
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 494

RESEARCH ARTICLE

Honey Bee Based Improvised BAT Algorithm for

Cloud Task Scheduling

Abhishek Gupta

Department of Computer Science and Engineering, Govind Ballabh Pant Institute of Engineering and Technology,

Pauri, Uttarakhand, India.

abhi.g2010@gmail.com

H.S. Bhadauria

Department of Computer Science and Engineering, Govind Ballabh Pant Institute of Engineering and Technology,

Pauri, Uttarakhand, India.

hsb76iitr@gmail.com

Received: 02 May 2023 / Revised: 15 July 2023 / Accepted: 06 August 2023 / Published: 31 August 2023

Abstract – Delivering shared data, software, and resources

across a network to computers and other devices, the cloud

computing paradigm aspires to offer computing as a service

rather than a product. The management of the resource

allocation process is essential given the technology's rapid

development. For cloud computing, task scheduling techniques

are crucial. Use scheduling algorithms to distribute virtual

machines to user tasks and balance the workload on each

machine's capacity and overall. This task's major goal is to offer

a load-balancing algorithm that can be used by both cloud

consumers and service providers. In this paper, we propose the

‘Bat Load’ algorithm, which utilizes the Bat algorithm for work

scheduling and the Honey Bee algorithm for load balancing. This

hybrid approach efficiently addresses the load balancing

problem in cloud computing, optimizing resource allocation,

make span, degree of imbalance, cost, execution time, and

processing time. The effectiveness of the Bat Load algorithm is

evaluated in comparison to other scheduling methods, including

bee load balancer, ant colony optimization, particle swarm

optimization, and ant colony and particle swarm optimization.

Through comprehensive experiments and statistical analysis, the

Bat Load algorithm demonstrates its superiority in terms of

processing cost, total processing time, imbalance degree, and

completion time. The results showcase its ability to achieve

balanced load distribution and efficient resource allocation in the

cloud computing environment, outperforming the existing

scheduling methods, including ACO, PSO, and ACO and PSO

with the honey bee load balancer. Our research contributes to

addressing scheduling challenges and resource optimization in

cloud computing, providing a robust solution for both cloud

consumers and service providers.

Index Terms – BAT Load Algorithm, Bat Algorithm, Cloud

Computing, Honey Bee Algorithm, Load Balancing, Resource

Allocation, Task Scheduling.

1. INTRODUCTION

In recent times, cloud computing has been a critical revolution

in network technology. It is an on-demand computing system

that uses virtualization systems to deliver cloud resources to

customers in the form of virtual machines over the Internet.

The underlying concept behind distributing hardware and

software resources is, cloud computing entails delivering

associated services based on consumer demands [1]. The

cloud computing architectural style consists of three different

categories, the first of which is "Software as a Service"

(SaaS). Moreover, the system can offer platform users

software assets designed in the SaaS architectural style to

make it easier for users to use. Platform as a Service (PaaS) is

the second type, and it allows individuals to create their

projects through the platform. Infrastructure as a Service is

the final type (IaaS) [2]. Figure 1 depicts the cloud computing

architecture.

Figure 1 Architecture of Cloud Computing [3]

mailto:abhi.g2010@gmail.com
mailto:hsb76iitr@gmail.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 495

RESEARCH ARTICLE

Cloud computing, as a versatile innovation, is an excellent

choice for organizations looking to build their private cloud.

Users benefit greatly from cloud computing strategies because

information can be accessed from any location at any time.

This allows for quicker application retrieval with less

downtime, allowing for efficient data recovery services. The

cloud is easy to scale, allowing businesses to add or remove

resources as needed. Cloud computing provides numerous

advanced data security mechanisms, such as unlimited storage

capacity and automatic Software Updates [4]. Cloud service

providers offer a wide range of applications in the fields of art

(Adobe Creative Cloud), business (Salesforce, Paypal), data

storage systems and backup (Google G Suite), education

(AWS, Tablets), entertainment (Vortex, PlayStation Now),

management (Evernote), social networking sites (Yammer),

and so on. Organizations can now utilize big data analytics to

gather valuable information and cloud services for product

design, testing, and deployment.

Cloud computing system offers numerous benefits to

consumers, but several difficulties and issues persist. Because

time is short in these private clouds, the final goal is to

maximize resource utilization while also providing an assured

service to clients. The problem of job scheduling is

considered one of the most recognized topics in a cloud

computing environment. Job scheduling entails assigning the

user's tasks to the appropriate resources made available by the

service provider [5]. It is the formula of assigning machines

VMR= {VMR1, VMR2 …， VMRm} to activities CA=

{CA1, CA2 …， CAn} over time for accomplishing the

chosen goal. In a cloud computing environment, job

scheduling is necessary to achieve load balancing. The

primary objective of this study is to introduce a new load-

balancing approach in a cloud system. Load balancing is

essential for allocating load to cloud servers for getting higher

throughput and better resource utilization. The goal of it is to

keep all servers occupied and to make greater use of resources

effectively [6]. An efficient load balancing algorithm takes

into account variables including the type of service, load

requirements, and processing capacity. The various load

balancing and scheduling techniques used in cloud computing

are depicted in Figure 2.

Load balancing methods are distributed into two types:

dynamic and static scheduling techniques. The dynamic

scheduling technique is ideal for real-time task assignments in

which the system will allocate tasks without having to know

the job completion time [7]. Using a priori known

information, static scheduling approaches like min-min, max-

min, and Suffrage algorithms schedule activities more

efficiently than dynamic scheduling strategies [8]. As a result,

static scheduling methods outperform dynamic ones in terms

of performance and load balancing. However, a few load

balancing schemes wherein activities accomplished by

deprived nodes reduce a significant number of heterogeneous

tasks exist.

Figure 2 Different Load Balancing Scheduling Algorithms [9]

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 496

RESEARCH ARTICLE

The motivation of the research is the development of a job

scheduling procedure that takes into account and as a result, a

honey bee algorithm is presented to assign tasks more

effectively in various cloud computing environments. The

performance of task scheduling algorithms such as ACO,

PSO, and BA are compared with each other. The proposed

task scheduling algorithm outperforms previous algorithms in

terms of time, load balancing, and resource utilization. It has

the potential to boost the scheduling of cloud computing.

The following is how this study is set up. Related work is

included in Section 2. Section 3 describes conventional

methods such as ant colony optimization, particle swarm

optimization, and the BAT algorithm. The proposed tasks are

fully described in Section 4. Results in numerical form for the

suggested task are shown in Section 5. In Chapter 6, which

wraps up the investigation, findings are presented along with

suggestions for potential future extensions.

2. LITERATURE REVIEW

In this part of the paper, the research progress on

accomplishing high computation in cloud applications based

on various business needs, job scheduling, resource

utilization, load balancing, and so on is presented.

R. Kumari et al. [10] evaluate the effectiveness of the

makespan and CPU consumption measures; we offer a job

scheduling approach for a variety of independent jobs in our

study by combining the Max-min algorithm and particle

swarm optimization. The conventional PSO technique takes

some time to locate the overall optimal solution because the

initial population was generated randomly. This means that

the max-min algorithm produces outputs of potential task

sequences that can be assigned to virtual machines depending

on appropriateness criteria. The PSO algorithm uses the

findings as input. CLOUDSIM is used in the suggested

method to locate the best answer. The proposed model's

completion time parameter is 5.01% better and its CPU

utilization rate is 3.63% higher than that of conventional

methods.

By combining the gravitational search concept with ant

colony optimization, S. Rani et al. [11] devised a hybrid

technique. This not just managed to avoid the early

convergence problem of ACO, but also achieved the

distributed nature that GSA did not have. The outcomes are

obtained using the CloudSim toolkit. It is demonstrated that

the proposed algorithm reduces task completion time and

allocates equivalent loads to every virtual machine, resulting

in load balance and reduced resource utilization. It can also

assess machine capabilities and efficiently assign tasks to

them, boosting their efficiency. The management interface for

storage, memory, virtual machines, and bandwidth is one of

the features included in the CloudSim architecture layers that

facilitate simulation and modeling of the cloud environment.

It also provides hosts, dynamic system state, and management

of application execution for the VM. In a grid computing

environment, it is more difficult to distribute resources to

several workloads than in network computing systems.

A novel hybrid CR-AC technique was demonstrated by A.A.

Nasr et al. [12] to fix a scheduling problem with a deadline

constraint. A modified chemical reaction optimization

technique discovers an optimal outcome in minimal time

complexity under deadline constraints, and the ACO

algorithm minimizes overall cost and enhances the quality of

the solution. The CR-AC arranges a significant amount of

tasks into VMs while taking into account multiple resource

constraints, improving the overall system's performance. The

CR-AC method generates high-quality solutions at a lower

cost than CRO, ACO, modified PSO, and cost-effective

genetic algorithm (CEGA), making it more efficient than

those methods. This particular ACO algorithm decreased

overhead issues, but the end result was a subpar reaction time.

These algorithms, however, are typically rigid and unable to

adapt to dynamic changes in the properties while being

executed.

The ant colony system is reconsidered by Xiang et al. [13],

and a novel approach for ACS-based job scheduling is

presented. To accomplish scheduling, greedy minimum

planning for machine allotment is implemented at the same

time. Investigations on synthetic and real-world application

graphs show that Greedy-Ant surpasses the current algorithms

speed by 18%. Xiang, B. et al. [14] in their study suggested

an upgraded version of the bee colony algorithm with the goal

of security and quality optimization of arranging tasks in a

cloud system. The job is allocated to the most suitable virtual

machine based on the customer's adequate security level and

service quality policies. Each data center's storage of hive

tables helps to balance the demands on virtual machines while

lowering costs, makespan, and security threats. This algorithm

outperforms the traditional ABC algorithm in terms of

security and cloud user service quality. Based on this study's

explicit explanation of the ABC algorithm's customizable

fitness function, a workflow program may be selected that has

a minimum cost, a minimum makespan (completion time), or

any value in between. To solve bottleneck issues and achieve

a shorter makespan, a heuristic was created.

In Kruekaew et al. [15] research, a methodology that utilizes

heuristic job scheduling with Artificial Bee Colony for VMs

is designed to enhance data load balancing in cloud networks.

The proposed approach is compared to ACO, PSO, and

improved PSO techniques. The research was carried out using

four different datasets to assess HABC effectiveness. HABC

with Largest Job First heuristic algorithm (HABC LJF)

provides the best scheduling efficiency. It introduced a more

advanced PSO based approach by defining the cost vector and

limit of the Initialization Solution and the Find Solution Space

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 497

RESEARCH ARTICLE

in the Exist Solution Space. Although this strategy has proven

successful, it is rather complicated.

Authors examine the load balancing problem in multicast

using network coding in the study of Xing et al. [16]. The

food source initialization (FSI), NSL-based selection (NSL-

S), and neighborhood search (NS) schemes are all extensions

of the modified artificial bee colony algorithm (MABC). The

three extensions have demonstrated their ability to

significantly boost the overall efficiency of the proposed

technique. In terms of solution quality, MABC outshines

binary ABC (binABC), binary-coded ABC (BABC), and

modified discrete ABC (MDisABC) algorithms. This

algorithm improves ABC optimization, reduces average

operation time, increases resource utilization ratio, and

competently supplies appropriate resources to user job.

However, it is ineffective for large-scale optimization.

Rani et al. [17] describe the Modified-HBB-LB approach,

which employs modified-Blowfish optimization to retrieve

cloud resources employed at work to balance burden. In

comparison to HDLB, the migration effort is reduced by 30%,

25%, and 20%, respectively, by bee load balancing and

Modified-HBB-LB. In terms of completion time, completion

time, and reaction time, Modified-HBB-LB maintains a high

degree of efficiency of 3–5%.

Jeyalaksshmi et al. [18] proposed a Modified Round Robin

and Modified Honey Bee Methods for efficient load balancing

depending on foraging interaction to regulate load. Jobs taken

from overcrowded VMs are referred to as honey bees. MHBA

removes jobs from virtual overloaded devices and routes them

to previously used VMs. MRRA is employed for jobs that

have no set priority. It selects available VMs for higher-

priority tasks based on each VM's current job. The suggested

methodology reduces reaction time and data center processing

time. This algorithm's key discovery was that jobs were

assigned to virtual machines in order to reduce waiting time

and increase system throughput.

Babu L.D. Dhinesh et al. [19] created a new program that

employs the LBMM (Load Balance Min-min) approach to

distribute jobs among resources and chooses the best resource

based on bee foraging behavior to finish the task in the lowest

amount of time. The ABC method, which was modeled after

how bees behave, helps balance out VM loads (overloaded &

underloaded) and increase throughput. The suggested method

can be utilized for thorough resource planning since it

maximizes the use of available resources, operates at its peak

efficiency, responds quickly, is scalable, and is durable.

D. Chaudhary et al. [20] described job scheduling for data

processing in cloud computing using cloudlets and VMs. PSO

approach for load balancing is focused on particle fitness

values and forces acting on them. The proposed New PSO

approach implemented a novel cost estimation method on

cloudlets for overall cost optimization and produces more

accurate and cost-effective results than PSO. Future work will

include developing a new objective method for more cost

optimization in the cloud by utilizing various emulators and

hosts.

The authors advocate secure scheduling protocols and smart,

variable neighbourhood PSO algorithms for cloud computing

to make the best use of resources. With little task scheduling

decision time, J.A.J. Sujana et al. [21] offers automatic IaaS

provisioning. It offers a compromise between security, the

shortest possible job time, and cloud task cost. The encoding

methods SPSO and SVNPSO use were created for particle

encoding to tackle multi-objective problems. Because they

require fewer repetitions than earlier techniques, these

algorithms perform better. To assess the effectiveness of the

metaheuristics, a workflow scheduling algorithm that

considers security and cost was chosen.

Authors introduce Cost-effective fault-tolerant scheduling in

P. Guo et al. [22] to decrease execution costs while attempting

to ensure that more jobs meet deadlines. The backup approach

is used to obtain fault tolerance. CEFT iteratively optimizes

job mapping and resource management with PSO. To boost

the deadline guarantee ratio, the rescheduling technique is

used. To make the scheduling process more flexible and less

dependent on local optimal, CEFT makes use of PSO's

benefits.

In their hybrid bat algorithm proposal, Zheng et al. [23]

approach avoids becoming stale in local minima by

classifying bat populations. The search volume and pulse

firing rate can be increased by using back propagation

systems that leverage paired gradient mechanisms and mean

square error. Furthermore, the Levy Flight-based random

walk strengthens the algorithm's capability for global

navigation while improving the best outcome. ACO, GA,

PSO, and CSA algorithms are outperformed by the bat

algorithm in terms of throughput, imbalance, and completion

time.

Raj et al. [24] proposed a Modified Bat Algorithm that makes

it possible for load balancing among VMs. Both "Overload

Optimal VM" and "Balanced VM" are MBA variations. In

comparison to a traditional BA, the MBA offers services that

are both efficient and have unmistakable advantages. The

work laid down by Barzegar et al. [25] provides PSO Bat-

Greedy, a hybrid technique that decreases cost and time while

increasing resource consumption. Resource utilization

enhances by 15% and 5%, respectively, when compared to

PSO and PSO-Bat algorithms.

Gu et al. [26] presented an Optimization heuristic algorithm

based on the bat algorithm to schedule workflow in cloud

network environments. By contrasting all local optimal

solutions, EATTO determined the best global solution. It

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 498

RESEARCH ARTICLE

reduces the energy usage and processing time of complex

scheduling jobs by increasing output without compromising

the Quality of Service.

To choose the best collections of servers with quick

convergence functionality, the suggested LB-RC method by

Adhikari et al. [27] used clustering with Bat optimization.

This lessens job execution time and duration while achieving

the deadline. LB-RC balances the load of the cloud data

center over time and efficiently utilizes the resources. Studies

on two distinct synthetic datasets reveal that the novel

approach performs better than conventional algorithms in

producing work deployment plans and is more cost-effective

to execute while meeting QoS restrictions. It primarily

emphasizes system throughput. Using interactions between

co-allocated jobs, it chooses the host with the highest

throughput.

The Bat algorithm detects prey using echolocation to create a

load-balancing framework. The suggested approach is based

on the Naive-Bayes classifier, which is used to categorize

VMs, which are then used to upgrade migrated tasks with data

used by the bats. Based on the priority list in the queue, jobs

from heavy-loaded VMs migrate to light-loaded VMs. The

job is considered independent and non-preemptive by Load

Balancing BA, and Quality of Service is only kept as a

priority. It outperforms conventional methods like Dynamic

load balance and round robin in terms of response,

completion, and migration times presented by Ibrahim et al

[28].

The well-known NP-complete problem of cloud computing

load balancing for multifunctional scenarios is one issue with

mobile cloud computing advances. Maximizing throughput,

minimizing span, and conserving energy are among the most

crucial objectives. To evenly distribute the system's load, a

load balancer is necessary. To support priority-based

scheduling, load balancers use meta-heuristics. We employed

the "Simple BAT Algorithm Based on Bees" in this

investigation because it is excellent at balancing load while

utilizing available resources. To increase the capacity of

virtual computers in data centers, the metaheuristic algorithm

utilized in this study is an improvised BAT algorithm based

on honeybees. The bee-based improvised BAT algorithm is

adaptable, straightforward, and simple to use. Additionally, a

major problem is successfully addressed. The same holds for

the best ways to deal with complicated issues and offer

reaction times.

3. TRADITIONAL ALGORITHMS

3.1. Ant Colony Optimization

Using this approach, we need to converse to every possible

arrangement while moving across parameter space in search

of the best configurations. Ants lay out pheromones to guide

one another toward resources while assessing their fitness. To

help additional ants discover better solutions throughout

subsequent reproduction cycles, the reenacted "ants" similarly

record their places and the nature of their responses. As seen

in Figure 3, a fixed set of ants are first produced.

Figure 3 Ant Colony Optimization

Each secretes pheromones by the caliber of the meal.

Following that, in an ongoing effort to discover a fix, it

gathers and iteratively updates information on all ants with

altered pheromones. The pheromone trail connects all edges

and shortens to become the shortest path if pheromone

deposition is vigorous. During their quest, other ants can use

the pheromone trail as a repository. The last update of the

solution space occurs for all ant pheromone trajectories [29].

Algorithm 1 depicts the Ant Colony Optimization.

1. Initialize τιψ ant movement and ηιψ, ∀(ιψ)

pheromones.

2. Repeat step 2 for each ant in state k.

Population Initialization

Start

Start a random search

and leave pheromone

Create and update the candidate

solution by adding information to the

Pathway

Find fitness of the

solution

Optimal

solution

End

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 499

RESEARCH ARTICLE

3. Determine the state to move into with a high

degree of probability.

4. Till ant k has finished solving its problem.

5. end for loop

6. Do for each ant movement (τιψ)

7. Calculate the fitness function

8. The trail matrix should be updated.

9. End for

10. If not, proceed to step 2 (end test).

Algorithm 1 Ant Colony Optimization ACO

3.2. Particle Swam Optimization (PSO)

Particle swarm optimization constantly tries to enhance

scheduling arrangements to a certain percentage of value to

address difficulties. By creating a population of potential

assemblies, here called particles, and moving these particles

to positions in the search space according to a simple formula

and motion of the molecule, it solves a problem. A population

collection of particles is initially formed with information

about their location and speed. The particle's initial velocity is

chosen at random, and it is adjusted later in the battle based

on each participant's intelligence. This pbest information is

replaced with the global best information, which is the

fighting's leading particle. Moreover, it just needs a small

number of parameters and has a rapid convergence rate [30].

As seen in Figure 4, a fixed set of PSO is first produced.

Figure 4 Particle Swam Optimization

Algorithm 2 depicts the Particle Swarm Optimization.

1. Set the particle's dimensions to d

2. Set the particle population's initial position and velocities

at random.

3. Determines each particle's fitness value.

4. Compare the fitness value of the particle with the pbest of

the particle. Set pbest to the current value and location if

the current value is higher than pbest.

5. Compare the particle's fitness value to the global gbest. Set

gbest to the current value and location if the current value

is above it.

6. Update the particle's position as well as its velocity

7. Repeat from step3until stopping criterion is met

Algorithm 2 Particle Swam Optimization (PSO)

3.3. BAT Algorithm

An optimization approach having a random probability

distribution that can be statistically analyzed is the BAT

behavior-inspired optimization algorithm. It is based on how

BATs approach their prey, which is similar to spotting

machines with less load. Uncertain needs for qualitative

notions and their numerical representation are a reflection of

fuzziness, unpredictability, and their interrelationship. By

applying the BAT method, the waiting time for a job is

reduced as the convergence rate rises. The simulation

demonstrates that the BAT method successfully optimizes

functions. To increase the pace of convergence and accuracy,

characteristics including population information,

communication mechanisms, and random flying of BATs are

explored and exploited. BAT prey is successfully located via

echolocation. BAT uses echolocation to determine the

location, range, and direction of its prey [28]. As seen in

Figure 5, a fixed set of BAT is first produced. Algorithm 3

depicts BAT Optimization.

1. Initialize the Pi and Vi bat populations.

2. Explain the pulse frequency PFi at Pi.

3. Establish the loudness Li and pulse ratesPRi.

4. for (iterations<Max_iterations)

5. Produce the solutions by modifying the frequency,

velocities, and positions.

6. Use the fitness function to evaluate the solutions.

7. if randd >rr .

8. Select solution from the best solutions.

9. Produce a local solution based on the solution chosen from

the best.

Population Initialization

Apply fitness function of pbest

Find gbest among entire population

Assign task to selected gbest

Optimal

solution

End

Start

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 500

RESEARCH ARTICLE

10. If

11. Create a novel solution by randomly flying

12. If (randd Ai & f(Pi) & f(P*))

13. Agree the new solutions

14. Boost PRi. lower F.

15. end if

16. Determine the top P* end currently available by ranking

the bats.

17. end while

18. Return Bat_Solutions

Algorithm 3 BT Algorithm

Figure 5 BAT Algorithm

4. PROPOSED WORK

In cloud computing environments, load balancing between

virtual machines (VMs) is a challenge that this white paper

aims to address. The proposed Honey Bee based improvised

BAT algorithm, however, is prone to premature convergence

when trying to find a workable solution to a particular

problem since it is so readily trapped in local optima. An

algorithm inspired by the Bat Algorithm was devised and

implemented as a result of the suggested method. To

determine the optimum solution, it uses magic to compute the

distance between the artificial bat and the answer. The classic

bat algorithm has been enhanced with an emphasis on

parameter initialization, parameter updating, hybridizing with

other methods, and transferring continuous space problems to

binary space problems. In this research study, we suggest a

method for calculating distance, which is similar to the

approach taken by actual bats while shooting at their food. We

also applied a modified version of the BAT method to load

balance on the cloud. The four essential steps of the modified

bat algorithm are parameter initialization, calculating fitness

values, choosing the best virtual machine, and preventing VM

overload. Here, the job is represented by the bat, and the

target or bait is represented by the virtual machine. Bats hunt

for items that are high in energy. More fitness values are

correlated with higher energy levels, and more fitness values

are correlated with lower distance values. Jobs are

consequently dispatched to virtual machines that are located

closer to the customer. A load balancing algorithm based on

bees is proposed using the BAT load algorithm. The basic

goal is to evenly spread the workload across numerous

network links so as to prevent resource under- and overuse.

By allocating incoming activities to virtual machines (VMs)

that satisfy two requirements, this is accomplished. The

difference between the virtual machine's processing time and

the mean processing time of all virtual machines is less than a

threshold, and the number of jobs it is currently processing is

less than the number of jobs being processed by other virtual

machines. Traditional load balancing techniques suffer from a

number of drawbacks in cloud systems because of the shifting

dynamics of the workload, host overload, and throughput

reduction. In order to increase resource utilization and

execution speed, this paper proposes a load balancing method

that can seamlessly distribute dynamic workloads among all

cloud hosts. Distribute all accessible virtual machines with

incoming operations. The algorithm distributes tasks to the

VM with the least load in order to ensure fairness and prevent

congestion, using the difference between this VM's processing

time and the average processing time of all VMs as the

threshold. To avoid VM overutilization and hunger during

task allocation, the proposed algorithm's key limiting factor

for VM processing time variation. The standard deviation for

preserving load balance throughout the system also has a

significant impact. In cloud computing, the main issue is how

to allocate resources for tasks efficiently when choosing the

best virtual machine. Before choosing the right virtual

machine, it is important to consider the resources required to

perform each task and the available resources, or available

Population Initialization

Apply fitness function on

population

Update the location of the bats

Rank the bats based on the fitness

value, find the current best

solution and update the loudness

and pulse emission rate

Optimal

solution

End

Schedule using BAT

Start

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 501

RESEARCH ARTICLE

virtual machines. In this paper, a comparison of three

optimization algorithms is conceptualized, and boosted the

performance of those algorithms with honey bee load

balancing to provide effective cloud scheduling and load

balancing. The first approach enhances the effectiveness of

cloud scheduling and load balancing by combining the ant

colony optimization algorithm and the bee algorithm. The

algorithm schedules jobs using the ant colony optimization

technique, and it calculates the load using the bee algorithm.

The goal is to reduce a given job schedule's makespan and

processing costs while enhancing load balancing based on

workload. The proposed hybrid solution combines the Honey

Bee load balancer with ACO algorithm schedules to create a

new, efficient hybrid strategy. The second algorithm

combines the particle swam optimization algorithm with

honey bee load balancing. PSO offers a population-based

search method that moves particles around in the search space

to find the optimal solutions. After each iteration, each

particle adjusts its position based on the best point

encountered by itself and experience from the nearby

particles. Each population is a schedule of virtual machines

and tasks. After reaching maximum iterations best load-

balancing optimized solution is generated. The third algorithm

associates the BAT algorithm with the Honey Bee load

balancer. The behavior of the bat algorithm defines

adjustments in its characteristics, including position, velocity,

frequency, loudness, and pulse emission rate. In this method,

bats fly around a cloud in pursuit of prey as their velocity,

frequency, and wavelength are varied. To find prey and avoid

obstacles, it uses the echolocation of sonar pulses. The prey in

this symbolizes tasks. Each bat in this finds the task that is

closest using the fitness function for each object, finds new

fitness using the optimization feature, and assigns the

assignment. In order to determine which resource within the

cloud network is best ideal to use, the Honey Bee load

balancer is used. To distribute the load in the cloud system in

an effective and scalable way, load balancing is a critical

concern. Moreover, it guarantees that each computing

resource is allocated properly and equally. Response time is a

crucial challenge for every engineer to create an application

that can maximize total throughput in the cloud environment,

whereas all the existing algorithms that have been studied

primarily consider the reduction of overhead, reducing

migration time, enhancing performance, etc. Many traditional

methods which lack optimal scheduling and load balancing

lead to more processing costs. The proposed method,

however, is more efficient in managing the cloud resource

needs and reduces the response time for specific workloads.

Figure 6 depicts the proposed flowchart. Algorithm 4 depicts

the Honey Bee Load Balancer algorithm.

1. VmList=Optimized_Solution.VmList

2. TaskList=Optimized_Solution.TaskList

3. while(i< VmList.length)

LoadList = TaskList. size ∗ cloudletsgroupsonvms_len
VmMipsi

⁄

4. Cap_VMi = PENum ∗ PEMIPS + VmBW

5. End While

6. while(i< VmList.length)

7.
TimeTaken_VMi = LoadListi

Cap_VMi
⁄

Deviation = √
1

No_Tasks
∑(Time_VMi − ATimeVM)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

N

i=0

8. If (deviation>ATimeVM)

9. SYSTEM IS IMBALANCED

10. Flag=false

11. Else

12. SYSTEM IS BALANCED

13. Flag=true

14. End IF

15. Deviation_VM=(double)sd_vms.get(j);

a. if(Deviation_VM >ATimeVM)

b. OverloadedVM

c. Overloaded_flag=true

d. else

e. UnderloadedVM

f. Underloaded_flag=true

16. Endif

17. Sort OverloadedVM and UnderLoadedVM

18. Clusters=MakeClusters(TaskList)

19. While(TaskList!=0)

20. If (overloaded_flag=true)

a. Choose the task assigned to overloaded machines and

assign to the low loaded machines

b. sendNow(underloadedVM,

CloudSimTags.CLOUDLET_SUBMIT,TaskCluster1);

21. Else

a. Choose the task assigned to underloaded machines and

assign to the more loaded machines

b. sendNow(OverloadedVM,

CloudSimTags.CLOUDLET_SUBMIT,TaskCluster2);

22. EndIF

Algorithm 4 Procedure for Honey Bee Load Balancer

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 502

RESEARCH ARTICLE

Figure 6 Flowchart of Proposed Algorithm

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 503

RESEARCH ARTICLE

In this research, we proposed Honey Bee based improvised

BAT algorithm for load balancing method. These

characteristics serve two key purposes for the algorithm. Set

priorities to prevent allocating overloaded virtual machines.

Each VM's load, which mostly depends on the command

duration of the work, is taken into consideration while

determining the priority of each job's allocation to the

appropriate VM. The approach achieves load balancing across

virtual machines by limiting more assignments to overworked

virtual machines whose processing times vary above a

threshold. The components of cloud computing are a

collection of data centers, each of which is made up of a

collection of m hosts and j virtual machines. Work

distribution is the algorithm's subsequent phase. The

population size is randomly and uniformly distributed across

various VMs. Where i stands for the population and j for the

current task, Bat represents the solution as given by Bat with

position Xij2=[0…..n] and velocity Xij. The bat must now

find prey more quickly in the dimension it inhabits after

coming up with a novel solution. The update amount and

pulse emission rate are formed by uniformly distributed

random numbers that are generated. Data should be moved to

the overloaded virtual machines as soon as it is known that

some virtual machines are being overloaded by several

processes. These characteristics serve two key purposes for

the algorithm. Set priorities to prevent allocating overloaded

virtual machines. Each VM's load, which mostly depends on

the command duration of the work, is taken into consideration

while determining the priority of each job's allocation to the

appropriate VM. The approach achieves load balancing across

virtual machines by limiting more assignments to overworked

virtual machines whose processing times vary above a

threshold.

We need to gather data since the last allocation and

deallocation in order to identify which jobs to assign to which

virtual machines. If there is honey in the garden, the

procedure is identical to which sources the bees should visit.

There are two recognized categories of information. The first

type is threshold data, which gauges host availability in

response to host changes. The virtual machine level does the

same availability tests. Second: Priority information with up-

to-date load data. Processing time at the host level and job

count at the virtual machine level are two examples of load

metrics. The first job is taken out of the queue once the job

locates a list of available hosts. To obtain another job from the

waiting queue, send the control flag. This activity might be

accepted by several hosts. Therefore, depending on the

priority information, the task should identify the best host.

The host with the lowest load should be taken into account.

The presence of a host indicates the availability of one or

more virtual machines. The list of virtual machines that are

accessible on a given host is then determined by rules at this

level. The chosen host may have numerous virtual machines

that can take the requested job. Examine the virtual machine's

workload, the host and virtual machine's combined processing

speed, and the hosts' and virtual machines' respective overload

conditions. Give each virtual machine you find a task.

5. RESULTS AND DISCUSSIONS

This section discusses the analyzed results and assesses the

performance of optimization algorithms, including Ant

Colony Optimization (ACO), BAT algorithm, Particle Swarm

Optimization (PSO), ACO Load, PSO Load, and the

(proposed) BAT Load (Honey Bee-based BAT Load)

algorithm in a cloud computing environment. Table 1

provides the simulation parameters used in the study.

Table 1 Simulation Parameters

Cloudsim

Objects

Input Parameters Value

Task(Cloudlet) Len_Task 1000-5000

#Tasks 2400-4000

Virtual

Machine

#Vms 50

MIPSVMs 350-1000

RAMVMs 1024-4048

BWVMs 100-1200

Scheduler_Jobs Time shared and

Space shared

#Pes 1-3

Datacenter #Datacenter

10

Host 2-10

Scheduler_VM Time shared and

Space shared

The proposed method was executed with conventional

algorithms Ant Colony Optimization, BAT algorithm, Particle

Swarm Optimization, and the same algorithm with Honey Bee

Load balancer in the identical dataset by the results. We

determined the degree of imbalance, the execution time, the

overall processing time, and the completion time for this

investigation.

5.1. Optimizing Test Set

To improve scheduling in the cloud network, both the

conventional BAT algorithm and the newly proposed BAT

Load algorithm are applied. Assume that there are 100 people

in the population, 100 extreme iterations, 0.5 burst firing rate,

and frequencies of 1 and 0 for the maximum and minimum.

Each algorithm runs through 100 iterations based on the

values for the aforementioned parameters.

5.2. Makespan Time

It is the time it takes for all tasks in a sequence to complete, or

the time it takes for the last task to complete. Furthermore, it's

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 504

RESEARCH ARTICLE

obvious to see that as there are more clouds, the proposed

BAT Load's standard deviation gets lower and smaller.

Concerning other algorithms, the proposed BAT Load has the

lowest standard deviation. With an increase in Cloudlet, its

value falls to 0, showing that the data divergence and

deviation are the least and that the time taken is also the

shortest. Equation (1) can be denoted as

𝑀𝑆𝑇 = max {𝐶𝑇𝑘𝑙|𝑘 ∈ 𝑇. 𝑘 = 1,2 … . . 𝑛 𝑎𝑛𝑑 𝑙 ∈ 𝑉𝑀. 𝑙 =
1,2, … . . 𝑚} (1)

Table 2 shows the results after running each algorithm for 100

iterations for the various number of cloudlets varying from

100 to 500, the makespan time of the proposed BAT Load

algorithm is better in all the cases as compared to other

traditional ACO, PSO, and BAT algorithms and ACO and

PSO with Honey Bee algorithm. It can also be seen that for

500 cloudlets, the makespan time for the proposed BAT Load

algorithm is 109.64 ms, and ACO and PSO with Honey Bee

Algorithm is 119.87 ms and 178.73 ms.

Table 2 Comparison on the Basis of Makespan

Makespan Time (in ms)

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed

BAT Load

100 35.63 58.03 21.99 35.71 33.27 18.46

200 76.05 113.95 41.46 46.02 71.2 35.08

300 108.49 147.46 64.55 95.96 103.74 56.31

400 138.93 202.16 89.26 169.84 129.84 83.36

500 197.6 228.93 119.87 178.73 143.05 109.64

Figure 7 Comparison of Makespan Time

Figure 7 shows the make-span time results against the

cloudlets, for the profound algorithm and the other five

existing methods. It is clear that, in comparison to the other

ways, the profound method predicted a less makespan time,

being followed by the BAT, ACO Load, ACO, PSO Load,

and PSO algorithm. It is substantially lower than the Proposed

BAT Load method, particularly with Cloudlet at 500. A very

little amount of variation exists across all methods for the

cloud values of 100 and 500 according to the normal

distribution. The proposed BAT Load makespan, which is the

best and longest among the values of 300 and 400, is also the

longest.

5.3. Processing Time

Time allotted to complete the task by CloudSim clock.

According to the testing findings depicted in Figure 8, the

proposed BAT Load's processing time is unquestionably

shorter than that of other algorithms when compared to the

quantity of Cloudlets. ACO and PSO initially handle data

quite similarly, but when the number of clouds rises, ACO's

0

50

100

150

200

250

[100] [200] [300] [400] [500]

T
im

e
in

 m
s

No of Cloudlets

Makespan Time

ACO PSO ACO Load PSO Load BAT BAT Load

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 505

RESEARCH ARTICLE

processing time outpaces PSO significantly. It is analyzed by

the following equation (2) and (3):

Processingtime = cloudletlength (vmMIPS ∗ noofPES)⁄ (2)

Total Processingtime =
∑ cloudlet lengthi

n
i=1 (vmMIPS ∗ noofPES)⁄ (3)

Figure 6 and Table 3 illustrate the comparison of processing

time performance parameters of proposed and other

algorithms. For 500 tasks and 50 virtual machines, the total

processing time of BAT Load is 2106.13 ms, and ACO and

PSO with Honey Bee Algorithm is 1905.23 ms and 2571.204

ms.

Figure 8 shows the total processing time versus the number of

cloudlets for ACO, PSO, BAT, ACO Load, PSO Load and the

(proposed) BAT Load algorithms, thus, the profound method,

which is next to the BAT algorithm in terms of overall

processing time, is superior to other methods. As the number

of Cloudlets increases, ACO has a tendency to allocate a large

number of Cloudlets to virtual security resource nodes with

higher performance, which results in an unusually long

processing time overall. Processing times tend to increase as

PSO and ACO Load decline to local maxima in subsequent

phases. As the number of Cloudlets rises, BAT Load

dramatically cuts down on processing time. To maintain a lot

of Cloudlets in a safe cloud, loading BAT is the best option.

Table 3 Comparison on the Basis of Total Processing Time

Total Processing Time(in ms)

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed

BAT Load

100 765.821 1395.91 418.57 1180.966 338.01 338.9

200 1075.209 1856.824 875.87 1461.302 723.35 718.6

300 1237.652 2372.283 1076.31 1849.255 1150.69 1139.41

400 1686.367 2502.71 1419.2 2250.081 1615.79 1602.47

500 2390.18 2973.78 1905.23 2571.204 2120.19 2106.13

Figure 8 Comparison of Total Processing Time

5.4. Processing Cost

It is the cost of processing to complete a specific task using a

process. Given that the computation involves costs, the lower

the outcome, the better. Table 4 shows that as the quantity and

size of uniformly and normally distributed clouds rise, so do

the costs associated with all techniques. According to the

standard deviation, the proposed BAT Load tends to have a

lesser standard deviation than those of ACO, PSO Load, and

0

500

1000

1500

2000

2500

3000

3500

[100] [200] [300] [400] [500]

T
im

e
in

 m
s

No of Cloudlets

Total Processing Time

ACO PSO ACO Load PSO Load BAT BAT Load

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 506

RESEARCH ARTICLE

ACO Load while having a bigger standard deviation than

BAT. The fact that it has the lowest BAT cost and the greatest

ACO cost is also obvious. It can be denoted as following

Equation (4) and (5):

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑐𝑜𝑠𝑡 = 𝐷𝑎𝑡𝑎𝐶𝑒𝑛𝑡𝑒𝑟𝑐𝑜𝑠𝑡𝑝𝑒𝑟𝑚𝑒𝑚𝑜𝑟𝑦 ∗ 𝑉𝑀𝑅𝐴𝑀 (4)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑐𝑜𝑠𝑡 = ∑ 𝐷𝑎𝑡𝑎𝐶𝑒𝑛𝑡𝑒𝑟𝑘
𝑖=1 𝑐𝑜𝑠𝑡𝑝𝑒𝑟𝑚𝑒𝑚𝑜𝑟𝑦

∗

𝑉𝑀 𝑅𝐴𝑀𝑘 (5)

Where k is number of virtual machines

Better algorithms are those with lower costs. As the number

of clouds rises, Table 4 demonstrates how the cost of all

algorithms climbs exponentially. The proposed BAT load has

the lowest cost and PSO has the highest, according to the

analysis of the table 4.

The presented approach outperformed the other algorithms in

terms of total processing cost and was followed by the BAT

algorithm, as shown in Figure 9. The total processing cost is

plotted against the number of cloudlets. Figure 9 shows that

the (proposed) BAT Load is superior to ACO and PSO, but

inferior to ACO and PSO Load regardless of uniform or

normal distribution. Additionally, ACO has the highest level

of unpredictability, cost input, and variance and variability

about Cloudlets. In other words, resource utilization is not

favorable to improvement, and energy consumption is at its

maximum.

Table 4 Comparison on the Basis of Total Processing Cost

Total Processing Cost (in $)

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed

BAT Load

100 9312.065 9951.704 3368.842 4223.649 9949.36 3357.12

200 17706.13 18469.03 6892.491 8566.96 19331.72 6604.13

300 22427.76 25045.85 10166.53 11625.512 28692.98 9752.73

400 26301.69 32384.62 13325.75 17534.112 37944.13 12767.78

500 31433.8 38054.33 16370.18 24292.76 47516.26 15782.83

Figure 9 Comparison of Total Processing Cost

5.5. Execution Time

The time required to complete a task. The degree of change

between the end point (task) and the execution start point

(task). Equation (6) can be expressed as follows.

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒 𝑜𝑓 𝑇𝑎𝑠𝑘 −
𝐸𝑥𝑒𝑐𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 𝑜𝑓 𝑇𝑎𝑠𝑘 (6)

Table 5 show the execution time of the five methods as a

function of the number of cloudlets.

Figure 10 show the execution time of the five methods as a

function of the number of cloudlets. According to Figure 10

and Table 5 the proposed approach produced the best

outcomes for this metric. When the BAT algorithm was

combined with Honey Bee Algorithm more optimal results

0

10000

20000

30000

40000

50000

[100] [200] [300] [400] [500]

C
o

st
 i

n
 $

No of Cloudlets

Total Processing Cost

ACO PSO ACO Load PSO Load BAT BAT Load

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 507

RESEARCH ARTICLE

are achieved as compared with the other algorithms. As a

result, the strategy suggested in the Results offers an

improvement over other existing ways in terms of producing

superior results. We assess how various Cloudlet-proposed

methods perform and take longer to execute than existing

approaches. Following an analysis of the data, we contrasted

the findings with those of other recently developed methods

like ACO loading and PSO loading. To create findings that

were superior to those of other methods now in use, we

improved the method for producing the results.

Table 5 Comparison of Total Execution Time by Varying Number of Tasks

Total Execution Time (in ms)

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed

BAT Load

100 854.41 1191.82 828.39 962.22 676.03 671.23

200 1787.6 3313.64 1711.44 1872.61 1446.69 1410.48

300 2818.82 5144.56 2660.95 2872.92 2301.38 2217.84

400 3943.18 7605.41 3673.51 4851.53 3231.59 3094.47

500 5095.03 9347.62 4749.6 6710.66 4240.38 4037.71

Figure 10 Comparison of Execution Time

5.6. Degree of Imbalance

Introduces a level of imbalance to gauge an unbalanced load

on a virtual computer. This function will show the percentage

of each VM's running capacity that is currently loaded. An

acceptable level of imbalance should be taken into account

while resource scheduling in order to improve performance.

Likewise, the standard deviation and both the average and

ideal values of the proposed BAT load imbalance are nearly

identical. The proposed BAT Load algorithm beats other

metaheuristic algorithms when taking the degree of imbalance

into account because its standard deviation still falls within

the lowest range when compared to other algorithms,

demonstrating its significant qualities. This is a possible way

to translate formula (7).

𝐷𝑖 = (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) 𝑇𝑎𝑣𝑔⁄ (7)

where 𝑇𝑚𝑎𝑥and 𝑇𝑚𝑖𝑛 are minimum & maximum 𝑇𝑖 among all

VMs, 𝑇𝑎𝑣𝑔 is average 𝑇𝑖 of VMs. Figure 11 and Table 6

illustrate the performance of the degree of imbalance analysis.

It can be analyzed that the (proposed) BAT Load is superior

in this metric, followed by BAT, ACO Load, ACO, PSO

Load, and PSO. For 500 cloudlets, the degree of imbalance

for BAT load is 177.08, whereas for ACO load and PSO load

is 197.86 and 202.40. Overall, the performance of BAT load

is the best among all five mentioned algorithms. In contrast to

a normal distribution, a uniform distribution exhibits less

fluctuation. Analysis shows that the PSO imbalance is most

pronounced in a regularly distributed setting. The optimum

BAT load imbalance is also comparable to BAT load

outcomes.

0

2000

4000

6000

8000

10000

[100] [200] [300] [400] [500]

T
im

e
in

 m
s

No of cloudlets

Total Execution Time

ACO PSO ACO Load PSO Load BAT BAT Load

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 508

RESEARCH ARTICLE

Table 6 Comparison on the Basis of Degree of Imbalance

Degree of Imbalance

No of Tasks ACO PSO ACO Load PSO Load BAT Proposed

BAT Load

100 40.39 41.25 40.24 41.15 39.52 36.28

200 80.91 79.19 79.65 73.49 79.38 71.08

300 120.69 120.18 118.83 117.51 120.4 106.5

400 160.06 164.06 159.91 158.49 159.77 141.84

500 201.62 211.27 197.86 202.4 200.99 177.08

Figure 11 Comparison of Degree of Imbalance

5.7. Discussion

This paper was motivated by the desire to enhance virtual

machine task distribution mechanisms and lower idle time in

cloud computing in dynamic contexts. As a result, proposed

Honey Bee based improvised BAT algorithm design in this

study to enhance the task allocation strategy in cloud

computing virtual machines. The suggested approach may

divide the load across each virtual machine, enhance resource

utilization, and considerably shorten the makespan time.

Through 100 tests, the amount of tasks, task size, VMs in

various areas, and DCs are constantly changed in order to

replicate the algorithms performance. To simulate situations,

uses the CloudSim simulation program. The results show that

each data center's execution of the proposal required some

time. Load has the lowest standard deviation of the BAT. This

value decreases to zero as the number of Cloudlets rises,

suggesting low time and data skew. The proposed BAT load

algorithm performs better for substantially assigned activities

and data sizes when compared to other conventional

algorithms. The suggested cloud data center host prediction

method into practice in the following paper.

6. CONCLUSION

Due to the benefits, it offers, particularly the capabilities of

the software and hardware and the equipment's relatively low

cost from the user's perspective, cloud computing is growing

in popularity. This study provides a Bat with Honey Bee load

balancing approach to address the load balancing issue in task

scheduling, and it also discusses and evaluates the

effectiveness of various performance metrics. In order to

address and optimize resource and load balancing of

scheduling issues in cloud computing, it compares and

evaluates the effectiveness of several optimization algorithms,

including ACO, PSO, Bat, and ACO and PSO with the honey

bee load balancer. Making the best use of the resources at

hand, the research's objective is to investigate the scheduling

problem in the context of cloud computing. As a

consequence, the Bat Load suggested in this study efficiently

uses resources by balancing make span, degree of imbalance,

cost, execution time, and processing time. Graphs and

statistical analysis are used to interpret the results which

demonstrates that the Bat Load algorithm performs more

effectively than the existing optimization method at balancing

0

100

200

300

[100] [200] [300] [400] [500]

D
eg

re
e

o
f

Im
b

a
la

n
ce

Number of Cloudlets

Degree of Imbalance

ACO PSO ACO Load PSO Load BAT BAT Load

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 509

RESEARCH ARTICLE

load and allocating resources in the cloud computing

environment.

REFERENCES

[1] Arya, Lokesh Kumar, and Amandeep Verma. "Workflow scheduling

algorithms in cloud environment-A survey." Recent Advances in

Engineering and Computational Sciences (RAECS) (2014): 1-4.
[2] Chiang, Mao-Lun, Hui-Ching Hsieh, Wen-Chung Tsai, and Ming-

Ching Ke. "An improved task scheduling and load balancing algorithm

under the heterogeneous cloud computing network." In 8th
International Conference on Awareness Science and Technology

(iCAST), pp. 290-295. IEEE, 2017.

[3] Sharieh, Ahmad, and Layla Albdour. "A heuristic approach for service
allocation in cloud computing." International Journal of Cloud

Applications and Computing (IJCAC), 7(4), (2017): 60-74.

[4] S. Sefati, M. Mousavinasab, and R. Zareh Farkhady. “Load balancing

in cloud computing environment using the Grey wolf optimization

algorithm based on the reliability.” Journal of

Supercomputing, 78 (2022), pp. 18-42.
[5] Houssein, Essam H., Ahmed G. Gad, Yaser M. Wazery, and

Ponnuthurai Nagaratnam Suganthan. "Task scheduling in cloud

computing based on meta-heuristics: review, taxonomy, open
challenges, and future trends." Swarm and Evolutionary

Computation, 62 (2021): 100841.

[6] Milan, Sara Tabaghchi, Lila Rajabion, Hamideh Ranjbar, and Nima
Jafari Navimipour. "Nature inspired meta-heuristic algorithms for

solving the load-balancing problem in cloud

environments." Computers & Operations Research, 110 (2019): 159-
187.

[7] Akilandeswari, P., and H. Srimathi. "Survey and analysis on task

scheduling in cloud environment." Indian Journal of Science and
Technology, 9, no. 37 (2016): 1-6.

[8] Masdari, Mohammad, Sima ValiKardan, Zahra Shahi, and Sonay

Imani Azar. "Towards workflow scheduling in cloud computing: a

comprehensive analysis." Journal of Network and Computer

Applications, 66 (2016): 64-82.

[9] Sharma, Shabnam, Ashish Kr Luhach, and S. A. Sinha. "An optimal
load balancing technique for cloud computing environment using bat

algorithm." Indian Journal of Science Technology 9, no. 28 (2016): 1-

4.
[10] R. Kumari, and A. Jain. “An efficient resource utilization based

integrated task scheduling algorithm.” in: 4th International Conference

on Signal Processing and Integrated Networks (SPIN), IEEE, 2017,
pp. 519–523.

[11] S. Rani, and P. Suri,. “An efficient and scalable hybrid task scheduling

approach for cloud environment.” International Journal of Information
Technology, (2018) 1–7.

[12] A.A. Nasr , N.A. El-Bahnasawy , G. Attiya and A. El-Sayed. “Cost-
effective algorithm for workflow scheduling in cloud computing under

deadline constraint.” Arabian Journal for Science and Engineering, 44

(4) (2019), 3765–3780
[13] Xiang, B.; Zhang, B.; and Zhang, L. “Greedy-ant: ant colony system

inspired workflow scheduling for heterogeneous computing.” IEEE

Access 5, 11404–11412 (2017)
[14] M.R. Thanka , P.U. Maheswari and E.B. Edwin. “An improved

efficient: artificial bee colony algorithm for security and QoS aware

scheduling in cloud computing environment.” Journal of Cluster
Computing, 22 (5) (2019) 10905–10913 .

[15] Kruekaew, Boonhatai, and Warangkhana Kimpan. "Enhancing of

artificial bee colony algorithm for virtual machine scheduling and load
balancing problem in cloud computing." International Journal of

Computational Intelligence Systems, 13, no. 1 (2020): 496-510.

[16] Xing, Huanlai, Fuhong Song, Lianshan Yan, and Wei Pan. "A
modified artificial bee colony algorithm for load balancing in network-

coding-based multicast." Soft Computing, 23, no. 15 (2019): 6287-

6305.

[17] Rani, Preeti, Prem Narayan Singh, Sonia Verma, Nasir Ali, Prashant

Kumar Shukla, and Musah Alhassan. "An Implementation of Modified
Blowfish Technique with Honey Bee Behavior Optimization for Load

Balancing in Cloud System Environment." Wireless Communications

and Mobile Computing 2022(5) (2022).
[18] Jeyalaksshmi, S., J. Anita Smiles, D. Akila, Dibyendu Mukherjee, and

Ahmed J. Obaid. "Energy-Efficient Load Balancing Technique to

optimize Average response time and Data Center Processing Time in
Cloud Computing Environment." In Journal of Physics: Conference

Series, vol. 1963, no. 1, p. 012145. IOP Publishing, 2021.

[19] Babu L.D Dhinesh, and Krishna Venkata P., "Honey bee behavior
inspired load balancing of tasks in cloud computing

environments." Applied Soft Computing 13(5), 2013, 2292-2303.

[20] D. Chaudhary , B. Kumar and R. Khanna. “ Npso based cost
optimization for load scheduling in cloud computing,” in: International

Symposium on Security in Computing and Communication, Springer,

2017, pp. 109–121 .

[21] J.A.J. Sujana , T. Revathi , T.S. Priya , and K. Muneeswaran. “Smart

PSO-based secured scheduling approaches for scientific workflows in

cloud computing,.” Journal of Soft Computing, 23 (5) (2019) 1745–
1765 .

[22] P. Guo and Z. Xue. “Cost-effective fault-tolerant scheduling algorithm
for real-time tasks in cloud systems”, in: 2017 IEEE 17th International

Conference on Communication Technology (ICCT), IEEE, 2017, pp.

1942–1946
[23] Zheng, Jianguo, and Yilin Wang. "A hybrid multi-objective bat

algorithm for solving cloud computing resource scheduling

problems." Sustainability 13, no. 14 (2021): 7933.
[24] Raj, Gaurav, Shabnam Sharma, and Aditya Prakash. "Modified Bat

Algorithm for Balancing Load of Optimal Virtual Machines in Cloud

Computing Environment." In Applications of Artificial Intelligence
and Machine Learning, pp. 475-488. Springer, Singapore, 2022.

[25] Barzegar, Behnam, Samaneh Habibian, and Mehrnoush Fazlollah

Nejad. "Heuristic algorithms for task scheduling in Cloud Computing
using Combined Particle Swarm Optimization and Bat

Algorithms." Journal of Advances in Computer Research, 10, no. 3

(2019): 83-95.
[26] Gu, Yi, and Chandu Budati. "Energy-aware workflow scheduling and

optimization in clouds using bat algorithm." Future Generation

Computer Systems, 113 (2020): 106-112.
[27] Adhikari, Mainak, Sudarshan Nandy, and Tarachand Amgoth. "Meta

heuristic-based task deployment mechanism for load balancing in IaaS

cloud." Journal of Network and Computer Applications, 128 (2019):
64-77.

[28] Ibrahim, Laheeb Mohammed, and Ibrahim Ahmed Saleh. “A solution

of loading balance in cloud computing using optimization of bat
swarm algorithm.” Journal of Engineering Science and

Technology, 15, no. 3 (2020): 2062-2076.

[29] Choi H, Ahn N, and Park S. “An ant colony optimization approach for
the maximum independent set problem.” Journal of the Korean

Institute of Industrial Engineers, 33(4) (2007):447–456.

[30] Arora T, and Gigras Y. “A survey of comparison between various
meta-heuristic techniques for path planning problem”, International

Journal of Computer Engineering & Science, vol.3 (2013):62–66.

Authors

Mr. Abhishek Gupta is currently working as

an Assistant Professor in CSE department,

GBPIET (An Autonomous Institute of Govt. of
Uttarakhand) Pauri-Garhwal, Uttarakhand,

India. He did his B.Tech from UPTU Lucknow

in 2010 and M.Tech from JUIT Solan in 2012.
He is having 10+ years of teaching experience.

His areas of interest include computer

networks, distributed systems, cloud
computing, machine learning etc.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223310 Volume 10, Issue 4, July – August (2023)

ISSN: 2395-0455 ©EverScience Publications 510

RESEARCH ARTICLE

Dr. H S Bhadauria is currently working as

Professor in CSE department, GBPIET (An
Autonomous Institute of Govt. of

Uttarakhand) Pauri-Garhwal, Uttarakhand,

India. He did his PhD from IIT Roorkee. He
is having 25+ years of teaching experience.

His areas of interest include computer

networks, cloud computing, machine
learning, image processing etc.

How to cite this article:

Abhishek Gupta, H.S. Bhadauria, “Honey Bee Based Improvised BAT Algorithm for Cloud Task Scheduling”, International

Journal of Computer Networks and Applications (IJCNA), 10(4), PP: 494-510, 2023, DOI: 10.22247/ijcna/2023/223310.

