling and 

implementing protocols in MEWSN, particularly regarding 

the network's overall performance. Consequently, the study 

aims to thoroughly examine the design, strengths, and 

limitations of both the proposed and currently employed 

routing protocols. The study reveals that the NS3 simulator 

performs better when integrated with C++.Table 1 provides 

the simulation settings used for evaluating the protocols. 

5. RESULTS AND DISCUSSION 

5.1. Delay Analysis 

Figure 2 comprehensively compares the delay performance 

among three routing protocols, CSSR, EEACR, and SESO-

GAODV, across node density scenarios. In Ad Hoc networks, 

delay is a critical metric, representing the time data packets 

travel from source to destination, directly influencing real-

time communication efficiency. 

 

Figure 2 Delay 

Upon analyzing the average delay values obtained from Table 

2, it is evident that CSSR exhibits the highest average delay of 

4664.6 ms. The delay escalates with increasing node density, 

making CSSR less favourable for dense networks. This can be 

attributed to the cluster-based approach of CSSR, which 

introduces overhead in selecting sub-graphs and may result in 

increased packet delivery times, particularly in scenarios with 

numerous potential paths for packets to traverse. EEACR 
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demonstrates a relatively better average delay of 4301.8 ms. It 

effectively balances energy-efficient routing with delay 

performance, showing promising results across node 

densities. The adaptability of EEACR in identifying energy-

efficient routes contributes to its lower delay values than 

CSSR. However, it is worth noting that in some instances, the 

cooperative communication among nodes in EEACR may 

introduce slight overhead, affecting the delay performance. 

SESO-GAODV emerges as the most efficient protocol, 

boasting the lowest average delay of 3294.4 ms. By 

optimizing route selection and packet forwarding with 

excellent efficiency, SESO-GAODV achieves superior delay 

performance, even in high-density scenarios. This can be 

attributed to the intelligent optimization capabilities of the 

sophisticated eagle search algorithm, which enables SESO-

GAODV to efficiently explore the solution space and identify 

optimal routes. 

The analysis demonstrates that SESO-GAODV outperforms 

both CSSR and EEACR in minimizing delays. Due to higher 

contention and interference, CSSR faces challenges in dense 

networks, leading to elevated average delay values. While 

EEACR balances energy efficiency and delay, SESO-

GAODV stands out with its advanced capabilities. It is the 

most promising choice for achieving low delays and efficient 

communication in Ad Hoc networks, particularly in scenarios 

with high node density. Further improvements in CSSR and 

EEACR might be necessary to enhance their delay 

performance and competitiveness with SESO-GAODV. 

Table 2 Results of Delay Analysis 

Node 

Density 
CSSR EEACR 

SESO-

GAODV 

50 4231 4008 3152 

100 4452 4117 3203 

150 4708 4330 3297 

200 4923 4409 3341 

250 5009 4645 3479 

Average 4664.6 4301.8 3294.4 

5.2. Packet Delivery Ratio 

Figure 3 presents a comparative analysis of the PDR for three 

routing protocols, CSSR, EEACR, and SESO-GAODV, in 

different node density scenarios.  

The PDR represents the percentage of successfully delivered 

packets from the source to the destination node, a critical 

measure of the protocols' performance in ensuring reliable 

data transmission in Ad Hoc networks. Analyzing the average 

PDR values from Table 3, we observe the following: 

 

Figure 3 Packet Delivery Ratio 

The CSSR protocol achieves an average PDR of 73.580%. 

CSSR creates clusters of nodes and selects efficient sub-

graphs for routing. However, the average PDR values for 

CSSR are lower than the other two protocols. This may be 

attributed to the inherent challenges of cluster-based 

approaches handling increased node density, resulting in 

reduced packet delivery efficiency. The EEACR protocol 

exhibits an average PDR of 80.998%. EEACR operates on the 

principles of Energy-efficient Adaptive cum Cooperative 

Routing. It balances energy-efficient routing decisions with 

cooperative communication among nodes. The average PDR 

values for EEACR are relatively higher than CSSR, 

suggesting its ability to handle packet delivery more 

effectively, even in scenarios with moderate node density. 

The SESO-GAODV protocol stands out with an impressive 

average PDR of 92.877%. SESO-GAODV employs the 

Sophisticated Eagle Search Optimization-based Gaussian Ad 

Hoc On-demand Distance Vector mechanism, leveraging 

intelligent optimization techniques. This enables SESO-

GAODV to efficiently explore optimal routes and achieve 

superior packet delivery performance, particularly in high-

density node scenarios. 

The PDR analysis reveals that SESO-GAODV outperforms 

CSSR and EEACR regarding successful packet delivery. 

While CSSR and EEACR demonstrate reasonable 

performance, their average PDR values are surpassed by the 

advanced optimization capabilities of SESO-GAODV. The 

intelligent optimization techniques in SESO-GAODV make it 

highly desirable for ensuring reliable and successful packet 

delivery in Ad Hoc network environments, even under 

challenging conditions of high node density. CSSR and 

EEACR could benefit from further improvements in their 
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mechanisms to enhance their packet delivery performance and 

competitiveness with SESO-GAODV. 

Table 3 Results of Packet Delivery Ratio Analysis 

Node 

Density 
CSSR EEACR 

SESO-

GAODV 

50 78.143 88.435 96.262 

100 77.987 84.365 96.114 

150 73.657 81.224 92.446 

200 70.998 78.492 90.343 

250 67.114 72.472 89.221 

Average 73.580 80.998 92.877 

5.3. Packet Loss Ratio 

Figure 4 presents an evaluation of the Packet Loss Ratio 

(PLR) for three routing protocols: CSSR, EEACR, and SESO-

GAODV, across different node density scenarios. The PLR 

represents the percentage of lost packets during transmission, 

a crucial metric indicating the protocols' efficiency in 

preserving data integrity and minimizing data loss in Ad Hoc 

networks. Analyzing the average PLR values from Table 4, 

we observe the following: 

 

Figure 4 Packet Loss Ratio 

CSSR shows an average PLR of 26.420%. Operating on 

Cluster Sub-graph Selection based Routing, CSSR creates 

node clusters and selects sub-graphs for routing. The higher 

average PLR values for CSSR suggest challenges in handling 

packet losses, particularly in scenarios with denser node 

populations. The cluster-based approach might increase 

contention and interference, leading to packet loss during 

transmission. EEACR exhibits an average PLR of 19.002%. 

Based on Energy-efficient Adaptive cum Cooperative 

Routing, EEACR balances energy efficiency and cooperative 

communication among nodes. The lower average PLR values 

for EEACR indicate better packet loss handling and data 

integrity maintenance, even in scenarios with moderately 

dense node distributions. 

SESO-GAODV stands out with an impressive average PLR of 

7.123%. Leveraging Sophisticated Eagle Search 

Optimization-based Gaussian Ad Hoc On-demand Distance 

Vector mechanism, SESO-GAODV employs intelligent 

optimization techniques. The lower average PLR values for 

SESO-GAODV demonstrate its superior ability to minimize 

packet loss during transmission, even in high-density node 

scenarios. The PLR analysis reveals that SESO-GAODV 

outperforms both CSSR and EEACR in minimizing packet 

loss. While CSSR and EEACR demonstrate reasonable 

performance, their average PLR values are comparatively 

higher than SESO-GAODV. The advanced optimization 

techniques in SESO-GAODV make it highly effective in 

reducing packet loss and preserving data integrity in Ad Hoc 

network environments. Further enhancements in the 

mechanisms of CSSR and EEACR might be beneficial to 

improve their ability to handle packet loss and match the 

superior performance of SESO-GAODV. 

Table 4 Results of Packet Loss Ratio Analysis 

Node 

Density 
CSSR EEACR 

SESO-

GAODV 

50 21.857 11.565 3.738 

100 22.013 15.635 3.886 

150 26.343 18.776 7.554 

200 29.002 21.508 9.657 

250 32.886 27.528 10.779 

Average 26.420 19.002 7.123 

5.4. Throughput Analysis 

Figure 5 illustrates the Throughput analysis of three distinct 

routing protocols: CSSR, EEACR, and SESO-GAODV, under 

varying node density scenarios. Throughput is a critical 

performance metric in Ad Hoc networks, quantifying the data 

transmission rate from the source node to the destination 

node. Upon analyzing the average Throughput values 

obtained from Table 5, the following insights can be derived: 

CSS Rexhibits an average Throughput of 217.313 Kbps. 

While CSSR demonstrates moderate data transmission 
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efficiency, its throughput experiences a slight decline in 

denser node density situations. This is due to the inherent 

challenges of cluster-based routing approaches in handling 

increased interference and contention, leading to a 

comparatively lower Throughput. EEACR achieves an 

average Throughput of 221.483 Kbps. EEACR balances 

energy efficiency and cooperative communication among 

nodes, leading to a slightly improved data transmission rate 

compared to CSSR. It maintains relatively stable Throughput 

values across node densities, showcasing its adaptability to 

different network conditions. 

 

Figure 5 Throughput 

Table 5 Results of Throughput Analysis 

Node 

Density 
CSSR EEACR 

SESO-

GAODV 

50 225.244 229.323 265.221 

100 221.965 225.659 259.987 

150 215.892 221.493 255.998 

200 214.186 217.713 251.138 

250 209.279 213.227 249.145 

Average 217.313 221.483 256.298 

SESO-GAODV stands out with an impressive average 

Throughput of 256.298 Kbps. The protocol's intelligent 

optimization techniques enable it to efficiently explore 

optimal routes, leading to significantly higher data 

transmission rates. SESO-GAODV excels in high-density 

node scenarios, maintaining superior Throughput 

performance. The Throughput analysis emphasizes the 

efficiency of SESO-GAODV in achieving higher data 

transmission rates compared to CSSR and EEACR. While 

CSSR demonstrates moderate performance and EEACR 

exhibits stability, SESO-GAODV outperforms both protocols, 

especially in dense node populations. The advanced 

optimization capabilities in SESO-GAODV contribute to its 

superior throughput and overall network performance in Ad 

Hoc environments. CSSR and EEACR could benefit from 

further enhancements in their mechanisms to improve 

throughput and match the performance of SESO-GAODV in 

various node-density scenarios. 

5.5. Energy Consumption Analysis 

Figure 6 presents the Delay analysis of three routing 

protocols, CSSR, EEACR, and SESO-GAODV, conducted 

under varying node density scenarios. Delay is a crucial 

metric in Ad Hoc networks, representing the time data packets 

traverse from the source to the destination node. A lower 

delay indicates more efficient and faster data transmission. 

Analyzing the average Delay values from Table 6, this 

research observes the following: 

 

Figure 6 Delay 

Analyzing the performance of CSSR at different node 

densities, as provided in Table 6, this research observes that 

CSSR exhibits moderate delay performance at lower node 

densities (50 and 100), with average delays of 33.412 ms and 

41.463 ms, respectively. However, as the node density 

increases to 150, 200, and 250, CSSR encounters significant 

challenges in handling complex routing decisions, resulting in 

noticeably higher average delays of 53.696 ms, 71.903 ms, 

and 84.076 ms, respectively. The cluster-based mechanism 

increases contention and interference at higher node densities, 
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leading to longer transmission times. Thus, CSSR's 

performance is limited in scenarios with denser node 

populations, and it may benefit from further enhancements to 

handle such challenges effectively. 

Table 6 Results of Delay Analysis 

Node 

Density 
CSSR EEACR 

SESO-

GAODV 

50 33.412 27.905 22.362 

100 41.463 38.945 31.673 

150 53.696 49.244 36.986 

200 71.903 58.581 44.170 

250 84.076 69.681 53.818 

Average 56.910 48.871 37.802 

Evaluating the performance of EEACR across different node 

densities, this research finds that EEACR consistently 

maintains a relatively stable delay performance. At lower 

node densities (50 and 100), EEACR achieves average delays 

of 27.905 ms and 38.945 ms, respectively, showcasing its 

ability to transmit data efficiently with minimal delays. As the 

node density increases to 150, 200, and 250, EEACR 

continues demonstrating stable delay performance, with 

average delays of 49.244 ms, 58.581 ms, and 69.681 ms, 

respectively.  

However, EEACR's delay values are slightly higher than the 

advanced SESO-GAODV protocol, which leverages 

intelligent optimization techniques. Nonetheless, EEACR's 

cooperative communication and energy-efficient routing 

mechanism make it a robust choice for ensuring reliable data 

transmission across various node densities. 

SESO-GAODV is a proposed routing protocol that stands out 

for its impressive delay performance. At node density 50, 

SESO-GAODV achieves the lowest average delay of 22.362 

ms, and this trend continues across higher node densities, with 

average delays of 31.673 ms (100 nodes), 36.986 ms (150 

nodes), 44.170 ms (200 nodes), and 53.818 ms (250 nodes). 

SESO-GAODV's superior delay performance can be 

attributed to its intelligent optimization techniques, which 

enable it to efficiently explore optimal routes and make 

intelligent routing decisions even in densely populated 

networks.  

As the node density increases, SESO-GAODV maintains 

lower delays than CSSR and EEACR, making it a highly 

efficient choice for data transmission in Ad Hoc networks 

with varying node densities. The protocol's ability to 

minimize delays even in challenging high-density scenarios 

positions it as a promising solution for ensuring timely and 

reliable data delivery. 

6. CONCLUSION 

The proposed Sophisticated Eagle Search Optimization-Based 

Gaussian Ad Hoc On-demand Distance Vector (SESO-

GAODV) routing protocol showcases its potential to 

significantly enhance the performance of Mobility Enabled 

Wireless Sensor Networks (ME-WSNs). By leveraging the 

intelligent optimization techniques of Sophisticated Eagle 

Search Optimization and the dynamic route discovery 

capabilities of Gaussian Ad Hoc On-demand Distance Vector 

(GAODV), SESO-GAODV effectively addresses the 

challenges posed by dynamic and rapidly changing network 

topologies. Through extensive evaluations and comparisons 

with existing routing protocols, SESO-GAODV demonstrates 

superior results in reduced delay, increased throughput, 

minimized packet loss, and lower energy consumption. The 

protocol's adaptability to changing network conditions and 

efficient handling of node mobility make it a promising 

solution for ensuring reliable data transmission and optimized 

network performance in ME-WSNs. The energy-efficient 

nature of SESO-GAODV also contributes to a prolonged 

network lifetime, supporting sustainable and seamless 

communication in dynamic and challenging environments. 

SESO-GAODV holds great potential for advancing the 

efficiency, reliability, and sustainability of ME-WSNs, 

offering valuable insights for further research and 

implementation in real-world wireless sensor network 

applications. 

REFERENCES 

[1] A. Islam, K. Akter, N. J. Nipu, A. Das, M. Mahbubur Rahman, and M. 
Rahman, “IoT Based Power Efficient Agro Field Monitoring and 

Irrigation Control System : An Empirical Implementation in Precision 

Agriculture,” in 2018 International Conference on Innovations in 
Science, Engineering and Technology, ICISET 2018, 2018, pp. 372–

377. doi: 10.1109/ICISET.2018.8745605. 

[2] N. Gharaei, Y. D. Al-Otaibi, S. A. Butt, S. J. Malebary, S. Rahim, and 
G. Sahar, “Energy-Efficient Tour Optimization of Wireless Mobile 

Chargers for Rechargeable Sensor Networks,” IEEE Syst. J., vol. 15, 

no. 1, pp. 27–36, 2021, doi: 10.1109/JSYST.2020.2968968. 
[3] J. Martin Sahayaraj and J. M. Ganaseakar, “Relay node selection with 

energy efficient routing using hidden Markov model in wireless sensor 

networks,” Int. J. Netw. Virtual Organ., vol. 19, no. 2–4, pp. 176–186, 

2018, doi: 10.1504/IJNVO.2018.095420. 

[4] L. Rajaoarisoa, N. K. M’Sirdi, M. Sayed-Mouchaweh, and L. Clavier, 

“Decentralized fault-tolerant controller based on cooperative smart-
wireless sensors in large-scale buildings,” J. Netw. Comput. Appl., vol. 

214, p. 103605, 2023, doi: 10.1016/j.jnca.2023.103605. 

[5] F. Niaz, M. Khalid, Z. Ullah, N. Aslam, M. Raza, and M. K. Priyan, “A 
bonded channel in cognitive wireless body area network based on IEEE 

802.15.6 and internet of things,” Comput. Commun., vol. 150, pp. 131–

143, Jan. 2020, doi: 10.1016/j.comcom.2019.11.016. 
[6] T. Waheed, Aqeel-ur-Rehman, F. Karim, and S. Ghani, “QoS 

Enhancement of AODV Routing for MBANs,” Wirel. Pers. Commun., 

vol. 116, no. 2, pp. 1379–1406, Jan. 2021, doi: 10.1007/s11277-020-
07558-x. 

[7] Y. Han, H. Hu, and M. Yao, “Trust-Aware Secure Routing Protocol for 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223428                 Volume 10, Issue 5, September – October (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       832 

     

RESEARCH ARTICLE 

Wireless Sensor Networks,” Jisuanji Gongcheng/Computer Eng., vol. 

47, no. 9, pp. 145–152, 2021, doi: 10.19678/j.issn.1000-3428.0058217. 
[8] G. Valecce, S. Strazzella, A. Radesca, and L. A. Grieco, 

“Solarfertigation: Internet of things architecture for smart agriculture,” 

in 2019 IEEE International Conference on Communications 
Workshops, ICC Workshops 2019 - Proceedings, 2019. doi: 

10.1109/ICCW.2019.8756735. 

[9] L. Guezouli, K. Barka, S. Bouam, and A. Zidani, “A variant of random 
way point mobility model to improve routing in wireless sensor 

networks,” Int. J. Inf. Commun. Technol., vol. 13, no. 4, pp. 407–423, 

2018, doi: 10.1504/IJICT.2018.095031. 
[10] L. Mani, S. Arumugam, and R. Jaganathan, “Performance Enhancement 

of Wireless Sensor Network Using Feisty Particle Swarm Optimization 

Protocol,” ACM Int. Conf. Proceeding Ser., pp. 1–5, Dec. 2022, doi: 
10.1145/3590837.3590907. 

[11] D. Jayaraj, J. Ramkumar, M. Lingaraj, and B. Sureshkumar, “AFSORP: 

Adaptive Fish Swarm Optimization-Based Routing Protocol for 

Mobility Enabled Wireless Sensor Network,” Int. J. Comput. Networks 

Appl., vol. 10, no. 1, pp. 119–129, Jan. 2023, doi: 

10.22247/ijcna/2023/218516. 
[12] J. Ramkumar and R. Vadivel, “Multi-Adaptive Routing Protocol for 

Internet of Things based Ad Hoc Networks,” Wirel. Pers. Commun., 
vol. 120, no. 2, pp. 887–909, Apr. 2021, doi: 10.1007/s11277-021-

08495-z. 

[13] B. Kang, C. Park, and H. Choo, “A Location Aware Fast PMIPv6 for 
Low Latency Wireless Sensor Networks,” IEEE Sens. J., vol. 19, no. 

20, pp. 9456–9467, 2019, doi: 10.1109/JSEN.2019.2925637. 

[14] M. A. Uddin, A. Mansour, D. Le Jeune, and E. H. M. Aggoune, 
“Agriculture internet of things: AG-IoT,” in 2017 27th International 

Telecommunication Networks and Applications Conference, ITNAC 

2017, 2017, vol. 2017-Janua, pp. 1–6. doi: 
10.1109/ATNAC.2017.8215399. 

[15] P. K. Dalela et al., “Constraint-Driven IoT-Based Smart Agriculture for 

Better e-Governance,” Advances in Intelligent Systems and Computing, 
vol. 1077. pp. 177–186, 2020. doi: 10.1007/978-981-15-0936-0_18. 

[16] X. Liu, J. Yu, W. Zhang, and H. Tian, “Low-energy dynamic clustering 

scheme for multi-layer wireless sensor networks,” Comput. Electr. Eng., 
vol. 91, p. 107093, 2021, doi: 10.1016/j.compeleceng.2021.107093. 

[17] M. Boushaba, A. Hafid, and M. Gendreau, “Node stability-based 

routing in Wireless Mesh Networks,” J. Netw. Comput. Appl., vol. 93, 
pp. 1–12, 2017, doi: 10.1016/j.jnca.2017.02.010. 

[18] A. Chowdhury and D. De, “MSLG-RGSO: Movement score based 

limited grid-mobility approach using reverse Glowworm Swarm 
Optimization algorithm for mobile wireless sensor networks,” Ad Hoc 

Networks, vol. 106, p. 102191, 2020, doi: 

10.1016/j.adhoc.2020.102191. 
[19] P. Maheshwari, A. K. Sharma, and K. Verma, “Energy efficient cluster 

based routing protocol for WSN using butterfly optimization algorithm 

and ant colony optimization,” Ad Hoc Networks, vol. 110, p. 102317, 
2021, doi: 10.1016/j.adhoc.2020.102317. 

[20] J. Aranda, D. Mendez, H. Carrillo, and M. Schölzel, “A framework for 

multimodal wireless sensor networks,” Ad Hoc Networks, vol. 106, p. 
102201, 2020, doi: 10.1016/j.adhoc.2020.102201. 

[21] K. Patil, M. Jafri, D. Fiems, and A. Marin, “Stochastic modeling of 

depth based routing in underwater sensor networks,” Ad Hoc Networks, 
vol. 89, pp. 132–141, 2019, doi: 10.1016/j.adhoc.2019.03.009. 

[22] X. Hao, N. Yao, L. Wang, and J. Wang, “Joint resource allocation 

algorithm based on multi-objective optimization for wireless sensor 
networks,” Appl. Soft Comput. J., vol. 94, p. 106470, 2020, doi: 

10.1016/j.asoc.2020.106470. 

[23] M. R. Rahman, M. M. Islam, A. I. Pritom, and Y. Alsaawy, “ASRPH: 
Application Specific Routing Protocol for Health care,” Comput. 

Networks, vol. 197, p. 108273, 2021, doi: 

10.1016/j.comnet.2021.108273. 
[24] P. Ghosh, H. Ren, R. Banirazi, B. Krishnamachari, and E. Jonckheere, 

“Empirical evaluation of the heat-diffusion collection protocol for 

wireless sensor networks,” Comput. Networks, vol. 127, pp. 217–232, 

2017, doi: 10.1016/j.comnet.2017.08.018. 

[25] H. Liu and K. Y. Ki, “Application of wireless sensor network based 
improved immune gene algorithm in airport floating personnel 

positioning,” Comput. Commun., vol. 160, pp. 494–501, 2020, doi: 

10.1016/j.comcom.2020.04.036. 
[26] B. Chakraborty, S. Verma, and K. P. Singh, “Temporal Differential 

Privacy in Wireless Sensor Networks,” J. Netw. Comput. Appl., vol. 

155, p. 102548, 2020, doi: 10.1016/j.jnca.2020.102548. 
[27] J. Lu, L. Feng, J. Yang, M. M. Hassan, A. Alelaiwi, and I. Humar, 

“Artificial agent: The fusion of artificial intelligence and a mobile agent 

for energy-efficient traffic control in wireless sensor networks,” Futur. 
Gener. Comput. Syst., vol. 95, pp. 45–51, Apr. 2019, doi: 

10.1016/j.future.2018.12.024. 

[28] N. Khernane, J. F. Couchot, and A. Mostefaoui, “Maximum network 
lifetime with optimal power/rate and routing trade-off for Wireless 

Multimedia Sensor Networks,” Comput. Commun., vol. 124, pp. 1–16, 

2018, doi: 10.1016/j.comcom.2018.04.012. 

[29] N. V. S. S. R. Lakshmi, S. Babu, and N. Bhalaji, “Analysis of clustered 

QoS routing protocol for distributed wireless sensor network,” Comput. 

Electr. Eng., vol. 64, pp. 173–181, Nov. 2017, doi: 
10.1016/j.compeleceng.2016.11.019. 

[30] F. Ullah, M. Zahid Khan, M. Faisal, H. U. Rehman, S. Abbas, and F. S. 
Mubarek, “An Energy Efficient and Reliable Routing Scheme to 

enhance the stability period in Wireless Body Area Networks,” Comput. 

Commun., vol. 165, pp. 20–32, 2021, doi: 
10.1016/j.comcom.2020.10.017. 

[31] S. Doostali and S. M. Babamir, “An energy efficient cluster head 

selection approach for performance improvement in network-coding-
based wireless sensor networks with multiple sinks,” Comput. 

Commun., vol. 164, pp. 188–200, 2020, doi: 

10.1016/j.comcom.2020.10.014. 
[32] D. Wang, J. Liu, and D. Yao, “An energy-efficient distributed adaptive 

cooperative routing based on reinforcement learning in wireless 

multimedia sensor networks,” Comput. Networks, vol. 178, p. 107313, 
2020, doi: 10.1016/j.comnet.2020.107313. 

[33] A. Rajini, N. Nithya “Hybrid Intrusion Detection System in IOT 

Network Environments” Compliance Engineering Journal, vol.10, 
no.11, pp.541-548, 2019. 

Authors 

Mr. V. Veerakumaran is an Assistant Professor in 
Department of Computer Science at Nehru Arts and 

Science College (Autonomous), affiliated with 

Bharathiar University, Coimbatore. He has twelve 
years of teaching experience. He obtained M.C.A., 

degrees from Bharathiar University, Coimbatore, 

Tamil Nadu, India. He has attended/presented the 
research papers in various Seminars, Conferences 

and Workshop at National and International level. He 

has made significant contributions to research in the 
field of Networking. Area of focuses on Data Mining, Artificial Intelligence, 

Data Science, Machine learning and Computational Intelligence. 

Dr. Aruchamy Rajini holds a doctorate degree in 
Computer Science from Avinashilingam Institute for 

Home Science and Higher Education for Women, 

Coimbatore. Presently, she is an Assistant Professor 
in the Department of Computer Science (Aided) in 

NGM College, Pollachi, with 24+ years of teaching 

experience. She has published several research 
papers in referred journals and conferences. She has 

attended many FDP, Workshops, Webinars and 

Training Programs. She acted as a session 
chairperson and resource person in various colleges, and also has edited 

several book chapters. Her areas of research interest include Networking, 

Data Mining and Image Processing. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223428                 Volume 10, Issue 5, September – October (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       833 

     

RESEARCH ARTICLE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to cite this article: 

V. Veerakumaran, Aruchamy Rajini, “Performance Enhancement of Mobility-Enabled Wireless Sensor Network Using 

Sophisticated Eagle Search Optimization-Based Gaussian Ad Hoc On-Demand Distance Vector (SESO-GAODV) Routing 

Protocol”, International Journal of Computer Networks and Applications (IJCNA), 10(5), PP: 816-833, 2023, DOI: 

10.22247/ijcna/2023/223428.   

 

 

 

 

 

 


