
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 22

SURVEY ARTICLE

Security Challenges and Related Solutions in

Software Defined Networks: A Survey

Konda Srikar Goud

Department of Computer Science Engineering, GIT, GITAM (Deemed to be University), Visakhapatnam,

Andhra Pradesh, BVRIT HYDERABAD College of Engineering for Women, Hyderabad, Telangana, India

kondasrikargoud@gmail.com

Srinivasa Rao Gidituri

Department of Computer Science Engineering, GIT, GITAM (Deemed to be University), Visakhapatnam,

Andhra Pradesh, India

giduturisrinivasarao74@gmail.com

Received: 21 November 2021 / Revised: 31 December 2021 / Accepted: 03 January 2022 / Published: 28 February 2022

Abstract – In the current digitalized world, everything is

interconnected and accessible from everywhere. Although

traditional networks are widely adopted, their management is

complicated. Therefore, they are not effective in providing

services to the future Internet like a wide range of accessibility,

high bandwidth, management, and security. On the other hand,

Traditional network architecture relies on manual

configurations of proprietary devices that are error-prone and

inefficient to utilize the network devices properly. Software-

defined Networking (SDN) has drawn massive changes in the

traditional network paradigm by decoupling the network

operations from the physical hardware and encouraging

network control to be logically centralized. It provides network

programmability and improves security by enabling a global

view of the entire network and issues handled effectively by the

centralized controller. As a result, SDN allows networks to

monitor the traffic and detect vulnerabilities more effectively. It

also simplifies the deployment of new services with more

flexibility at a faster pace. On the other hand, the decoupling of

control and the data planes introduces security threats such as

Distributed Denial of Service (DDoS) attacks, Man in the Middle

attacks, Saturation attacks, etc. As a result, SDN has attracted a

lot of interest from both academics and industry. In this paper,

we study security vulnerabilities on layers of SDN, the security

frameworks that protect each layer, and many security

methodologies for network-wide security.

Index Terms – Software Defined Networks (SDN), Open-Flow

(OF), Network Operating System (NOS), Security, Reliability,

Centralized Controller.

1. INTRODUCTION

Three layers represent computer Networking functionalities:

Data plane, Control plane, and Application plane. The data

plane comprises network devices that are capable of

forwarding packets effectively [1]. The control plane handles

interaction between the network-aware applications and the

forwarding elements via different APIs. In particular, it

translates application layer requirements to underlying

forwarding devices, such as updating the forwarding table of

switches or routers. Finally, the Application plane comprises

applications that apply network control logic and techniques

such as Simple Network Management Protocol (SNMP)

service, which is responsible for remotely monitoring and

configuring the control functionality. Some of the applications

are Routing, Traffic Engineering, Firewalls, load balancing,

etc. Therefore we can say that the Application plane creates

network policies, the control plane executes them, and the

data plane puts them into action by routing traffic properly.

In the legacy networks, the control plane and the data plane

are firmly connected and incorporated in a single device [2],

where the entire structure is decentralized, as shown in figure

1. Therefore, it brings a significant change in the Internet

architecture in the early stages, which successfully achieved

scalability, reliability, robustness, and high performance.

In the present world of digitalization, the legacy network

architecture is not best suitable for the current increase in

dynamic networking trends. Hence the management of

networks is becoming more complex and challenging. It leads

to the necessity of implementing complicated and high-level

policies adaptable to current network environments and

minimizing the burden on the low-level network devices.

Moreover, in the present networking scenario, device miss-

configuration-related issues are pretty standard, leading to

unexpected network behavior. For instance, a single miss-

configured device may compromise the entire network and

makes it offline for hours.

There is a need for a novel approach is emphasized to solve

numerous challenges related to legacy networks. In

comparison with legacy network design, the primary purpose

of the SDN paradigm is to simplify network operations,

mailto:kondasrikargoud@gmail.com
mailto:a.etherwen@zzz.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 23

SURVEY ARTICLE

improve network administration and offer reliability,

scalability, and security.

According to Kim and feamster [3], there are four essential

factors in managing legacy networks.

 Complicated and minimal network configuration:

 Dynamic change in network topology

 The complexity of a decentralized and low-level network

 Heterogeneous proprietary devices

Figure 1 Traditional Networks (vs) Software Defined Networks

We can say that maintaining the network is complicated as the

legacy network architecture is inadequate to deal with today’s

fast-paced network tendencies. SDN is one of the Open

Network Foundations (ONF) initiatives, which introduced

new open network architecture to address the challenges faced

by the legacy networks. In traditional network architecture,

the control plane and data plane are in a single unit. In

contrast, the SDN separates the control and forwarding

functionality by creating an abstraction between them [4].

As a result, all the network devices become essential

forwarding elements. Furthermore, all the control plane

functionality is moved to a logically centralized controller,

making the network programmable and flexible in developing

and deploying customized applications [1].

2. BACKGROUND AND RELATED WORK

Every device in the traditional network architecture has its

data and control planes. The control plane of various devices

interchanges topological information and builds its routing

table that determines the path of the incoming packet to route

through the data plane. In Software-Defined Networks (SDN),

the control plane is separated from the underlying hardware

and moved to a centralized entity called SDN Controller. As a

result, network operators can have a centralized authority over

network infrastructure. The data plane in the device forwards

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 24

SURVEY ARTICLE

the data packets based on the flow table entries of the

controller. For example, the flow entries consist of match

fields and instructions.

When a new packet enters the switch, it checks for a

particular match field in its flow table. If it is present, then the

corresponding instruction will be executed. SDN is a new

technology developed by the Open Networking Foundation

(ONF) [5] that allows network administrators to design

dynamic, cost-effective, flexible, secure, high-bandwidth, and

adaptable to the latest developments. ONF is a non-profit

organization that promotes network infrastructure and

business models in developing open-source software and

SDN protocols.

2.1. Advantages of SDN

Some of the advantages of SDN are:-

 Programmability: By decoupling the network services

from the forwarding functionality, we can program and

configure the network policies manually or using open

source tools like OpenStack.

 Centralized management: Instead of configuring multiple

devices, the network administrator can configure one

centralized controller to distribute policies to all the

connected switches.

 Agility and Flexibility: SDN's emergence helped many

organizations quickly introduce new applications,

operations, and hardware facilities to meet current

business needs.

 SD-WAN: It is one of the SDN applications where it

improves the operation and management of Wide Area

Network by removing the control functionality from the

underlying hardware. Therefore, network operators can

remotely manage the networks.

2.2. SDN Challenges

As an advantage, SDN is also facing some challenges.

 Security Issues: An attacker can compromise different

layers of SDN; therefore, a robust security solution is

essential for additional layers of SDN.

 Controller Saturation attack: In the presence of only one

control plane in the SDN environment, its computational

resources get overwhelmed with massive traffic.

 Single Point of Failure: If the centralized controller gets

compromised, the whole network will be affected.

2.3. SDN Architecture

The Software-Defined Network architecture is represented

with three layers or planes, as shown in Figure 2.

 SDN Application layer/Plane

 SDN Control layer/Plane

 SDN Data or Infrastructure layer/Plane

Figure 2 Layers of SDN Architecture

2.3.1. SDN Data Plane / Infrastructure Layer

The SDN Infrastructure layer comprises network devices like

Switches, Routers, Firewalls, etc., the same as the legacy

networks [1]. The significant distinction to the legacy

physical devices is that these are just dumb forwarding

devices without control logic to make routing decisions. Thus,

the network intelligence is detached from the forwarding

elements and shifted to a centralized controller. More

crucially, SDN architecture is developed on top of the open

standard API (i.e., Open Flow) effectively ensures

configuration and communication across various control plane

and data plane devices.

There are two primary entities in the SDN architecture, i.e.,

The Controller and the forwarding elements. The Forwarding

device may be physical hardware or a logical entity that

focuses on forwarding the packets. The controller is the

“Brain of the Network” and also called Network Operating

System, which runs on specialized hardware. The open flow

enables switches to forward the packets based on flow tables.

Each flow table entry consists of: a. Matching Rule, b. actions

on a matched rule, c. counters for tracking matched packet

statistics. When a new packet enters the open flow device, it

checks the flow table entries in sequence. If a match finds in

the entry, appropriate action performs. Generally, if there is

no match, the most common scenario is to create and deploy a

default rule in the switch such that the packet forwards to the

controller. The flow rule is developed by considering various

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 25

SURVEY ARTICLE

attributes like Source IP and Ethernet address, Destination IP

and Ethernet address, source and destination port numbers,

Packet Size, VLAN ID, VLAN priority, etc. [6]. If there is no

match and no default rule created, then the switch drops the

packet. Open flow enabled switches, routers, and other

devices are available in the market and ready to deploy. The

list of Open-flow devices is shown is table 1.

Switch Type Switch Model Make

Hardware

8200 zl & 5400zl [7] Hawlett-Packard

Arista 7150 Series [8] Arista Networks

Black Diamond X8 [9]
Extreme

Networks

CX600 Series [10] Huawei

EX9200 Ethernet [11] Juniper

MLX Series [12] Brocade

RackSwitch G8264

[13]
IBM

Pica8 3920 [14] Pica8

Software

Contrail-vRouter [15]
Juniper

Networks

LINC [16] FlowForwarding

ofSoftSwitch13 [17] Ericsson

OpenvSwitch [18,19]
Open

Community

Open-Flow Reference

[20]
StanFord

Table 1 List of Open-Flow Devices

2.3.2. SDN Control Plane / Network Operating System

SDN isolates the control functionality from forwarding

elements and places it in a centralized SDN controller. The

SDN controller [21] implements the control plane

functionalities. It manages and directs the entire network via

the Network Operating System (NOS) from a centralized

location. The NOS gathers data using APIs to analyze and

operate a network similar to the operating system. As an

essential component of SDN, the control plane is responsible

for deploying flow configurations in the forwarding devices,

i.e., Open-Flow switches. Based on the controller instructions,

it performs all the flow operations.

The open flow protocol offers an open standard interface to

interact with switches in SDN architecture [22]. When a new

packet reaches the forwarding device, it searches the

corresponding flow in its flow table. If a flow match exists,

the instruction executes. Else, it forwards to the control plane.

The list of the controllers is shown below in table 2.

Table 2 List of SDN Controllers

2.3.3. Application Layer/Plane

The Application layer comprises network applications and

operations performed on the network, and we can implement

a wide range of applications on this layer. For example,

intrusion detection systems, firewalls, load balancers, network

administration, network virtualization, and network

monitoring are just a few available technologies. One of the

main reasons for SDN adoption is the massive range of

applications associated with real-world challenges. Besides

their wide usage, we can classify most applications into five

groups. Namely: Traffic Engineering, Security, Monitoring,

Controller Name Architecture
Programming

Language

Beacon [23] Centralised Java

DISCO [24] Distributed Java

ElastiCon [25] Distributed Java

Fleet [26] Distributed -

FloodLight [27] Centralised Java

HP VAN SDN

[28] Distributed Java

HyperFlow [29] Distributed C++

Kandoo [30] Distributed C, C++, Python

Onix [31] Distributed Python, C

Maestro [32] Centralised Java

Meridian [33] Centralised Java

NOX [34] Centralised C++

NVP Controller

[35] Distributed -

OpenDayLight

[36] Distributed Java

ONOS [37] Distributed Java

PANE [38] Distributed -

POX [39] Centralised Python

RoseMary [40] Centralised -

Ryu NOS [41] Centralised Python

SMaRtLight [42] Distributed Java

Trema [43] Centralised C, Ruby

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 26

SURVEY ARTICLE

Data Centre Networking. The list of the SDN applications is

shown below in table 3.

Application

Type
Application Name Controller

Security

Active Security [44] FloodLight

AVANT-GUARD [45] POX

CloudWatcher [46] NOX

Cognition [47]

DDoS Detection [48] NOX

Elastic IP & security

[49]
NOX

Ethane [50] -

FlowNAC [49] NOX

FortNOX [50] NOX

FRESCO [51] NOX

LiveSec [52] NOX

Mapper [53] -

NetFuse [54] -

OpenSAFE [55] NOX

SANE [56]
SANE

Controller

VAVE [57] NOX

Data Centre

Networking

Big Data Apps [58] -

CloudNaaS [59] NOX

FlowComb [60] NOX

FlowDiff [61] FlowVisor

LIME [62] FloodLight

NetGraph [63] -

OpenTCP [64] -

Monitoring

DCM [65] DCM Controller

OpenNetMon [66] POX

OpenTM [67] NOX

PaFlowMon [68] FlowVisor

PayLess [69] FloodLight

ALTO VPN [70] NMS

Aster*x [71] NOX

Traffic

Engineering

ElasticTree [72] NOX

MicroTE [73] NOX

Pronto [74] Beacon

QNOX [75] NOX

QueuePusher [76] FloodLight

Table 3 List of SDN Applications

3. SECURITY RELATED OPEN CHALLENGES IN SDN

ARCHITECTURE

SDN Layers Attack Type Description

Application

Authentication

&Authorization

In many applications,

there is an absence of

proper Authentication

and Authorization

protocols which poses a

significant risk. [78]

Malicious Flow

rule insertion

When an attacker

deploys malicious

applications, it generates

a lot of malicious flow

rules, and it will

compromise the entire

network, and it is hard to

identify.

Access control

&Accessibility

Access control and

Accountability are tough

to implement on third-

party applications.

Control

Distributed

Denial of

Service attack

Single point of control,

Global view, centralized

intelligence are the

significant reasons for an

attacker to implement

DDoS on the Control

plane

Unauthorized

access

There are no proper

authentication protocols

for the third-party

applications while

communicating with the

control plane is the

primary threat.

Scalability In the control pane, one

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 27

SURVEY ARTICLE

&Availability of the challenges is the

centralized controller's

scalability and

availability issues.

Data plane

Malicious flow

rules

As the switches are

dumb, an attacker can

insert malicious flow

rules.

DDos Attack

The switches can be

overwhelmed by

flooding malicious flows

Compromising

controller

When the controller gets

compromised, the data

plane will become dumb.

TCP Attack

Transport Layer Security

(TLS) is vulnerable and

prone to this attacks

Man in the

Middle attack

(MITM)

Most forwarding devices

don't use TLS, leading to

a MITM attack.

Table 4 Attacks on Layers of SDN

The overall network security depends on the safety of the

controller. If the controller gets exploited, then the whole

network goes down. A specific application needs to be

deployed on the controller to mitigate threats like Spoofing,

DoS, DDoS, MITM, Privilege escalation, insider threats, etc.

A faulty Open-flow header can compromise the controller in a

single controller environment, resulting in performance

degradation and network services unavailable for legitimate

users. Apart from the attacks mentioned above, there is a need

for authentic protocols to validate and verify controllers in the

distributed controller architecture. Those protocols enable

authentication between controllers before sharing flow

information. Because of two control planes and a wide range

of switches, spoofing and DDoS are likely attacks in the

hybrid controller environment. Hence, we need to protect

SDN APIs with security protocols to mitigate from above

risks.

Using the global perspective and centralized control of

switches, an SDN controller can perform integrated network

functionalities. On the other hand, the central authority of

network control is more vulnerable to security risks. An

attacker can easily compromise this single point rather than

distributed environment [77]. When the attacker floods the

controller with flow requests, its resources become

overwhelmed and its services are unavailable to legitimate

users. Therefore, we must authenticate the communication

channel to overcome the above challenges before providing

access to the control plane.

The usage of SDN in networking raised plenty of security

issues. To get the full benefit from SDN, we need to address

these issues by adopting security protocols. Here we are going

to discuss attacks and threats on SDN layers. The list of

various attacks on different layers of SDN is shown below in

table 4.

3.1. Application Plane Security Challenges

Application authentication and authorization play a significant

challenge in the present high-speed networks in the SDN

environment. Network control and centralized intelligence are

the two main characteristics that serve as the foundation for

networking innovation. However, we implement many

network functions as SDN apps. As a result, an illegitimate

application can compromise the entire network, and its

resources become unavailable to legitimate users. Here, we

discuss the security challenges related to the application layer

in detail.

The apps installed on the top of the application plane can

impose severe security breaches and create a significant

impact on the network's resources and operations. Even

though Open-Flow allows us to install user-defined flow-

based security apps, there are no predefined security apps

installed and no standards to support open APIs for apps to

control planes' resources and operations. Hence, an attacker

can deploy the malicious app and can compromise the entire

network. So, detecting a malicious application is an open

challenge. Apart from that, a wide range of vendors and third-

party application developers in the SDN open flow

environment use various programming technologies, leading

to interoperability, scalability, reliability, and security issues.

Some of the challenges faced by the application plane are

discussed below.

3.1.1. Threat From Third Party Applications

Third-party applications are responsible for the deployed

applications on the controller. As a result, these applications

gain administrative access and manipulate network resources

and operations without appropriate security standards to

safeguard the network from attackers.

Kreutz et al. [83] proposed three vectors to outline security

threats in Software Defined Networks:

 Since there are no effective techniques for establishing a

trustworthy connection between controller and

applications, a malicious application can compromise the

entire network.

 The attacker can compromise the application server and

exploit the user credentials in the same way.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 28

SURVEY ARTICLE

 Using these credentials, an attacker can infect malicious

flows into the network.

There are several approaches for authenticating network

resources, but there is no technique to authenticate

applications in the SDN. Furthermore, the functionality of the

network depends on the deployed applications. Therefore,

there is necessary to develop a centralized approach to

authenticate applications currently unavailable in the SDN

environment. Hence it is one of the open challenges to the

security of the application plane.

3.1.2. Threat Related to Access Management and

Accountability

Access management and accountability are required to assure

network security in SDN since applications are responsible

for network operations. In this context, Hartman et al. [79]

distinguished three types of applications. First, applications

corresponding to network attributes like traffic path, traffic

flow costs, routing, etc. Secondary applications are security

related such as firewalls, IDS/IPS. The third types of

application are Nested applications, which use the first two

types of applications to perform their functionalities. As a

result, a malicious application of the third type can use the

second type of application and bypass the security and

compromise the entire network and perform malicious

activities. Hence access management and accountability are

significant security challenges in the application plane.

The author in [80] demonstrates that the applications in the

network can be SDN-based or non-SDN applications. SDN-

based applications can directly communicate with the control

plane, whereas non-SDN applications will use application

datagrams for communication. In this context, an exploitable

application might be a vehicle for illegal entry to the control

plane. Hence access management among nested applications

can be an open challenge in the application plane

3.2. Control Plane Security Challenges

As it is typical for the single controller to control all the

heterogeneous devices in the network, we need to install

additional controllers to achieve load balancing. It is

challenging to deploy privacy policies for multiple controllers

by dividing the network into sub-networks. The author in [81]

developed and deployed an application on the SDN named

ALTO (Application-Layer Traffic Optimization) to optimize

network traffic. This application requires topological

information from the controller. In this scenario, the malicious

application access the network, leading to much security-

related vulnerability.

The author in [82] stated that several controllers in a network

might result in configuration issues because they are

responsible for implementing network-wide services. In

multiple controller environments, one of the significant

challenges is synchronization issues. For example, if we make

some changes in the network, all the controllers may not sync

simultaneously. As a result, some apps like load balancers and

firewalls may not work as they lack link-state change

information in advance.

3.3. Data Plane Security Challenges

The control plane deploys the flow rules in the forwarding

devices. Although the devices have limited TCAM, the flow

rules have to deploy when a host sends the first packet to a

new host or before a new host sends a packet. As the control

logic decoupled from the switches, they cannot differentiate

between malicious and legitimate incoming flow rules.

Hence, the forwarding device's limited TCAM is the primary

security challenge for the data plane to buffer the incoming

flow requests until the controller deploys flow rules. It may

also lead to DOS attacks [83].

The security of the data plane depends on the control plane’s

security. When the centralized controller gets compromised,

the entire network becomes unavailable, and the

communication between the controller and switches will be

lost. When there are no flow rules from the controller, the

switches cannot forward the packets. Hence this will be

another challenge to be focused. The attacker can take

advantage of the decoupling nature of the switches and can

deploy malicious flows or alter existing flow rules, leading to

various attacks. It can be another security challenge for data

planes.

The initial Open-Flow specifications include Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DLS). However, the inclusion of TLS and DLS is not

mandatory in the latest version of Open-Flow specifications.

Hence, most vendors opted not to include TLS in their

devices. It requires configuration overhead, which involves

creating certificates and signing the certificates with

cryptographic keys, and deploying the keys and certificates on

all the devices. Therefore the absence of TLS can be

vulnerable to open flow communication. According to Benton

et al. [84], MITM attacks are severe in SDN networks

compared to traditional networks because of the absence of

TLS among the open flow communication. Hence hackers can

gain complete access to the underlying devices and launch

side-channel attacks. In addition to that, the author in [85]

proved that unauthorized TCP communication could lead to

many TCP level attacks in the Open-Flow network.

One of the open challenges in data plane security switches

memory depletion due to fraudulent flows. When a new flow

enters the device, it checks the relevant flow rule in the flow

table. When a rule is present, it takes necessary actions, but it

sends the flow to the corresponding control plane to get the

rule if it is not available. This process may take some time. As

an advantage, the attacker will flood such malicious flows to

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 29

SURVEY ARTICLE

the switch so that the switch’s TCAM will become

overwhelmed and lead to a DDOS attack. In their paper [16],

Dimitri et al. reported that restoration within less time in

massive Open-Flow networks is complex. Furthermore, delay

in installing flow rules in the Open-Flow switch might cause

authentication and authorization problems and lead to side-

channel attacks.

4. SOLUTIONS FOR THE SECURITY CHALLENGES IN

SDN

The centralized controller can decide on the network’s global

view in SDN. In addition, the SDN framework inherits

various security services such as monitoring and analyzing,

which help in inserting new security policies and changing

existing policies. It also supports a rapid and adaptable threat

detection framework by capturing network intelligence and

analyzing, updating, and reprogramming the network

accordingly. SDN creates an environment where it is easy to

design and deploy security policies in the forwarding devices.

Therefore it eliminates the risk of device misconfigurations

and policy conflicts in the networks. Furthermore, as SDN

provides a global network view, it is easy to deploy security

devices like firewalls and IDS/IPS according to the defined

security policies. In this section, we will discuss various

security solutions, strategies, Frameworks, platforms for

protecting the SDN layers as shown in table 5.

SDN Layers
Proposed

Solution
Solution Type

Application

Layer

FRESCO [51]

To develop Open-Flow

based security

applications and Security

framework

PermOF [57]

Provides Authentication

platform for Open-Flow

Applications to access

control and data plane.

Assertion [88]

Developed an assertion

based framework for

validating and

debugging SDN

applications

Flover [89]

The proposed control

plane architecture will

use a set of pre - defined

parameters to evaluate

flow rules given by the

controller.

OF-Testing

Proposed a framework

for identifying malicious

flows

Control

Layer

SE-FloodLight

Developed Security

enabled Floodlight

controller, which

provides an ideal secured

control layer and secured

Northbound API

HybridCtrl

Developed a hybrid

controller architecture

works reactively to build

routing and runs

proactively to analyze

traffic patterns

DISCO [90]

Proposed a framework

DISCO developed in

collaboration with

floodlight, which

provides distributed and

heterogeneous

functionalities to control

plane

HyperFlow [91]

Proposed Hyperflow, an

event-based control

plane framework to

increase the control

plane scalability. It

allows us to deploy

various controllers

which can able to make

local decisions and

decreases the flow setup

time

DDoS Detection

Proposed a DDoS

detection framework

which comprises of three

modules and used SOM

technique to discover

hidden connections

between the incoming

flows into the network

Forwarding

Layer

FortNOX [92]

Proposed a platform

FortNOX, which allows

NOX based controllers

to analyze flow rule

inconsistencies among

Open-Flow applications

FlowChecker

[92]

Proposed a tool

FlowChecker, which

finds the errors in open

flow rules in the

forwarding devices

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 30

SURVEY ARTICLE

VeriFlow [93]

Proposed a tool,

VeriFlow, which helps

in detecting and

preventing malicious

rules implemented by

SDN applications

Resonance

Proposed a tool

Resonance, which uses

real-time notifications

and flowsstream

information to

implement dynamic

access control policies to

control traffic congestion

in the network

CPRecovery

Controller replicas are

used in the proposed

framework to keep the

network functioning,

even if some of the

network portions gets

compromised

Table 5 Proposed Solution for Various Challenges

4.1. Solutions for the Security Challenges in Application

Plane

The control plane mediates the application and data planes in

the SDN framework, hiding the network complexity. As a

result, the centralized control plane provides a comfortable

environment to deploy custom applications that access the

network information and packet characteristics. Several

programming languages, which include Frentic [94], Procera

[95], and NetCore [96], are used to develop SDN applications.

The author in [51] proposed FRESCO. An efficient program

to create new security applications that can deploy on any

open-flow device. Moreover, they offered several security

standards to determine whether SDN applications can act

following security policies.

The author in [87] proposed PermOF an effective permission

management system that allows Open-Flow applications to

access control and data plane. A collection of privileges and

isolation strategies is presented to implement permission

management, including reading, writing, and notify. The

application needs read permission to access the sensitive data

and control the flow of sensitive data. We require notification

permission to get notification messages to the applications

when a specific event occurs. The write permission provides

to control the application's ability to modify the behavior of

data plane elements. Finally, the isolation strategy provides

the controller an environment to administer the applications,

separate control plane and data plane, and provide an interface

to manage all the application's interactions with the outside

world.

All the applications should maintain steady network’s view

and be adaptable to all the changes in the network. The author

in [88] proposed a strategy for debugging and validating

applications to achieve consistency and adaptability.

Application developers can use the Assertion-based

debugging tool to validate dynamic attributes of controller

applications using high-level programs. Assertion techniques

are helpful in the detection of errors in the code before the

deployment of the applications. The strategy proposed in [88]

is an algorithm that presents a mechanism to analyze the

runtime environment's flow rules. The VeriFlow [93]

verification algorithm is an incremental data structure that

effectively validates the characteristics of all the changes in

the network.

The author in [89] proposed a tool Flover. This Open-Flow-

based application, deployed on the controller, verifies the

flow rules generated by the control plane with the predefined

rules. Hence, the flows don't deviate from the network

security policies. The author also proposed other automatic

testing tools to detect errors in Open-Flow programs. For

example, the author in [97] proposed the ndb framework,

which acts as a debugging tool for identifying the errors in the

network programs. Furthermore, to track down and

investigate the anomalies in the network, the author in [98]

developed OFRewind. The ndb and the OFRewind

frameworks effectively find malicious applications that can

compromise the network.

4.2. Solutions for the Security Challenges in Control Plane

The solutions for the security challenges in the control plane

depend on strategies and techniques used to secure from the

following threats.

 Illegitimate or unauthorized applications

 Bypassing the security by focusing the control

plane’s scalability

 Distributed Denial of Service attacks

 Reliability issues in Controller placement

4.2.1. Malicious or Unauthorized Applications

As the applications require access to all network resources

and data, it’s essential to safeguard the control plane from

malicious applications. Therefore it's the responsibility of the

control plane to provide access to the legitimate applications

in compliance with their security policies. The author in [99]

proposed a secured floodlight controller (SE_Floodlight),

which is an advanced version of the existing floodlight

controller [100] which strives to secure the control plane. It

integrates northbound API to the control plane, which acts as

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 31

SURVEY ARTICLE

an interface between application and data plane, enabling

privilege separation. Furthermore, it features an application

authentication module for evaluating the integrity of the flow-

rule generation module. The SE_FloodLight controller offers

authorized privileges to applications, resolving rule conflicts

by examining competing role generators' authority roles. It

can also limit Packet_out messages generated by a variety of

applications. Moreover, the SE_Floodlight controller has a

new assessment module that can monitor any security-related

activities in the control plane.

4.2.2. Bypassing the SDN Security by Targeting Control

Plane’s Scalability

In the SDN environment, the controller deploys specific rules

for every new client connection, resulting in many flows in

the switches and creating a severe workload on the control

plane. As a result, several strategies are proposed to reduce

the burden on the controller. It also provides a wildcard

strategy, allowing the controller to redirect the set of client

requests to server replicas. To achieve high scalability and

maintain load balancing on the control plane, it takes the

leverage of wildcard rules of the forwarding devices.

The author in [101] compares re-active and pro-active open-

flow controllers for scalability. Proactive controllers deploy

rules in advance of the packet arriving at the switch,

depending on specific preset rules. In contrast, the re-active

controllers get the initial packet from the switch to update the

flow table for that corresponding flow. According to the

author in [101], the proactive controllers' scalability is likely

more significant than the re-active controllers. Pro-active

controllers require the traffic flows to be known ahead, which

is not impossible in reality. As a result, the author proposes a

hybrid controller strategy, wherein controllers work reactively

to design routes while also possessing some intellect to

proactively analyze the behavior of the flow and determine a

route ahead of time.

Many initiatives are proceeding to improve the computational

resources and distribute responsibilities among the

controllers. For example, in [102], the author proposed

McNettle, an enhanced control plane environment with high

processing capability to process complex algorithms.

Compared with NOX, McNettle is more scalable, scaling up

to 46 cores versus ten cores for NOX and being more efficient

in performance.

The author in [103], [90] proposed DISCO, a distributed

controller which distributes the control plane's functionality. It

implements the Advanced Messaging Queuing Protocol

(AMPQ) [104], which is the enhanced version of the

Floodlight controller [100]. The AMPQ is the collection of

two modules: the intra-domain and the inter-domain modules.

The intra-domain modules allow the controller to compute

priority flow channels by monitoring the network and

managing flow prioritization. In addition, these modules

provide a dynamic solution to network problems by

forwarding or dropping the traffic based on the severity of the

packet. The inter-domain module consists of a messenger and

agents, facilitating the interaction between controllers. The

messenger detects adjacent controllers and establishes

communication among them. The agents use the messenger's

channels to communicate with other controllers on a network-

wide level.

The author in [91] proposed HyperFlow, a scalable controller

platform, which enables network programmers to install a set

of controllers capable of making effective decisions to

increase controller throughput and reduce latency. The author

in [105], recommended that the controllers be placed at the

starting point to minimize latency and then load balancing

methods be used to distribute the load across the controllers.

4.2.3. Distributed Denial of Service Attacks

We can mitigate these attacks by analyzing the forwarding

devices' incoming flow patterns and flow statistics. In open-

flow, we can easily collect statistics of the switch from the

Open-Flow controller. The author in [48] proposed a strategy

by implementing Self Organizing Maps (SOM) [106]. SOM is

a form of unsupervised neural network that converts an n-

dimensional input pattern into a 1- or 2-dimensional map. We

gather topological ordering and statistical properties for future

analysis during the transformation process. The SOM

procedure is adopted in [48] to uncover hidden relationships

between packets arriving in the network.

The attack detection mechanism proposed in [48] contains

three components: a flow_collector, a feature_extractor, and a

classifier. The flow_collector collects flow from all of the

flow tables of the forwarding devices at regular intervals. The

feature extractor extracts critical features and sent to the

classifier that helps in identifying an attack. Using SOM, the

classifier determines if a particular tuple represents malicious

or legitimate traffic. We have to train the SOM using a

tremendous collection of samples captured during an attack or

during regular traffic to produce a network topology with

distinct areas representing different types of traffic. The

trained SOM algorithm will distinguish traffic as either

legitimate or malicious when we activate it.

4.2.4. Reliability Issues in the Controller Placement

The author in [105] highlights that; the scalability and

robustness depend on the count of the controllers and

topological design. These two are the significant challenges

for the software-Defined network. As a result, researchers

have given considerable importance to controller placement,

and a broad range of algorithms have been investigated and

implemented. For example, the authors in [107], [108], and

[109] proposed the Simulated Annealing (SA) approach as the

most effective strategy for placing the controller. In addition,

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 32

SURVEY ARTICLE

a graph partitioning framework is developed in [110] to

enhance robustness through effective controller placement.

The authors in [107] proposed a strategy where the controllers

should synchronize and coordinate among themselves to

improve the efficiency of SDN control plane operations. The

procedures enhance the network by reducing the estimated

loss percentage. The authors investigated various

methodologies and their benefits for controller placement

using realistic topologies.

The authors in [109] explore the Dynamic Controller

Provisioning Problem (DCPP). It provides a support for the

deployment of several controllers in a WAN environment.

The size and positioning of controllers should update

according to network conditions. DCPP analyzes traffic

patterns to reduce the burden on the forwarding devices,

proper coordination among the controllers, and the device to

controller synchronization. Similarly, the author proposes a

controller placement approach by providing a solid ratio

between throughput and latency.

The authors in [111] propose a strategy to improve SDN

resiliency. According to the author, one controller may not be

sufficient to meet latency thresholds, but several controllers

are required to meet network resilience requirements. Thus,

the suggested strategy enhances the latency, throughput,

resiliency, failure recovery and load balancing among the

controllers.

4.3. Solutions for the Security challenges in Data plane

The illegitimate applications installed on the control plane can

compromise the devices on the data plane. Furthermore, such

programs can deploy, update, alter flow rules in the data plane

as an initial point. Therefore, an efficient approach must

authenticate and authorize the programs that modify the flow

rules. FortNox [112] is a framework that allows the NOX

Open-Flow controller to verify flow anomalies and

authenticate the programs before altering the flow rules.

FortNOX authorizes the flow rules using digital signatures

before deploying on the data plane. It handles all flow rule

insertion requests employing a live rule conflict detection and

analysis engine. FortNOX prevents other apps from inserting

contradictory flow rules in the network when a security

application installs a flow rule.

FlowChecker [92] is an application that detects errors in

Open-Flow rules within a switch or across multiple switches.

To verify, analyze, and implement Open-Flow end-to-end

configurations at runtime, FlowChecker is an Open-Flow

application or a master controller. VeriFlow [93] is a network

debugging tool for identifying and preventing malicious rules

implemented by SDN applications from generating abnormal

network activity. Even though a switch's performance

depends on controller connectivity, the forwarding devices

should have backup links. The Open-Flow devices employ

connection detection techniques to verify controller

connectivity, such as regularly transmitting activity probing

packets to the controller. In addition, the Open-Flow protocol

allows us to install a backup connection with a standby

controller in case the primary controller fails. The authors in

[113] recommend a controller replication strategy when the

primary controller fails; it keeps the switch functioning. A

switch regularly sends a probing signal to the control plane in

this scenario. In addition, the switch assumes the controller is

offline if it does not respond within a certain period. The

Open-Flow switch then attempts to link with the redundant

controller by executing a handshake and connecting instantly

[113].

With effective network design and partitioning, we can

improve the reliability of Open-Flow switches and their

communication with controllers. An Open-Flow switch

connected to the controller will be less vulnerable to

saturation attacks because it will not be essential to keep

unauthorized flows for more extended periods. The author in

[114] evaluated that the increase in distance between the

switch and the controller results in connectivity issues. As a

result, the authors in [114] suggest that the distance between

controllers and switches should be as minimal as possible to

improve latency limitations. Still, it will also allow for faster

restoration and maximize availability.

5. BENCH PERFORMANCE METRICS AND TOOLS

Here we discuss a collection of benchmarking metrics for

SDN controllers. We use the keywords like Throughput and

latency as basic metrics for performance measurement in

SDN. We can also consider some other factors include

security, reliability, availability, etc., to examine the

performance of the SDN. The benchmark metrics can be

categorized as follows.

 Throughput: The rate at which the controller processes the

flow requests are generally referred to as Throughput. The

speed at which the control plane receives packet_out

messages from the open flow switch and generates

corresponding flow at a unit time.

 Latency: Latency is the time the switch takes to transmit a

packet to the controller and respond to the corresponding

flow back to the switch. The Control plane’s latency

depends on the control plane’s computational cost and

delay.

 Flow installation based: This metric depends on the time

taken to install the flow rules at all the switches in the

network. Based on this metric, we can configure load

balancing.

 System Performance: This metric accesses the control

plane’s ability to use the SDN framework, hardware,

Input/Output elements, etc., effectively. By implementing

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 33

SURVEY ARTICLE

multithreading, we can enhance the flow processing time

of the control plane. Metrics such as power constraints,

hardware failures, convergence time, link recovery, etc.,

can also be critical to evaluating SDN performance.

5.1. Benchmarking Tools

The below are the most often used benchmarking tools.

 CBench[115] is one of the famous benchmarking tools

explicitly developed to evaluate the performance of the

control plane. Throughput and latency are the primary

assessment measures in CBench. We can calculate the

Throughput by transmitting massive packet_in messages

from each switch to estimate the controller’s capacity. We

can measure the latency by sending a packet_in request to

the control plane and waiting for a reply. The above step

repeats many times to calculate the average latency by the

total number of responses received at each switch. This

tool is limited to open flow 1.0 and 1.3 to access better

performance of the SDN control plane.

 HCprobe is an enhancement to CBench developed using

python to assess the performance of the control plane.

Scalability and Reliability are the assessment measures in

HCprobe. To test resilience and trustworthiness the

simulated switch generates and transmits malicious

packets to the control plane. As we run the test on the

linux kernel we can acquire better control plane

performance statistics.

 WCBench is a python-based updated version of CBench

that automatically measures throughput and latency with

graphical analysis. In addition, it supports a higher version

of OpenFlow. But its support is confined to only particular

versions of OpenDayLight Controllers.

 OFCBenchmark is a tool introduced to overcome the

drawbacks of CBench. It consists of a Graphical User

Interface (GUI) based console with a virtual switch and

multiple clients to perform tests. In addition to existing

benchmark metrics, it includes CPU consumption, rate of

flow installation, Round trip time, etc., to access the

performance of the SDN controller.

 OFCProbe[116] is an enhanced form of OFCBenchmark,

which is platform-independent and focuses on improving

the functionality and reducing the SDN control plane's

overhead. It creates a large-scale simulation testbed with a

substantial amount of switches and clients. This tool is

intelligent in examining the network's impact in test

conditions.

 OFNet[117] is a hybrid tool that provides an SDN

simulation environment with control plane performance

monitoring and debugging. In addition, it provides a large

variety of network topologies and traffic generation

modules to generate a variety of traffic patterns.

6. OVERVIEW OF RECENT RESEARCH RESULTS IN

SDN SECURITY

Researchers initially used entropy to identify security threats

in SDN due to its simplicity and low overhead. However, as

research in SDN grows exponentially, researchers have

claimed that entropy is inefficient in detecting some attacks,

especially DDoS attacks, due to its high false positives rate.

Therefore, mathematical and statistical models are widely

adopted. Recently machine learning (ML) and deep learning

(DL) have been extensively used to analyze network security

threats. The author in [118] has concluded their results using

ML algorithms. The Support Vector Machine has shown a

significant performance compared with others. Its accuracy is

about 97.50%, whereas the accuracy of Naive-Bayes is

96.03%, the Decision tree is 96.78%, the Logistic Regression

is 89.98%. The author in [119] has concluded their results

using DL algorithms. The accuracy of RNN is about 98.09%,

whereas the accuracy of LSTM and GRU is 98.87% and

98.20%. But the worrying factor is its efficacy. The overall

efficacy of the model depends on the dataset used to train the

model. Unfortunately, most of the datasets used are obsolete

with outdated attack patterns. As a result, these models cannot

detect the latest attacks, which become a significant

challenge. Recently, the security of the SDN has enhanced

with the evolution and adoption of blockchain technology.

However, despite multiple advantages, we still face several

security threats due to the limitations in SDN design, high

processing time, and computational cost, affecting the

network's confidentiality, integrity, and availability.

7. CONCLUSION AND FUTURE WORKS

With the gradual introduction of SDN architecture, new

threats are pretty likely to evolve. Similarly, the attack surface

is likely to expand because standard network security risks

spread alongside SDN-related security challenges. On the

other hand, SDN aims to bring innovation to communication

networks. According to the previous studies on SDN security,

it enables the rapid development of cost-effective security

services. To ensure security, various security policies are

enabled in the network, and the security demands of multiple

applications, services, resources, and devices are collected by

the distribution layer of SDN. The network programmability

and centralized control can improve the reliability and

scalability of the networks.

Moreover, SDN significantly improves security by achieving

a global view of the entire network. But on the other side, new

security challenges are evolving. This paper has discussed

various open challenges related to security in SDN’s

application, control, and data planes. Also, we have presented

some of the flaws related to security and techniques to

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 34

SURVEY ARTICLE

strengthen the network and mitigate attacks related to security

in SDN. . In this work, we have found most of the existing

SDN controllers lack security protocols and standards.

Therefore, we can conclude that the existing SDN architecture

must be strengthened, upgraded, and enhanced to address the

aforementioned challenges.The open challenges which were

discussed in section 3 are the future directions for the research

community.

REFERENCES

[1] Singh, Jagdeep and Sunny Behal. “Detection and mitigation of DDoS

attacks in SDN: A comprehensive review, research challenges and

future directions.” Comput. Sci. Rev. 37 (2020): 100279.
[2] Fonseca, Paulo César, and Edjard Souza Mota. "A survey on fault

management in software-defined networks." IEEE Communications

Surveys & Tutorials 19, no. 4 (2017): 2284-2321
[3] Kreutz, Diego, Fernando MV Ramos, and Paulo Verissimo. "Towards

secure and dependable software-defined networks." In Proceedings of

the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pp. 55-60. 2013.

[4] Jo, Hyeonseong, Jaehyun Nam, and Seungwon Shin. "Nosarmor:

Building a secure network operating system." Security and
Communication Networks 2018 (2018).

[5] Open Network Foundation: achievements,

https://opennetworking.org/about-onf/careers/about-onf/ Accessed 04
Jan 2021

[6] Kandoi, Rajat, and Markku Antikainen. "Denial-of-service attacks in

OpenFlow SDN networks." In 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 1322-1326.

IEEE, 2015.

[7] HP, ‘‘8200 ZL switch series,’’ 2013. [Online]. Available:
http://h17007.www1.hp.com/

us/en/networking/products/switches/HP_8200_zl_Switch_Series/.

[8] Arista Networks, ‘‘7150 Series,’’ 2013. [Online]. Available:
http://www.Aristanetworks.com/media/system/pdf/Datasheets/7150S_

Datasheet.pdf.

[9] Extreme Networks, ‘‘Blackdiamond x8,’’2013. [Online]. Available:
http://www.extremenetworks.com/libraries/products/

DSBDX_1832.pdf.

[10] Huawei Technologies Co., Ltd., ‘‘Cx600 metro services platform,’’
2013. [Online].Available:

http://www.huawei.com/ucmf/groups/public/documents/attachments/h

w_132369.pdf.
[11] Juniper Networks, ‘‘Ex9200 Ethernet switch,’’ 2013. [Online].

Available: http://www.juniper.net/us/en/local/pdf/datasheets/1000432-
en.pdf.

[12] BROCADE, ‘‘MLX Series,’’ 2013. [Online].available:

http://www.brocade.com/ products/all/routers/product-details/ netiron-
mlx-series/system-options.page

[13] IBM, ‘‘System networking RackSwitch G8264,’’ 2013. [Online].

Available: http://www-

03.ibm.com/systems/networking/switches/rack/g8264/

[14] Pica8, ‘‘3920,’’ 2013. [Online]. Available:

http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-
p3920.pdf.

[15] .Juniper Networks, Inc., ‘‘Contrail virtual router,’’ 2013. [Online].

Available: https:// github.com/Juniper/contrail-vrouter.
[16] Rutka, Krzysztof, Konrad Kaplita, Sandhya Narayan, and Stuart

Bailey. "LINC Switch (2013)."

[17] Fernandes, Eder Leao, and Christian Esteve Rothenberg. "OpenFlow
1.3 software switch." Salao de Ferramentas do XXXII Simpósio

Brasileiro de Redes de Computadores e Sistemas Distribuıdos

SBRC (2014): 1021-1028.
[18] Open vSwitch, 2013. [Online]. Available: http://vswitch.org/

[19] Pfaff, Ben, Justin Pettit, Keith Amidon, Martin Casado, Teemu

Koponen, and Scott Shenker. "Extending networking into the
virtualization layer." In Hotnets. 2009.

[20] Open-Flow Community, ‘‘Switching reference system,’’ 2009.

[Online]. Available: http:// www.Open-Flow.org/wp/downloads/
[21] Xie, Haiyong, Tina Tsou, Diego R. Lopez, en Hongtao Yin. “Use

Cases for ALTO with Software Defined Networks”. Internet

Engineering Task Force, 27 Junie 2012.
https://datatracker.ietf.org/doc/html/draft-xie-alto-sdn-use-cases-01.

[22] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
"OpenFlow: enabling innovation in campus networks." ACM

SIGCOMM computer communication review 38, no. 2 (2008): 69-74.

[23] Erickson, David. "The beacon openflow controller." In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software

defined networking, pp. 13-18. 2013.

[24] Phemius, Kevin, Mathieu Bouet, and Jérémie Leguay. "Disco:

Distributed multi-domain sdn controllers." In 2014 IEEE Network

Operations and Management Symposium (NOMS), pp. 1-4. IEEE,

2014.
[25] Dixit, Advait, Fang Hao, Sarit Mukherjee, T. V. Lakshman, and

Ramana Rao Kompella. "ElastiCon; an elastic distributed SDN
controller." In 2014 ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS), pp. 17-27. IEEE,

2014.
[26] Matsumoto, Stephanos, Samuel Hitz, and Adrian Perrig. "Fleet:

Defending SDNs from malicious administrators." In Proceedings of

the third workshop on Hot topics in software defined networking, pp.
103-108. 2014.

[27] Floodlight, P. "Project floodlight open source software for building

softwaredefined networks." (2012).
[28] HP, ‘‘SDN controller architecture,’’Tech. Rep., Sep. 2013.

[29] Tootoonchian, Amin, and Yashar Ganjali. "Hyperflow: A distributed

control plane for openflow." In Proceedings of the 2010 internet
network management conference on Research on enterprise

networking, vol. 3. 2010.

[30] Hassas Yeganeh, Soheil, and Yashar Ganjali. "Kandoo: a framework
for efficient and scalable offloading of control applications."

In Proceedings of the first workshop on Hot topics in software defined

networks, pp. 19-24. 2012.
[31] Koponen, Teemu, Martin Casado, Natasha Gude, Jeremy Stribling,

Leon Poutievski, Min Zhu, Rajiv Ramanathan et al. "Onix: A

distributed control platform for large-scale production networks."
In OSDI, vol. 10, pp. 1-6. 2010.

[32] Cai, Z., A. L. Cox, and T. S. E. Ng. "Maestro: A System for Scalable

OpenFlow Control. Technical report." Rice University (2011).
[33] Banikazemi, Mohammad, David Olshefski, Anees Shaikh, John

Tracey, and Guohui Wang. "Meridian: an SDN platform for cloud

network services." IEEE Communications Magazine 51, no. 2 (2013):
120-127.

[34] Gude, Natasha, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín

Casado, Nick McKeown, and Scott Shenker. "NOX: towards an
operating system for networks." ACM SIGCOMM computer

communication review 38, no. 3 (2008): 105-110.

[35] Koponen, Teemu, Keith Amidon, Peter Balland, Martín Casado,
Anupam Chanda, Bryan Fulton, Igor Ganichev et al. "Network

virtualization in multi-tenant datacenters." In 11th {USENIX}

Symposium on Networked Systems Design and Implementation
({NSDI} 14), pp. 203-216. 2014.

[36] OpenDaylight, A. "Linux Foundation Collaborative

Project." Dispontvel online: http:/Avww. opendaylight. org (2013).
[37] U. Krishnaswamy et al., ‘‘ONOS: An open source distributed SDN

OS,’’ 2013. [Online]. Available: http://www.slideshare.net/

umeshkrishnaswamy/open-networkoperating- system.
[38] Ferguson, Andrew D., Arjun Guha, Chen Liang, Rodrigo Fonseca, and

Shriram Krishnamurthi. "Participatory networking: An API for

https://opennetworking.org/about-onf/careers/about-onf/
http://h17007.www1.hp.com/
http://www.aristanetworks.com/media/system/pdf/Datasheets/7150S_Datasheet.pdf
http://www.aristanetworks.com/media/system/pdf/Datasheets/7150S_Datasheet.pdf
http://www.huawei.com/ucmf/groups/public/documents/attachments/hw_132369.pdf
http://www.huawei.com/ucmf/groups/public/documents/attachments/hw_132369.pdf
http://www.juniper.net/us/en/local/pdf/datasheets/1000432-en.pdf
http://www.juniper.net/us/en/local/pdf/datasheets/1000432-en.pdf
http://vswitch.org/
http://www.openflow.org/wp/downloads/
https://datatracker.ietf.org/doc/html/draft-xie-alto-sdn-use-cases-01
http://www.slideshare.net/

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 35

SURVEY ARTICLE

application control of SDNs." ACM SIGCOMM computer

communication review 43, no. 4 (2013): 327-338.
[39] McCauley, Murphy. "About pox." URL: http://www. noxrepo.

org/pox/about-pox/. Online (2013).

[40] Shin, Seungwon, Yongjoo Song, Taekyung Lee, Sangho Lee,
Jaewoong Chung, Phillip Porras, Vinod Yegneswaran, Jiseong Noh,

and Brent Byunghoon Kang. "Rosemary: A robust, secure, and high-

performance network operating system." In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security,

pp. 78-89. 2014.

[41] Telegraph, Nippon. "Telephone Corporation,“Ryu Network Operating
System.”." (2012).

[42] Botelho, Fábio, Alysson Bessani, Fernando MV Ramos, and Paulo

Ferreira. "On the design of practical fault-tolerant SDN controllers."
In 2014 third European workshop on software defined networks, pp.

73-78. IEEE, 2014.

[43] Takamiya, Yasuhito, and Nick Karanatsios. "Trema OpenFlow

controller framework." (2012).

[44] Hand, Ryan, Michael Ton, and Eric Keller. "Active security."

In Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks, pp. 1-7. 2013.

[45] Shin, Seungwon, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.
"Avant-guard: Scalable and vigilant switch flow management in

software-defined networks." In Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security, pp.
413-424. 2013.

[46] Shin, Seungwon, and Guofei Gu. "CloudWatcher: Network security

monitoring using OpenFlow in dynamic cloud networks (or: How to
provide security monitoring as a service in clouds?)." In 2012 20th

IEEE international conference on network protocols (ICNP), pp. 1-6.

IEEE, 2012.
[47] Tantar, Emilia, Maria Rita Palattella, Tigran Avanesov, Miroslaw

Kantor, and Thomas Engel. "Cognition: A tool for reinforcing security

in software defined networks." In EVOLVE-A Bridge between
Probability, Set Oriented Numerics, and Evolutionary Computation V,

pp. 61-78. Springer, Cham, 2014.

[48] Braga, Rodrigo, Edjard Mota, and Alexandre Passito. "Lightweight
DDoS flooding attack detection using NOX/OpenFlow." In IEEE

Local Computer Network Conference, pp. 408-415. IEEE, 2010.

[49] Stabler, Greg, Aaron Rosen, Sebastien Goasguen, and Kuang-Ching
Wang. "Elastic IP and security groups implementation using

OpenFlow." In Proceedings of the 6th international workshop on

Virtualization Technologies in Distributed Computing Date, pp. 53-60.
2012.

[50] Casado, Martin, Michael J. Freedman, Justin Pettit, Jianying Luo,

Nick McKeown, and Scott Shenker. "Ethane: Taking control of the
enterprise." ACM SIGCOMM computer communication review 37,

no. 4 (2007): 1-12.

[51] Shin, Seung Won, Phillip Porras, Vinod Yegneswara, Martin Fong,
Guofei Gu, and Mabry Tyson. "Fresco: Modular composable security

services for software-defined networks." In 20th Annual Network &

Distributed System Security Symposium. Ndss, 2013.
[52] Wang, Kai, Yaxuan Qi, Baohua Yang, Yibo Xue, and Jun Li.

"LiveSec: Towards effective security management in large-scale

production networks." In 2012 32nd International Conference on
Distributed Computing Systems Workshops, pp. 451-460. IEEE, 2012.

[53] Sapio, Amedeo, Mario Baldi, Yong Liao, Gyan Ranjan, Fulvio Risso,

Alok Tongaonkar, Ruben Torres, and Antonio Nucci. "MAPPER: a
mobile application personal policy enforcement router for enterprise

networks." In 2014 Third European Workshop on Software Defined

Networks, pp. 131-132. IEEE, 2014.
[54] Wang, Ye, Yueping Zhang, Vishal Singh, Cristian Lumezanu, and

Guofei Jiang. "Netfuse: Short-circuiting traffic surges in the cloud."

In 2013 IEEE international conference on communications (ICC), pp.
3514-3518. IEEE, 2013.

[55] Ballard, Jeffrey R., Ian Rae, and Aditya Akella. "Extensible and

Scalable Network Monitoring Using OpenSAFE." Inm/wren 10
(2010).

[56] Casado, Martin, Tal Garfinkel, Aditya Akella, Michael J. Freedman,

Dan Boneh, Nick McKeown, and Scott Shenker. "SANE: A Protection
Architecture for Enterprise Networks." In USENIX Security

Symposium, vol. 49, p. 50. 2006.

[57] Yao, Guang, Jun Bi, and Peiyao Xiao. "Source address validation
solution with OpenFlow/NOX architecture." In 2011 19Th IEEE

international conference on network protocols, pp. 7-12. IEEE, 2011.

[58] Wang, Guohui, TS Eugene Ng, and Anees Shaikh. "Programming
your network at run-time for big data applications." In Proceedings of

the first workshop on Hot topics in software defined networks, pp.

103-108. 2012.
[59] Benson, Theophilus, Aditya Akella, Anees Shaikh, and Sambit Sahu.

"CloudNaaS: a cloud networking platform for enterprise applications."

In Proceedings of the 2nd ACM Symposium on Cloud Computing, pp.

1-13. 2011.

[60] Das, Anupam, Cristian Lumezanu, Yueping Zhang, Vishal Singh,

Guofei Jiang, and Curtis Yu. "Transparent and flexible network
management for big data processing in the cloud." In 5th {USENIX}

Workshop on Hot Topics in Cloud Computing (HotCloud 13). 2013.
[61] Arefin, Ahsan, Vishal K. Singh, Guofei Jiang, Yueping Zhang, and

Cristian Lumezanu. "Diagnosing data center behavior flow by flow."

In 2013 IEEE 33rd International Conference on Distributed
Computing Systems, pp. 11-20. IEEE, 2013.

[62] Keller, Eric, Soudeh Ghorbani, Matt Caesar, and Jennifer Rexford.

"Live migration of an entire network (and its hosts)." In Proceedings
of the 11th ACM Workshop on Hot Topics in Networks, pp. 109-114.

2012.

[63] Raghavendra, Ramya, Jorge Lobo, and Kang-Won Lee. "Dynamic
graph query primitives for sdn-based cloudnetwork management."

In Proceedings of the first workshop on Hot topics in software defined

networks, pp. 97-102. 2012.
[64] Ghobadi, Monia, and Y. Ganjali. "TCP adaptation framework in data

centers." PhD diss., University of Toronto, 2013.

[65] Yu, Ye, Chen Qian, and Xin Li. "Distributed and collaborative traffic
monitoring in software defined networks." In Proceedings of the third

workshop on Hot topics in software defined networking, pp. 85-90.

2014.
[66] Van Adrichem, Niels LM, Christian Doerr, and Fernando A. Kuipers.

"Opennetmon: Network monitoring in openflow software-defined

networks." In 2014 IEEE Network Operations and Management
Symposium (NOMS), pp. 1-8. IEEE, 2014.

[67] Tootoonchian, Amin, Monia Ghobadi, and Yashar Ganjali. "OpenTM:

traffic matrix estimator for OpenFlow networks." In International
Conference on Passive and Active Network Measurement, pp. 201-

210. Springer, Berlin, Heidelberg, 2010.

[68] Argyropoulos, Christos, Dimitrios Kalogeras, Georgios Androulidakis,
and Vasilis Maglaris. "PaFloMon--A Slice Aware Passive Flow

Monitoring Framework for OpenFlow Enabled Experimental

Facilities." In 2012 European Workshop on Software Defined
Networking, pp. 97-102. IEEE, 2012.

[69] Chowdhury, Shihabur Rahman, Md Faizul Bari, Reaz Ahmed, and

Raouf Boutaba. "Payless: A low cost network monitoring framework
for software defined networks." In 2014 IEEE Network Operations

and Management Symposium (NOMS), pp. 1-9. IEEE, 2014.

[70] Scharf, Michael, Vijay Gurbani, Thomas Voith, Manuel Stein, W.
Roome, Greg Soprovich, and Volker Hilt. "Dynamic VPN

optimization by ALTO guidance." In 2013 second European workshop

on software defined networks, pp. 13-18. IEEE, 2013.
[71] Handigol, Nikhil, Srini Seetharaman, Mario Flajslik, Aaron Gember,

Nick McKeown, Guru Parulkar, Aditya Akella et al. "Aster* x: Load-

balancing web traffic over wide-area networks." Open Networking
Summit Demo (2011).

[72] Heller, Brandon, Srinivasan Seetharaman, Priya Mahadevan, Yiannis

Yiakoumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 36

SURVEY ARTICLE

"Elastictree: Saving energy in data center networks." In Nsdi, vol. 10,

pp. 249-264. 2010.
[73] Benson, Theophilus, Ashok Anand, Aditya Akella, and Ming Zhang.

"MicroTE: Fine grained traffic engineering for data centers."

In Proceedings of the seventh conference on emerging networking
experiments and technologies, pp. 1-12. 2011.

[74] Xiong, Pengcheng, and Hakan Hacigümüş. "Pronto: A software-

defined networking based system for performance management of
analytical queries on distributed data stores." Proceedings of the

VLDB Endowment 7, no. 13 (2014): 1661-1664.

[75] Jeong, Kwangtae, Jinwook Kim, and Young-Tak Kim. "QoS-aware
network operating system for software defined networking with

generalized OpenFlows." In 2012 IEEE Network Operations and

Management Symposium, pp. 1167-1174. IEEE, 2012.
[76] Palma, David, Joao Goncalves, Bruno Sousa, Luis Cordeiro, Paulo

Simoes, Sachin Sharma, and Dimitri Staessens. "The queuepusher:

Enabling queue management in openflow." In 2014 third European

workshop on software defined networks, pp. 125-126. IEEE, 2014.

[77] Ahmad, Suhail, and Ajaz Hussain Mir. "Scalability, consistency,

reliability and security in sdn controllers: A survey of diverse sdn
controllers." Journal of Network and Systems Management 29, no. 1

(2021): 1-59.
[78] Park, Younghee, Hongxin Hu, Xiaohong Yuan, and Hongda Li.

"Enhancing Security Education Through Designing SDN Security

Labs in CloudLab." In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pp. 185-190. 2018.

[79] Kreutz, Diego, Fernando MV Ramos, and Paulo Verissimo. "Towards

secure and dependable software-defined networks." In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software

defined networking, pp. 55-60. 2013.

[80] Xie, Haiyong, Tina Tsou, Diego R. Lopez, en Hongtao Yin. “Use
Cases for ALTO with Software Defined Networks”. Internet

Engineering Task Force, 27 Junie 2012.

https://datatracker.ietf.org/doc/html/draft-xie-alto-sdn-use-cases-01.
[81] Seedorf, Jan, and Eric Burger. Application-layer traffic optimization

(ALTO) problem statement. RFC 5693, October, 2009..

[82] MR, Harshitha, Harshitha JS, Brunda KS, and Shrihari MR. "An
Approach for Supervising the Security Threats using Software Defined

Networks." Available at SSRN 3510055 (2019).

[83] Gupta, Brij B., Gregorio Martinez Perez, Dharma P. Agrawal, and
Deepak Gupta. Handbook of computer networks and cyber security.

Springer, 2020.

[84] Benton, Kevin, L. Jean Camp, and Chris Small. "OpenFlow
vulnerability assessment." In Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking,

pp. 151-152. 2013.
[85] Liyanage, Madhusanka, and Andrei Gurtov. "Secured VPN models for

LTE backhaul networks." In 2012 IEEE Vehicular Technology

Conference (VTC Fall), pp. 1-5. IEEE, 2012.
[86] Staessens, Dimitri, Sachin Sharma, Didier Colle, Mario Pickavet, and

Piet Demeester. "Software defined networking: Meeting carrier grade

requirements." In 2011 18th IEEE workshop on local & metropolitan
area networks (LANMAN), pp. 1-6. IEEE, 2011.

[87] Wen, Xitao, Yan Chen, Chengchen Hu, Chao Shi, and Yi Wang.

"Towards a secure controller platform for openflow applications."
In Proceedings of the second ACM SIGCOMM workshop on Hot

topics in software defined networking, pp. 171-172. 2013.

[88] Beckett, Ryan, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik,
Jennifer Rexford, and David Walker. "An assertion language for

debugging SDN applications." In Proceedings of the third workshop

on Hot topics in software defined networking, pp. 91-96. 2014.
[89] Canini, Marco, Dejan Kostic, Jennifer Rexford, and Daniele Venzano.

"Automating the testing of OpenFlow applications." In The 1st

International Workshop on Rigorous Protocol Engineering (WRiPE).
2011.

[90] Phemius, Kévin, Mathieu Bouet, and Jérémie Leguay. "DISCO:

Distributed SDN controllers in a multi-domain environment." In 2014

IEEE Network Operations and Management Symposium (NOMS), pp.

1-2. IEEE, 2014.
[91] Tootoonchian, Amin, and Yashar Ganjali. "Hyperflow: A distributed

control plane for openflow." In Proceedings of the 2010 internet

network management conference on Research on enterprise
networking, vol. 3. 2010.

[92] Al-Shaer, Ehab, and Saeed Al-Haj. "FlowChecker: Configuration

analysis and verification of federated OpenFlow infrastructures."
In Proceedings of the 3rd ACM workshop on Assurable and usable

security configuration, pp. 37-44. 2010.

[93] Khurshid, Ahmed, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P.
Brighten Godfrey. "Veriflow: Verifying network-wide invariants in

real time." In 10th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 13), pp. 15-27. 2013.
[94] Foster, Nate, Rob Harrison, Michael J. Freedman, Christopher

Monsanto, Jennifer Rexford, Alec Story, and David Walker. "Frenetic:

A network programming language." ACM Sigplan Notices 46, no. 9

(2011): 279-291.

[95] Voellmy, Andreas, Hyojoon Kim, and Nick Feamster. "Procera: a

language for high-level reactive network control." In Proceedings of
the first workshop on Hot topics in software defined networks, pp. 43-

48. 2012.
[96] Monsanto, Christopher, Nate Foster, Rob Harrison, and David Walker.

"A compiler and run-time system for network programming

languages." Acm sigplan notices 47, no. 1 (2012): 217-230.
[97] Handigol, Nikhil, Brandon Heller, Vimalkumar Jeyakumar, David

Maziéres, and Nick McKeown. "Where is the debugger for my

software-defined network?." In Proceedings of the first workshop on
Hot topics in software defined networks, pp. 55-60. 2012.

[98] Wundsam, Andreas, Dan Levin, Srini Seetharaman, and Anja

Feldmann. "OFRewind: Enabling record and replay troubleshooting
for networks." In USENIX Annual Technical Conference, pp. 327-

340. USENIX Association, 2011.

[99] “Porras, Phillip A., Steven Cheung, Martin W. Fong, Keith Skinner,
and Vinod Yegneswaran."Securing the software defined network

control layer." In NDSS. 2015.

[100] Switch, Big. "Developing floodlight modules. Floodlight OpenFlow
controller." (2012).

[101] Fernandez, Marcial P. "Comparing openflow controller paradigms

scalability: Reactive and proactive." In 2013 IEEE 27th International
Conference on Advanced Information Networking and Applications

(AINA), pp. 1009-1016. IEEE, 2013.

[102] Voellmy, Andreas, and Junchang Wang. "Scalable software defined
network controllers." In Proceedings of the ACM SIGCOMM 2012

conference on Applications, technologies, architectures, and protocols

for computer communication, pp. 289-290. 2012.
[103] Phemius, Kevin, Mathieu Bouet, and Jérémie Leguay. "Disco:

Distributed multi-domain sdn controllers." In 2014 IEEE Network

Operations and Management Symposium (NOMS), pp. 1-4. IEEE,
2014.

[104] Vinoski, Steve. "Advanced message queuing protocol." IEEE Internet

Computing 10, no. 6 (2006): 87-89.
[105] Heller, Brandon, Rob Sherwood, and Nick McKeown. "The controller

placement problem." ACM SIGCOMM Computer Communication

Review 42, no. 4 (2012): 473-478.
[106] Kohonen, Teuvo. "The self-organizing map." Proceedings of the

IEEE 78, no. 9 (1990): 1464-1480.

[107] Hu, Yannan, Wendong Wang, Xiangyang Gong, Xirong Que, and
Shiduan Cheng. "On reliability-optimized controller placement for

software-defined networks." China Communications 11, no. 2 (2014):

38-54.
[108] Fan, Yuqi, and Tao Ouyang. "Reliability-aware controller placements

in software defined networks." In 2019 IEEE 21st International

Conference on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE 5th

International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), pp. 2133-2140. IEEE, 2019.

https://datatracker.ietf.org/doc/html/draft-xie-alto-sdn-use-cases-01

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211595 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 37

SURVEY ARTICLE

[109] Bari, Md Faizul, Arup Raton Roy, Shihabur Rahman Chowdhury, Qi

Zhang, Mohamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba.
"Dynamic controller provisioning in software defined networks."

In Proceedings of the 9th International Conference on Network and

Service Management (CNSM 2013), pp. 18-25. IEEE, 2013.
[110] Zhang, Ying, Neda Beheshti, and Mallik Tatipamula. "On resilience of

split-architecture networks." In 2011 IEEE Global

Telecommunications Conference-GLOBECOM 2011, pp. 1-6. IEEE,
2011.

[111] Hock, David, Matthias Hartmann, Steffen Gebert, Michael Jarschel,

Thomas Zinner, and Phuoc Tran-Gia. "Pareto-optimal resilient
controller placement in SDN-based core networks." In Proceedings of

the 2013 25th International Teletraffic Congress (ITC), pp. 1-9. IEEE,

2013.
[112] Porras, Philip, Seungwon Shin, Vinod Yegneswaran, Martin Fong,

Mabry Tyson, and Guofei Gu. "A security enforcement kernel for

OpenFlow networks." In Proceedings of the first workshop on Hot

topics in software defined networks, pp. 121-126. 2012.

[113] Fonseca, Paulo, Ricardo Bennesby, Edjard Mota, and Alexandre

Passito. "A replication component for resilient OpenFlow-based
networking." In 2012 IEEE Network operations and management

symposium, pp. 933-939. IEEE, 2012.
[114] Seedorf, Jan, and Eric Burger. Application-layer traffic optimization

(ALTO) problem statement. RFC 5693, October, 2009.

[115] Sherwood, Rob, and K. K. Yap. "Cbench controller
benchmarker." Last accessed, Nov (2011).

[116] Jarschel, Michael, Christopher Metter, Thomas Zinner, Steffen Gebert,

and Phuoc Tran-Gia. "OFCProbe: A platform-independent tool for
OpenFlow controller analysis." In 2014 IEEE Fifth International

Conference on Communications and Electronics (ICCE), pp. 182-187.

IEEE, 2014.

How to cite this article:

[117] Shankar, Ganesh H. "OFNet." OFNet-Quick User Guide.[Online].

Available: http://sdninsights. org/.[Accessed: 05-Jun-2018] (2016).
[118] Ahmad, Ahnaf, Erkki Harjula, Mika Ylianttila, en Ijaz Ahmad.

“Evaluation of Machine Learning Techniques for Security in SDN”.

In 2020 IEEE Globecom Workshops (GC Wkshps, 1–6,
2020. https://doi.org/10.1109/GCWkshps50303.2020.9367477.

[119] Alshra’a, Abdullah Soliman, Ahmad Farhat, and Jochen Seitz. "Deep

Learning Algorithms for Detecting Denial of Service Attacks in
Software-Defined Networks." Procedia Computer Science 191 (2021):

254-263.

Authors

Konda Srikar Goud received his M.Tech degree

from Computer Science and Engineering from JNTU

Hyderabad. He is working as Assistant Professor in
the Department of Information Technology, BVRIT

Hyderabad sCollege of Engineering for Women,

Hyderabad, India. He is currently pursuing Ph.D. at
GITAM University, Visakhapatnam, Andhra

Pradesh, India. Research area includes Network

Security, computer networks and Software Defined
Networks.

Srinivasa Rao Giduturi is Associate Professor in
the department of Computer Science and

Engineering, GITAM University, Visakhapatnam,

Andhra Pradesh, India. He received his M.Tech
degree from Anna University; Ph.D. degree from

GITAM University. Research interest includes

Mobile Computing, Computer Networks.

Konda Srikar Goud, Srinivasa Rao Gidituri, “Security Challenges and Related Solutions in Software Defined Networks: A

Survey”, International Journal of Computer Networks and Applications (IJCNA), 9(1), PP: 22-37, 2022, DOI:

10.22247/ijcna/2022/211595.

https://doi.org/10.1109/GCWkshps50303.2020.9367477

