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Abstract – Delivering shared data, software, and resources 

across a network to computers and other devices, the cloud 

computing paradigm aspires to offer computing as a service 

rather than a product. The management of the resource 

allocation process is essential given the technology's rapid 

development. For cloud computing, task scheduling techniques 

are crucial. Use scheduling algorithms to distribute virtual 

machines to user tasks and balance the workload on each 

machine's capacity and overall. This task's major goal is to offer 

a load-balancing algorithm that can be used by both cloud 

consumers and service providers. In this paper, we propose the 

‘Bat Load’ algorithm, which utilizes the Bat algorithm for work 

scheduling and the Honey Bee algorithm for load balancing. This 

hybrid approach efficiently addresses the load balancing 

problem in cloud computing, optimizing resource allocation, 

make span, degree of imbalance, cost, execution time, and 

processing time. The effectiveness of the Bat Load algorithm is 

evaluated in comparison to other scheduling methods, including 

bee load balancer, ant colony optimization, particle swarm 

optimization, and ant colony and particle swarm optimization. 

Through comprehensive experiments and statistical analysis, the 

Bat Load algorithm demonstrates its superiority in terms of 

processing cost, total processing time, imbalance degree, and 

completion time. The results showcase its ability to achieve 

balanced load distribution and efficient resource allocation in the 

cloud computing environment, outperforming the existing 

scheduling methods, including ACO, PSO, and ACO and PSO 

with the honey bee load balancer. Our research contributes to 

addressing scheduling challenges and resource optimization in 

cloud computing, providing a robust solution for both cloud 

consumers and service providers. 

Index Terms – BAT Load Algorithm, Bat Algorithm, Cloud 

Computing, Honey Bee Algorithm, Load Balancing, Resource 

Allocation, Task Scheduling. 

 

1. INTRODUCTION 

In recent times, cloud computing has been a critical revolution 

in network technology. It is an on-demand computing system 

that uses virtualization systems to deliver cloud resources to 

customers in the form of virtual machines over the Internet. 

The underlying concept behind distributing hardware and 

software resources is, cloud computing entails delivering 

associated services based on consumer demands [1]. The 

cloud computing architectural style consists of three different 

categories, the first of which is "Software as a Service" 

(SaaS). Moreover, the system can offer platform users 

software assets designed in the SaaS architectural style to 

make it easier for users to use. Platform as a Service (PaaS) is 

the second type, and it allows individuals to create their 

projects through the platform. Infrastructure as a Service is 

the final type (IaaS) [2]. Figure 1 depicts the cloud computing 

architecture. 

 

Figure 1 Architecture of Cloud Computing [3] 
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Cloud computing, as a versatile innovation, is an excellent 

choice for organizations looking to build their private cloud. 

Users benefit greatly from cloud computing strategies because 

information can be accessed from any location at any time. 

This allows for quicker application retrieval with less 

downtime, allowing for efficient data recovery services. The 

cloud is easy to scale, allowing businesses to add or remove 

resources as needed. Cloud computing provides numerous 

advanced data security mechanisms, such as unlimited storage 

capacity and automatic Software Updates [4]. Cloud service 

providers offer a wide range of applications in the fields of art 

(Adobe Creative Cloud), business (Salesforce, Paypal), data 

storage systems and backup (Google G Suite), education 

(AWS, Tablets), entertainment (Vortex, PlayStation Now), 

management (Evernote), social networking sites (Yammer), 

and so on. Organizations can now utilize big data analytics to 

gather valuable information and cloud services for product 

design, testing, and deployment. 

Cloud computing system offers numerous benefits to 

consumers, but several difficulties and issues persist. Because 

time is short in these private clouds, the final goal is to 

maximize resource utilization while also providing an assured 

service to clients. The problem of job scheduling is 

considered one of the most recognized topics in a cloud 

computing environment. Job scheduling entails assigning the 

user's tasks to the appropriate resources made available by the 

service provider [5]. It is the formula of assigning machines 

VMR= {VMR1, VMR2 …， VMRm} to activities CA= 

{CA1, CA2 …， CAn} over time for accomplishing the 

chosen goal. In a cloud computing environment, job 

scheduling is necessary to achieve load balancing. The 

primary objective of this study is to introduce a new load-

balancing approach in a cloud system. Load balancing is 

essential for allocating load to cloud servers for getting higher 

throughput and better resource utilization. The goal of it is to 

keep all servers occupied and to make greater use of resources 

effectively [6]. An efficient load balancing algorithm takes 

into account variables including the type of service, load 

requirements, and processing capacity. The various load 

balancing and scheduling techniques used in cloud computing 

are depicted in Figure 2. 

Load balancing methods are distributed into two types: 

dynamic and static scheduling techniques. The dynamic 

scheduling technique is ideal for real-time task assignments in 

which the system will allocate tasks without having to know 

the job completion time [7]. Using a priori known 

information, static scheduling approaches like min-min, max-

min, and Suffrage algorithms schedule activities more 

efficiently than dynamic scheduling strategies [8]. As a result, 

static scheduling methods outperform dynamic ones in terms 

of performance and load balancing. However, a few load 

balancing schemes wherein activities accomplished by 

deprived nodes reduce a significant number of heterogeneous 

tasks exist. 

 
Figure 2 Different Load Balancing Scheduling Algorithms [9] 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223310                 Volume 10, Issue 4, July – August (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       496 

     

RESEARCH ARTICLE 

The motivation of the research is the development of a job 

scheduling procedure that takes into account and as a result, a 

honey bee algorithm is presented to assign tasks more 

effectively in various cloud computing environments. The 

performance of task scheduling algorithms such as ACO, 

PSO, and BA are compared with each other. The proposed 

task scheduling algorithm outperforms previous algorithms in 

terms of time, load balancing, and resource utilization. It has 

the potential to boost the scheduling of cloud computing.  

The following is how this study is set up. Related work is 

included in Section 2. Section 3 describes conventional 

methods such as ant colony optimization, particle swarm 

optimization, and the BAT algorithm. The proposed tasks are 

fully described in Section 4. Results in numerical form for the 

suggested task are shown in Section 5. In Chapter 6, which 

wraps up the investigation, findings are presented along with 

suggestions for potential future extensions. 

2. LITERATURE REVIEW 

In this part of the paper, the research progress on 

accomplishing high computation in cloud applications based 

on various business needs, job scheduling, resource 

utilization, load balancing, and so on is presented. 

R. Kumari et al. [10] evaluate the effectiveness of the 

makespan and CPU consumption measures; we offer a job 

scheduling approach for a variety of independent jobs in our 

study by combining the Max-min algorithm and particle 

swarm optimization. The conventional PSO technique takes 

some time to locate the overall optimal solution because the 

initial population was generated randomly. This means that 

the max-min algorithm produces outputs of potential task 

sequences that can be assigned to virtual machines depending 

on appropriateness criteria. The PSO algorithm uses the 

findings as input. CLOUDSIM is used in the suggested 

method to locate the best answer. The proposed model's 

completion time parameter is 5.01% better and its CPU 

utilization rate is 3.63% higher than that of conventional 

methods.  

By combining the gravitational search concept with ant 

colony optimization, S. Rani et al. [11] devised a hybrid 

technique. This not just managed to avoid the early 

convergence problem of ACO, but also achieved the 

distributed nature that GSA did not have. The outcomes are 

obtained using the CloudSim toolkit. It is demonstrated that 

the proposed algorithm reduces task completion time and 

allocates equivalent loads to every virtual machine, resulting 

in load balance and reduced resource utilization. It can also 

assess machine capabilities and efficiently assign tasks to 

them, boosting their efficiency. The management interface for 

storage, memory, virtual machines, and bandwidth is one of 

the features included in the CloudSim architecture layers that 

facilitate simulation and modeling of the cloud environment. 

It also provides hosts, dynamic system state, and management 

of application execution for the VM. In a grid computing 

environment, it is more difficult to distribute resources to 

several workloads than in network computing systems. 

A novel hybrid CR-AC technique was demonstrated by A.A. 

Nasr et al. [12] to fix a scheduling problem with a deadline 

constraint. A modified chemical reaction optimization 

technique discovers an optimal outcome in minimal time 

complexity under deadline constraints, and the ACO 

algorithm minimizes overall cost and enhances the quality of 

the solution. The CR-AC arranges a significant amount of 

tasks into VMs while taking into account multiple resource 

constraints, improving the overall system's performance. The 

CR-AC method generates high-quality solutions at a lower 

cost than CRO, ACO, modified PSO, and cost-effective 

genetic algorithm (CEGA), making it more efficient than 

those methods. This particular ACO algorithm decreased 

overhead issues, but the end result was a subpar reaction time. 

These algorithms, however, are typically rigid and unable to 

adapt to dynamic changes in the properties while being 

executed. 

The ant colony system is reconsidered by Xiang et al. [13], 

and a novel approach for ACS-based job scheduling is 

presented. To accomplish scheduling, greedy minimum 

planning for machine allotment is implemented at the same 

time. Investigations on synthetic and real-world application 

graphs show that Greedy-Ant surpasses the current algorithms 

speed by 18%.  Xiang, B. et al. [14] in their study suggested 

an upgraded version of the bee colony algorithm with the goal 

of security and quality optimization of arranging tasks in a 

cloud system. The job is allocated to the most suitable virtual 

machine based on the customer's adequate security level and 

service quality policies. Each data center's storage of hive 

tables helps to balance the demands on virtual machines while 

lowering costs, makespan, and security threats. This algorithm 

outperforms the traditional ABC algorithm in terms of 

security and cloud user service quality. Based on this study's 

explicit explanation of the ABC algorithm's customizable 

fitness function, a workflow program may be selected that has 

a minimum cost, a minimum makespan (completion time), or 

any value in between. To solve bottleneck issues and achieve 

a shorter makespan, a heuristic was created. 

In Kruekaew et al. [15] research, a methodology that utilizes 

heuristic job scheduling with Artificial Bee Colony for VMs 

is designed to enhance data load balancing in cloud networks. 

The proposed approach is compared to ACO, PSO, and 

improved PSO techniques. The research was carried out using 

four different datasets to assess HABC effectiveness. HABC 

with Largest Job First heuristic algorithm (HABC LJF) 

provides the best scheduling efficiency. It introduced a more 

advanced PSO based approach by defining the cost vector and 

limit of the Initialization Solution and the Find Solution Space 
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in the Exist Solution Space. Although this strategy has proven 

successful, it is rather complicated. 

Authors examine the load balancing problem in multicast 

using network coding in the study of Xing et al. [16]. The 

food source initialization (FSI), NSL-based selection (NSL-

S), and neighborhood search (NS) schemes are all extensions 

of the modified artificial bee colony algorithm (MABC). The 

three extensions have demonstrated their ability to 

significantly boost the overall efficiency of the proposed 

technique. In terms of solution quality, MABC outshines 

binary ABC (binABC), binary-coded ABC (BABC), and 

modified discrete ABC (MDisABC) algorithms. This 

algorithm improves ABC optimization, reduces average 

operation time, increases resource utilization ratio, and 

competently supplies appropriate resources to user job. 

However, it is ineffective for large-scale optimization. 

Rani et al. [17] describe the Modified-HBB-LB approach, 

which employs modified-Blowfish optimization to retrieve 

cloud resources employed at work to balance burden. In 

comparison to HDLB, the migration effort is reduced by 30%, 

25%, and 20%, respectively, by bee load balancing and 

Modified-HBB-LB. In terms of completion time, completion 

time, and reaction time, Modified-HBB-LB maintains a high 

degree of efficiency of 3–5%. 

Jeyalaksshmi et al. [18] proposed a Modified Round Robin 

and Modified Honey Bee Methods for efficient load balancing 

depending on foraging interaction to regulate load. Jobs taken 

from overcrowded VMs are referred to as honey bees. MHBA 

removes jobs from virtual overloaded devices and routes them 

to previously used VMs. MRRA is employed for jobs that 

have no set priority. It selects available VMs for higher-

priority tasks based on each VM's current job. The suggested 

methodology reduces reaction time and data center processing 

time. This algorithm's key discovery was that jobs were 

assigned to virtual machines in order to reduce waiting time 

and increase system throughput. 

Babu L.D. Dhinesh et al. [19] created a new program that 

employs the LBMM (Load Balance Min-min) approach to 

distribute jobs among resources and chooses the best resource 

based on bee foraging behavior to finish the task in the lowest 

amount of time. The ABC method, which was modeled after 

how bees behave, helps balance out VM loads (overloaded & 

underloaded) and increase throughput. The suggested method 

can be utilized for thorough resource planning since it 

maximizes the use of available resources, operates at its peak 

efficiency, responds quickly, is scalable, and is durable.  

D. Chaudhary et al. [20] described job scheduling for data 

processing in cloud computing using cloudlets and VMs. PSO 

approach for load balancing is focused on particle fitness 

values and forces acting on them. The proposed New PSO 

approach implemented a novel cost estimation method on 

cloudlets for overall cost optimization and produces more 

accurate and cost-effective results than PSO. Future work will 

include developing a new objective method for more cost 

optimization in the cloud by utilizing various emulators and 

hosts. 

The authors advocate secure scheduling protocols and smart, 

variable neighbourhood PSO algorithms for cloud computing 

to make the best use of resources. With little task scheduling 

decision time, J.A.J. Sujana et al. [21] offers automatic IaaS 

provisioning. It offers a compromise between security, the 

shortest possible job time, and cloud task cost. The encoding 

methods SPSO and SVNPSO use were created for particle 

encoding to tackle multi-objective problems. Because they 

require fewer repetitions than earlier techniques, these 

algorithms perform better. To assess the effectiveness of the 

metaheuristics, a workflow scheduling algorithm that 

considers security and cost was chosen. 

Authors introduce Cost-effective fault-tolerant scheduling in 

P. Guo et al. [22] to decrease execution costs while attempting 

to ensure that more jobs meet deadlines. The backup approach 

is used to obtain fault tolerance. CEFT iteratively optimizes 

job mapping and resource management with PSO. To boost 

the deadline guarantee ratio, the rescheduling technique is 

used. To make the scheduling process more flexible and less 

dependent on local optimal, CEFT makes use of PSO's 

benefits. 

In their hybrid bat algorithm proposal, Zheng et al. [23] 

approach avoids becoming stale in local minima by 

classifying bat populations. The search volume and pulse 

firing rate can be increased by using back propagation 

systems that leverage paired gradient mechanisms and mean 

square error. Furthermore, the Levy Flight-based random 

walk strengthens the algorithm's capability for global 

navigation while improving the best outcome. ACO, GA, 

PSO, and CSA algorithms are outperformed by the bat 

algorithm in terms of throughput, imbalance, and completion 

time.  

Raj et al. [24] proposed a Modified Bat Algorithm that makes 

it possible for load balancing among VMs. Both "Overload 

Optimal VM" and "Balanced VM" are MBA variations. In 

comparison to a traditional BA, the MBA offers services that 

are both efficient and have unmistakable advantages. The 

work laid down by Barzegar et al. [25] provides PSO Bat-

Greedy, a hybrid technique that decreases cost and time while 

increasing resource consumption. Resource utilization 

enhances by 15% and 5%, respectively, when compared to 

PSO and PSO-Bat algorithms. 

Gu et al. [26] presented an Optimization heuristic algorithm 

based on the bat algorithm to schedule workflow in cloud 

network environments. By contrasting all local optimal 

solutions, EATTO determined the best global solution. It 
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reduces the energy usage and processing time of complex 

scheduling jobs by increasing output without compromising 

the Quality of Service. 

To choose the best collections of servers with quick 

convergence functionality, the suggested LB-RC method by 

Adhikari et al. [27] used clustering with Bat optimization. 

This lessens job execution time and duration while achieving 

the deadline. LB-RC balances the load of the cloud data 

center over time and efficiently utilizes the resources. Studies 

on two distinct synthetic datasets reveal that the novel 

approach performs better than conventional algorithms in 

producing work deployment plans and is more cost-effective 

to execute while meeting QoS restrictions. It primarily 

emphasizes system throughput. Using interactions between 

co-allocated jobs, it chooses the host with the highest 

throughput. 

The Bat algorithm detects prey using echolocation to create a 

load-balancing framework. The suggested approach is based 

on the Naive-Bayes classifier, which is used to categorize 

VMs, which are then used to upgrade migrated tasks with data 

used by the bats. Based on the priority list in the queue, jobs 

from heavy-loaded VMs migrate to light-loaded VMs. The 

job is considered independent and non-preemptive by Load 

Balancing BA, and Quality of Service is only kept as a 

priority. It outperforms conventional methods like Dynamic 

load balance and round robin in terms of response, 

completion, and migration times presented by Ibrahim et al 

[28].  

The well-known NP-complete problem of cloud computing 

load balancing for multifunctional scenarios is one issue with 

mobile cloud computing advances. Maximizing throughput, 

minimizing span, and conserving energy are among the most 

crucial objectives. To evenly distribute the system's load, a 

load balancer is necessary. To support priority-based 

scheduling, load balancers use meta-heuristics. We employed 

the "Simple BAT Algorithm Based on Bees" in this 

investigation because it is excellent at balancing load while 

utilizing available resources. To increase the capacity of 

virtual computers in data centers, the metaheuristic algorithm 

utilized in this study is an improvised BAT algorithm based 

on honeybees. The bee-based improvised BAT algorithm is 

adaptable, straightforward, and simple to use. Additionally, a 

major problem is successfully addressed. The same holds for 

the best ways to deal with complicated issues and offer 

reaction times. 

3. TRADITIONAL ALGORITHMS 

3.1. Ant Colony Optimization 

Using this approach, we need to converse to every possible 

arrangement while moving across parameter space in search 

of the best configurations. Ants lay out pheromones to guide 

one another toward resources while assessing their fitness. To 

help additional ants discover better solutions throughout 

subsequent reproduction cycles, the reenacted "ants" similarly 

record their places and the nature of their responses. As seen 

in Figure 3, a fixed set of ants are first produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Ant Colony Optimization 

Each secretes pheromones by the caliber of the meal. 

Following that, in an ongoing effort to discover a fix, it 

gathers and iteratively updates information on all ants with 

altered pheromones. The pheromone trail connects all edges 

and shortens to become the shortest path if pheromone 

deposition is vigorous. During their quest, other ants can use 

the pheromone trail as a repository. The last update of the 

solution space occurs for all ant pheromone trajectories [29]. 

Algorithm 1 depicts the Ant Colony Optimization. 

1. Initialize τιψ ant movement and ηιψ, ∀(ιψ) 

pheromones.  

2. Repeat step 2 for each ant in state k. 

Population Initialization 

Start 

Start a random search 

and leave pheromone 

Create and update the candidate 

solution by adding information to the 

Pathway 

Find fitness of the 

solution 

Optimal 

solution 

End 
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3. Determine the state to move into with a high 

degree of probability.  

4. Till ant k has finished solving its problem. 

5. end for loop 

6. Do for each ant movement (τιψ) 

7. Calculate the fitness function 

8. The trail matrix should be updated. 

9. End for 

10. If not, proceed to step 2 (end test). 

Algorithm 1 Ant Colony Optimization ACO 

3.2. Particle Swam Optimization (PSO) 

Particle swarm optimization constantly tries to enhance 

scheduling arrangements to a certain percentage of value to 

address difficulties. By creating a population of potential 

assemblies, here called particles, and moving these particles 

to positions in the search space according to a simple formula 

and motion of the molecule, it solves a problem. A population 

collection of particles is initially formed with information 

about their location and speed. The particle's initial velocity is 

chosen at random, and it is adjusted later in the battle based 

on each participant's intelligence. This pbest information is 

replaced with the global best information, which is the 

fighting's leading particle. Moreover, it just needs a small 

number of parameters and has a rapid convergence rate [30]. 

As seen in Figure 4, a fixed set of PSO is first produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Particle Swam Optimization 

Algorithm 2 depicts the Particle Swarm Optimization. 

1. Set the particle's dimensions to d 

2. Set the particle population's initial position and velocities 

at random. 

3. Determines each particle's fitness value. 

4. Compare the fitness value of the particle with the pbest of 

the particle. Set pbest to the current value and location if 

the current value is higher than pbest. 

5. Compare the particle's fitness value to the global gbest. Set 

gbest to the current value and location if the current value 

is above it. 

6. Update the particle's position as well as its velocity 

7. Repeat from step3until stopping criterion is met 

Algorithm 2 Particle Swam Optimization (PSO) 

3.3. BAT Algorithm 

An optimization approach having a random probability 

distribution that can be statistically analyzed is the BAT 

behavior-inspired optimization algorithm. It is based on how 

BATs approach their prey, which is similar to spotting 

machines with less load. Uncertain needs for qualitative 

notions and their numerical representation are a reflection of 

fuzziness, unpredictability, and their interrelationship. By 

applying the BAT method, the waiting time for a job is 

reduced as the convergence rate rises. The simulation 

demonstrates that the BAT method successfully optimizes 

functions. To increase the pace of convergence and accuracy, 

characteristics including population information, 

communication mechanisms, and random flying of BATs are 

explored and exploited. BAT prey is successfully located via 

echolocation. BAT uses echolocation to determine the 

location, range, and direction of its prey [28]. As seen in 

Figure 5, a fixed set of BAT is first produced. Algorithm 3 

depicts BAT Optimization. 

1. Initialize the Pi and  Vi bat populations. 

2. Explain the pulse frequency PFi at Pi. 

3. Establish the loudness  Li and pulse ratesPRi. 

4. for (iterations<Max_iterations) 

5. Produce the solutions by modifying the frequency, 

velocities, and positions. 

6. Use the fitness function to evaluate the solutions. 

7. if randd >rr . 

8. Select solution from the best solutions. 

9. Produce a local solution based on the solution chosen from 

the best.  

Population Initialization 

Apply fitness function of pbest 

Find gbest among entire population 

Assign task to selected gbest 

Optimal 

solution 

End 

Start 
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10. If 

11. Create a novel solution by randomly flying 

12. If (randd Ai & f(Pi) & f(P*)) 

13. Agree the new solutions 

14. Boost PRi. lower F. 

15. end if 

16. Determine the top P* end currently available by ranking 

the bats.               

17.  end while 

18. Return Bat_Solutions 

Algorithm 3 BT Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 BAT Algorithm 

4. PROPOSED WORK 

In cloud computing environments, load balancing between 

virtual machines (VMs) is a challenge that this white paper 

aims to address. The proposed Honey Bee based improvised 

BAT algorithm, however, is prone to premature convergence 

when trying to find a workable solution to a particular 

problem since it is so readily trapped in local optima. An 

algorithm inspired by the Bat Algorithm was devised and 

implemented as a result of the suggested method. To 

determine the optimum solution, it uses magic to compute the 

distance between the artificial bat and the answer. The classic 

bat algorithm has been enhanced with an emphasis on 

parameter initialization, parameter updating, hybridizing with 

other methods, and transferring continuous space problems to 

binary space problems. In this research study, we suggest a 

method for calculating distance, which is similar to the 

approach taken by actual bats while shooting at their food. We 

also applied a modified version of the BAT method to load 

balance on the cloud. The four essential steps of the modified 

bat algorithm are parameter initialization, calculating fitness 

values, choosing the best virtual machine, and preventing VM 

overload. Here, the job is represented by the bat, and the 

target or bait is represented by the virtual machine. Bats hunt 

for items that are high in energy. More fitness values are 

correlated with higher energy levels, and more fitness values 

are correlated with lower distance values. Jobs are 

consequently dispatched to virtual machines that are located 

closer to the customer.  A load balancing algorithm based on 

bees is proposed using the BAT load algorithm. The basic 

goal is to evenly spread the workload across numerous 

network links so as to prevent resource under- and overuse. 

By allocating incoming activities to virtual machines (VMs) 

that satisfy two requirements, this is accomplished. The 

difference between the virtual machine's processing time and 

the mean processing time of all virtual machines is less than a 

threshold, and the number of jobs it is currently processing is 

less than the number of jobs being processed by other virtual 

machines. Traditional load balancing techniques suffer from a 

number of drawbacks in cloud systems because of the shifting 

dynamics of the workload, host overload, and throughput 

reduction. In order to increase resource utilization and 

execution speed, this paper proposes a load balancing method 

that can seamlessly distribute dynamic workloads among all 

cloud hosts. Distribute all accessible virtual machines with 

incoming operations. The algorithm distributes tasks to the 

VM with the least load in order to ensure fairness and prevent 

congestion, using the difference between this VM's processing 

time and the average processing time of all VMs as the 

threshold. To avoid VM overutilization and hunger during 

task allocation, the proposed algorithm's key limiting factor 

for VM processing time variation. The standard deviation for 

preserving load balance throughout the system also has a 

significant impact. In cloud computing, the main issue is how 

to allocate resources for tasks efficiently when choosing the 

best virtual machine. Before choosing the right virtual 

machine, it is important to consider the resources required to 

perform each task and the available resources, or available 

Population Initialization 

Apply fitness function on 

population 

Update the location of the bats 

Rank the bats based on the fitness 

value, find the current best 

solution and update the loudness 

and pulse emission rate 

Optimal 

solution 

End 

Schedule using BAT 

Start 
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virtual machines. In this paper, a comparison of three 

optimization algorithms is conceptualized, and boosted the 

performance of those algorithms with honey bee load 

balancing to provide effective cloud scheduling and load 

balancing.  The first approach enhances the effectiveness of 

cloud scheduling and load balancing by combining the ant 

colony optimization algorithm and the bee algorithm. The 

algorithm schedules jobs using the ant colony optimization 

technique, and it calculates the load using the bee algorithm. 

The goal is to reduce a given job schedule's makespan and 

processing costs while enhancing load balancing based on 

workload. The proposed hybrid solution combines the Honey 

Bee load balancer with ACO algorithm schedules to create a 

new, efficient hybrid strategy. The second algorithm 

combines the particle swam optimization algorithm with 

honey bee load balancing. PSO offers a population-based 

search method that moves particles around in the search space 

to find the optimal solutions. After each iteration, each 

particle adjusts its position based on the best point 

encountered by itself and experience from the nearby 

particles. Each population is a schedule of virtual machines 

and tasks. After reaching maximum iterations best load-

balancing optimized solution is generated. The third algorithm 

associates the BAT algorithm with the Honey Bee load 

balancer. The behavior of the bat algorithm defines 

adjustments in its characteristics, including position, velocity, 

frequency, loudness, and pulse emission rate.  In this method, 

bats fly around a cloud in pursuit of prey as their velocity, 

frequency, and wavelength are varied. To find prey and avoid 

obstacles, it uses the echolocation of sonar pulses. The prey in 

this symbolizes tasks. Each bat in this finds the task that is 

closest using the fitness function for each object, finds new 

fitness using the optimization feature, and assigns the 

assignment.  In order to determine which resource within the 

cloud network is best ideal to use, the Honey Bee load 

balancer is used. To distribute the load in the cloud system in 

an effective and scalable way, load balancing is a critical 

concern. Moreover, it guarantees that each computing 

resource is allocated properly and equally. Response time is a 

crucial challenge for every engineer to create an application 

that can maximize total throughput in the cloud environment, 

whereas all the existing algorithms that have been studied 

primarily consider the reduction of overhead, reducing 

migration time, enhancing performance, etc. Many traditional 

methods which lack optimal scheduling and load balancing 

lead to more processing costs. The proposed method, 

however, is more efficient in managing the cloud resource 

needs and reduces the response time for specific workloads. 

Figure 6 depicts the proposed flowchart. Algorithm 4 depicts 

the Honey Bee Load Balancer algorithm. 

1. VmList=Optimized_Solution.VmList 

2. TaskList=Optimized_Solution.TaskList 

3. while(i< VmList.length) 

LoadList = TaskList. size ∗ cloudletsgroupsonvms_len
VmMipsi

⁄  

4. Cap_VMi = PENum ∗ PEMIPS + VmBW 

5. End While 

6. while(i< VmList.length) 

7. 
TimeTaken_VMi = LoadListi

Cap_VMi
⁄  

Deviation = √
1 

No_Tasks
∑(Time_VMi − ATimeVM)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

N

i=0

 

8. If (deviation>ATimeVM) 

9. SYSTEM IS IMBALANCED 

10. Flag=false 

11. Else 

12. SYSTEM IS BALANCED  

13. Flag=true 

14. End IF      

15. Deviation_VM=(double)sd_vms.get(j); 

a. if(Deviation_VM >ATimeVM) 

b. OverloadedVM 

c. Overloaded_flag=true 

d. else 

e. UnderloadedVM 

f. Underloaded_flag=true 

16. Endif     

17. Sort OverloadedVM and UnderLoadedVM 

18. Clusters=MakeClusters(TaskList)   

19. While(TaskList!=0) 

20. If (overloaded_flag=true) 

a. Choose the task assigned to overloaded machines and 

assign to the low loaded machines 

b. sendNow(underloadedVM, 

CloudSimTags.CLOUDLET_SUBMIT,TaskCluster1); 

21. Else 

a. Choose the task assigned to underloaded machines and 

assign to the more loaded machines 

b. sendNow(OverloadedVM, 

CloudSimTags.CLOUDLET_SUBMIT,TaskCluster2); 

22. EndIF 

Algorithm 4 Procedure for Honey Bee Load Balancer 
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Figure 6 Flowchart of Proposed Algorithm 
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In this research, we proposed Honey Bee based improvised 

BAT algorithm for load balancing method. These 

characteristics serve two key purposes for the algorithm. Set 

priorities to prevent allocating overloaded virtual machines. 

Each VM's load, which mostly depends on the command 

duration of the work, is taken into consideration while 

determining the priority of each job's allocation to the 

appropriate VM. The approach achieves load balancing across 

virtual machines by limiting more assignments to overworked 

virtual machines whose processing times vary above a 

threshold. The components of cloud computing are a 

collection of data centers, each of which is made up of a 

collection of m hosts and j virtual machines. Work 

distribution is the algorithm's subsequent phase. The 

population size is randomly and uniformly distributed across 

various VMs. Where i stands for the population and j for the 

current task, Bat represents the solution as given by Bat with 

position Xij2=[0…..n] and velocity Xij. The bat must now 

find prey more quickly in the dimension it inhabits after 

coming up with a novel solution. The update amount and 

pulse emission rate are formed by uniformly distributed 

random numbers that are generated. Data should be moved to 

the overloaded virtual machines as soon as it is known that 

some virtual machines are being overloaded by several 

processes. These characteristics serve two key purposes for 

the algorithm. Set priorities to prevent allocating overloaded 

virtual machines. Each VM's load, which mostly depends on 

the command duration of the work, is taken into consideration 

while determining the priority of each job's allocation to the 

appropriate VM. The approach achieves load balancing across 

virtual machines by limiting more assignments to overworked 

virtual machines whose processing times vary above a 

threshold. 

We need to gather data since the last allocation and 

deallocation in order to identify which jobs to assign to which 

virtual machines. If there is honey in the garden, the 

procedure is identical to which sources the bees should visit. 

There are two recognized categories of information. The first 

type is threshold data, which gauges host availability in 

response to host changes. The virtual machine level does the 

same availability tests. Second: Priority information with up-

to-date load data. Processing time at the host level and job 

count at the virtual machine level are two examples of load 

metrics. The first job is taken out of the queue once the job 

locates a list of available hosts. To obtain another job from the 

waiting queue, send the control flag. This activity might be 

accepted by several hosts. Therefore, depending on the 

priority information, the task should identify the best host. 

The host with the lowest load should be taken into account. 

The presence of a host indicates the availability of one or 

more virtual machines. The list of virtual machines that are 

accessible on a given host is then determined by rules at this 

level. The chosen host may have numerous virtual machines 

that can take the requested job. Examine the virtual machine's 

workload, the host and virtual machine's combined processing 

speed, and the hosts' and virtual machines' respective overload 

conditions. Give each virtual machine you find a task. 

5. RESULTS AND DISCUSSIONS 

This section discusses the analyzed results and assesses the 

performance of optimization algorithms, including Ant 

Colony Optimization (ACO), BAT algorithm, Particle Swarm 

Optimization (PSO), ACO Load, PSO Load, and the 

(proposed) BAT Load (Honey Bee-based BAT Load) 

algorithm in a cloud computing environment. Table 1 

provides the simulation parameters used in the study. 

Table 1 Simulation Parameters 

Cloudsim 

Objects  

Input Parameters  Value  

Task(Cloudlet)  Len_Task 1000-5000  

#Tasks 2400-4000  

Virtual 

Machine  

#Vms  50  

MIPSVMs 350-1000  

RAMVMs 1024-4048  

BWVMs 100-1200  

Scheduler_Jobs Time shared and 

Space shared  

#Pes 1-3 

Datacenter #Datacenter 

 

10 

# Host  2-10 

Scheduler_VM Time shared and 

Space shared  

The proposed method was executed with conventional 

algorithms Ant Colony Optimization, BAT algorithm, Particle 

Swarm Optimization, and the same algorithm with Honey Bee 

Load balancer in the identical dataset by the results. We 

determined the degree of imbalance, the execution time, the 

overall processing time, and the completion time for this 

investigation. 

5.1. Optimizing Test Set 

To improve scheduling in the cloud network, both the 

conventional BAT algorithm and the newly proposed BAT 

Load algorithm are applied. Assume that there are 100 people 

in the population, 100 extreme iterations, 0.5 burst firing rate, 

and frequencies of 1 and 0 for the maximum and minimum. 

Each algorithm runs through 100 iterations based on the 

values for the aforementioned parameters. 

5.2. Makespan Time 

It is the time it takes for all tasks in a sequence to complete, or 

the time it takes for the last task to complete. Furthermore, it's 
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obvious to see that as there are more clouds, the proposed 

BAT Load's standard deviation gets lower and smaller. 

Concerning other algorithms, the proposed BAT Load has the 

lowest standard deviation. With an increase in Cloudlet, its 

value falls to 0, showing that the data divergence and 

deviation are the least and that the time taken is also the 

shortest. Equation (1) can be denoted as 

𝑀𝑆𝑇 = max {𝐶𝑇𝑘𝑙|𝑘 ∈ 𝑇. 𝑘 = 1,2 … . . 𝑛 𝑎𝑛𝑑 𝑙 ∈  𝑉𝑀. 𝑙 =
1,2, … . . 𝑚}                                                                  (1) 

Table 2 shows the results after running each algorithm for 100 

iterations for the various number of cloudlets varying from 

100 to 500, the makespan time of the proposed BAT Load 

algorithm is better in all the cases as compared to other 

traditional ACO, PSO, and BAT algorithms and ACO and 

PSO with Honey Bee algorithm. It can also be seen that for 

500 cloudlets, the makespan time for the proposed BAT Load 

algorithm is 109.64 ms, and ACO and PSO with Honey Bee 

Algorithm is 119.87 ms and 178.73 ms. 

 

Table 2 Comparison on the Basis of Makespan 

Makespan Time (in ms) 

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed 

BAT Load 

100 35.63 58.03 21.99 35.71 33.27 18.46 

200 76.05 113.95 41.46 46.02 71.2 35.08 

300 108.49 147.46 64.55 95.96 103.74 56.31 

400 138.93 202.16 89.26 169.84 129.84 83.36 

500 197.6 228.93 119.87 178.73 143.05 109.64 

 

 

Figure 7 Comparison of Makespan Time 

Figure 7 shows the make-span time results against the 

cloudlets, for the profound algorithm and the other five 

existing methods. It is clear that, in comparison to the other 

ways, the profound method predicted a less makespan time, 

being followed by the BAT, ACO Load, ACO, PSO Load, 

and PSO algorithm. It is substantially lower than the Proposed 

BAT Load method, particularly with Cloudlet at 500. A very 

little amount of variation exists across all methods for the 

cloud values of 100 and 500 according to the normal 

distribution. The proposed BAT Load makespan, which is the 

best and longest among the values of 300 and 400, is also the 

longest. 

5.3. Processing Time 

Time allotted to complete the task by CloudSim clock. 

According to the testing findings depicted in Figure 8, the 

proposed BAT Load's processing time is unquestionably 

shorter than that of other algorithms when compared to the 

quantity of Cloudlets. ACO and PSO initially handle data 

quite similarly, but when the number of clouds rises, ACO's 
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processing time outpaces PSO significantly. It is analyzed by 

the following equation (2) and (3): 

Processingtime = cloudletlength (vmMIPS ∗ noofPES)⁄         (2)                                                              

Total Processingtime =
∑ cloudlet lengthi

n
i=1 (vmMIPS ∗ noofPES)⁄                           (3)                           

Figure 6 and Table 3 illustrate the comparison of processing 

time performance parameters of proposed and other 

algorithms. For 500 tasks and 50 virtual machines, the total 

processing time of BAT Load is 2106.13 ms, and ACO and 

PSO with Honey Bee Algorithm is 1905.23 ms and 2571.204 

ms. 

Figure 8 shows the total processing time versus the number of 

cloudlets for ACO, PSO, BAT, ACO Load, PSO Load and the 

(proposed) BAT Load algorithms, thus, the profound method, 

which is next to the BAT algorithm in terms of overall 

processing time, is superior to other methods. As the number 

of Cloudlets increases, ACO has a tendency to allocate a large 

number of Cloudlets to virtual security resource nodes with 

higher performance, which results in an unusually long 

processing time overall. Processing times tend to increase as 

PSO and ACO Load decline to local maxima in subsequent 

phases. As the number of Cloudlets rises, BAT Load 

dramatically cuts down on processing time. To maintain a lot 

of Cloudlets in a safe cloud, loading BAT is the best option. 

Table 3 Comparison on the Basis of Total Processing Time 

Total Processing Time(in ms) 

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed 

BAT Load 

100 765.821 1395.91 418.57 1180.966 338.01 338.9 

200 1075.209 1856.824 875.87 1461.302 723.35 718.6 

300 1237.652 2372.283 1076.31 1849.255 1150.69 1139.41 

400 1686.367 2502.71 1419.2 2250.081 1615.79 1602.47 

500 2390.18 2973.78 1905.23 2571.204 2120.19 2106.13 

 

 

Figure 8 Comparison of Total Processing Time 

5.4. Processing Cost 

It is the cost of processing to complete a specific task using a 

process. Given that the computation involves costs, the lower 

the outcome, the better. Table 4 shows that as the quantity and 

size of uniformly and normally distributed clouds rise, so do 

the costs associated with all techniques. According to the 

standard deviation, the proposed BAT Load tends to have a 

lesser standard deviation than those of ACO, PSO Load, and 
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ACO Load while having a bigger standard deviation than 

BAT. The fact that it has the lowest BAT cost and the greatest 

ACO cost is also obvious. It can be denoted as following 

Equation (4) and (5): 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑐𝑜𝑠𝑡 = 𝐷𝑎𝑡𝑎𝐶𝑒𝑛𝑡𝑒𝑟𝑐𝑜𝑠𝑡𝑝𝑒𝑟𝑚𝑒𝑚𝑜𝑟𝑦  ∗ 𝑉𝑀𝑅𝐴𝑀    (4)                       

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑐𝑜𝑠𝑡 = ∑ 𝐷𝑎𝑡𝑎𝐶𝑒𝑛𝑡𝑒𝑟𝑘
𝑖=1 𝑐𝑜𝑠𝑡𝑝𝑒𝑟𝑚𝑒𝑚𝑜𝑟𝑦  

∗

𝑉𝑀 𝑅𝐴𝑀𝑘                                                                              (5) 

Where k is number of virtual machines 

Better algorithms are those with lower costs. As the number 

of clouds rises, Table 4 demonstrates how the cost of all 

algorithms climbs exponentially. The proposed BAT load has 

the lowest cost and PSO has the highest, according to the 

analysis of the table 4. 

The presented approach outperformed the other algorithms in 

terms of total processing cost and was followed by the BAT 

algorithm, as shown in Figure 9. The total processing cost is 

plotted against the number of cloudlets. Figure 9 shows that 

the (proposed) BAT Load is superior to ACO and PSO, but 

inferior to ACO and PSO Load regardless of uniform or 

normal distribution. Additionally, ACO has the highest level 

of unpredictability, cost input, and variance and variability 

about Cloudlets. In other words, resource utilization is not 

favorable to improvement, and energy consumption is at its 

maximum.

Table 4 Comparison on the Basis of Total Processing Cost 

Total Processing Cost (in $) 

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed 

BAT Load 

100 9312.065 9951.704 3368.842 4223.649 9949.36 3357.12 

200 17706.13 18469.03 6892.491 8566.96 19331.72 6604.13 

300 22427.76 25045.85 10166.53 11625.512 28692.98 9752.73 

400 26301.69 32384.62 13325.75 17534.112 37944.13 12767.78 

500 31433.8 38054.33 16370.18 24292.76 47516.26 15782.83 

 

 

Figure 9 Comparison of Total Processing Cost 

5.5. Execution Time 

The time required to complete a task. The degree of change 

between the end point (task) and the execution start point 

(task). Equation (6) can be expressed as follows. 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒 𝑜𝑓 𝑇𝑎𝑠𝑘 −
𝐸𝑥𝑒𝑐𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 𝑜𝑓 𝑇𝑎𝑠𝑘                             (6) 

Table 5 show the execution time of the five methods as a 

function of the number of cloudlets. 

Figure 10 show the execution time of the five methods as a 

function of the number of cloudlets. According to Figure 10 

and Table 5 the proposed approach produced the best 

outcomes for this metric. When the BAT algorithm was 

combined with Honey Bee Algorithm more optimal results 
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are achieved as compared with the other algorithms. As a 

result, the strategy suggested in the Results offers an 

improvement over other existing ways in terms of producing 

superior results. We assess how various Cloudlet-proposed 

methods perform and take longer to execute than existing 

approaches. Following an analysis of the data, we contrasted 

the findings with those of other recently developed methods 

like ACO loading and PSO loading. To create findings that 

were superior to those of other methods now in use, we 

improved the method for producing the results. 

Table 5 Comparison of Total Execution Time by Varying Number of Tasks 

Total Execution Time (in ms) 

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed 

BAT Load 

100 854.41 1191.82 828.39 962.22 676.03 671.23 

200 1787.6 3313.64 1711.44 1872.61 1446.69 1410.48 

300 2818.82 5144.56 2660.95 2872.92 2301.38 2217.84 

400 3943.18 7605.41 3673.51 4851.53 3231.59 3094.47 

500 5095.03 9347.62 4749.6 6710.66 4240.38 4037.71 

 

 

Figure 10 Comparison of Execution Time 

5.6. Degree of Imbalance 

Introduces a level of imbalance to gauge an unbalanced load 

on a virtual computer. This function will show the percentage 

of each VM's running capacity that is currently loaded. An 

acceptable level of imbalance should be taken into account 

while resource scheduling in order to improve performance. 

Likewise, the standard deviation and both the average and 

ideal values of the proposed BAT load imbalance are nearly 

identical. The proposed BAT Load algorithm beats other 

metaheuristic algorithms when taking the degree of imbalance 

into account because its standard deviation still falls within 

the lowest range when compared to other algorithms, 

demonstrating its significant qualities. This is a possible way 

to translate formula (7). 

𝐷𝑖 = (𝑇𝑚𝑎𝑥 −  𝑇𝑚𝑖𝑛)  𝑇𝑎𝑣𝑔⁄                                                (7) 

where 𝑇𝑚𝑎𝑥and 𝑇𝑚𝑖𝑛  are minimum & maximum 𝑇𝑖   among all 

VMs, 𝑇𝑎𝑣𝑔 is average 𝑇𝑖  of VMs. Figure 11 and Table 6 

illustrate the performance of the degree of imbalance analysis. 

It can be analyzed that the (proposed) BAT Load is superior 

in this metric, followed by BAT, ACO Load, ACO, PSO 

Load, and PSO. For 500 cloudlets, the degree of imbalance 

for BAT load is 177.08, whereas for ACO load and PSO load 

is 197.86 and 202.40. Overall, the performance of BAT load 

is the best among all five mentioned algorithms. In contrast to 

a normal distribution, a uniform distribution exhibits less 

fluctuation. Analysis shows that the PSO imbalance is most 

pronounced in a regularly distributed setting. The optimum 

BAT load imbalance is also comparable to BAT load 

outcomes. 
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Table 6 Comparison on the Basis of Degree of Imbalance 

Degree of Imbalance 

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed 

BAT Load 

100 40.39 41.25 40.24 41.15 39.52 36.28 

200 80.91 79.19 79.65 73.49 79.38 71.08 

300 120.69 120.18 118.83 117.51 120.4 106.5 

400 160.06 164.06 159.91 158.49 159.77 141.84 

500 201.62 211.27 197.86 202.4 200.99 177.08 

 

 

Figure 11 Comparison of Degree of Imbalance 

5.7. Discussion 

This paper was motivated by the desire to enhance virtual 

machine task distribution mechanisms and lower idle time in 

cloud computing in dynamic contexts. As a result, proposed 

Honey Bee based improvised BAT algorithm design in this 

study to enhance the task allocation strategy in cloud 

computing virtual machines. The suggested approach may 

divide the load across each virtual machine, enhance resource 

utilization, and considerably shorten the makespan time. 

Through 100 tests, the amount of tasks, task size, VMs in 

various areas, and DCs are constantly changed in order to 

replicate the algorithms performance. To simulate situations, 

uses the CloudSim simulation program. The results show that 

each data center's execution of the proposal required some 

time. Load has the lowest standard deviation of the BAT. This 

value decreases to zero as the number of Cloudlets rises, 

suggesting low time and data skew. The proposed BAT load 

algorithm performs better for substantially assigned activities 

and data sizes when compared to other conventional 

algorithms. The suggested cloud data center host prediction 

method into practice in the following paper. 

6. CONCLUSION 

Due to the benefits, it offers, particularly the capabilities of 

the software and hardware and the equipment's relatively low 

cost from the user's perspective, cloud computing is growing 

in popularity. This study provides a Bat with Honey Bee load 

balancing approach to address the load balancing issue in task 

scheduling, and it also discusses and evaluates the 

effectiveness of various performance metrics. In order to 

address and optimize resource and load balancing of 

scheduling issues in cloud computing, it compares and 

evaluates the effectiveness of several optimization algorithms, 

including ACO, PSO, Bat, and ACO and PSO with the honey 

bee load balancer. Making the best use of the resources at 

hand, the research's objective is to investigate the scheduling 

problem in the context of cloud computing. As a 

consequence, the Bat Load suggested in this study efficiently 

uses resources by balancing make span, degree of imbalance, 

cost, execution time, and processing time. Graphs and 

statistical analysis are used to interpret the results which 

demonstrates that the Bat Load algorithm performs more 

effectively than the existing optimization method at balancing 
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load and allocating resources in the cloud computing 

environment. 
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