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Abstract – In the current digitalized world, everything is 

interconnected and accessible from everywhere. Although 

traditional networks are widely adopted, their management is 

complicated. Therefore, they are not effective in providing 

services to the future Internet like a wide range of accessibility, 

high bandwidth, management, and security. On the other hand, 

Traditional network architecture relies on manual 

configurations of proprietary devices that are error-prone and 

inefficient to utilize the network devices properly. Software-

defined Networking (SDN) has drawn massive changes in the 

traditional network paradigm by decoupling the network 

operations from the physical hardware and encouraging 

network control to be logically centralized. It provides network 

programmability and improves security by enabling a global 

view of the entire network and issues handled effectively by the 

centralized controller. As a result, SDN allows networks to 

monitor the traffic and detect vulnerabilities more effectively. It 

also simplifies the deployment of new services with more 

flexibility at a faster pace. On the other hand, the decoupling of 

control and the data planes introduces security threats such as 

Distributed Denial of Service (DDoS) attacks, Man in the Middle 

attacks, Saturation attacks, etc. As a result, SDN has attracted a 

lot of interest from both academics and industry. In this paper, 

we study security vulnerabilities on layers of SDN, the security 

frameworks that protect each layer, and many security 

methodologies for network-wide security. 

Index Terms – Software Defined Networks (SDN), Open-Flow 

(OF), Network Operating System (NOS), Security, Reliability, 

Centralized Controller. 

1. INTRODUCTION 

Three layers represent computer Networking functionalities: 

Data plane, Control plane, and Application plane. The data 

plane comprises network devices that are capable of 

forwarding packets effectively [1]. The control plane handles 

interaction between the network-aware applications and the 

forwarding elements via different APIs. In particular, it 

translates application layer requirements to underlying 

forwarding devices, such as updating the forwarding table of 

switches or routers. Finally, the Application plane comprises 

applications that apply network control logic and techniques 

such as Simple Network Management Protocol (SNMP) 

service, which is responsible for remotely monitoring and 

configuring the control functionality. Some of the applications 

are Routing, Traffic Engineering, Firewalls, load balancing, 

etc. Therefore we can say that the Application plane creates 

network policies, the control plane executes them, and the 

data plane puts them into action by routing traffic properly. 

In the legacy networks, the control plane and the data plane 

are firmly connected and incorporated in a single device [2], 

where the entire structure is decentralized, as shown in figure 

1. Therefore, it brings a significant change in the Internet 

architecture in the early stages, which successfully achieved 

scalability, reliability, robustness, and high performance.  

In the present world of digitalization, the legacy network 

architecture is not best suitable for the current increase in 

dynamic networking trends. Hence the management of 

networks is becoming more complex and challenging. It leads 

to the necessity of implementing complicated and high-level 

policies adaptable to current network environments and 

minimizing the burden on the low-level network devices. 

Moreover, in the present networking scenario, device miss-

configuration-related issues are pretty standard, leading to 

unexpected network behavior. For instance, a single miss-

configured device may compromise the entire network and 

makes it offline for hours. 

There is a need for a novel approach is emphasized to solve 

numerous challenges related to legacy networks. In 

comparison with legacy network design, the primary purpose 

of the SDN paradigm is to simplify network operations, 
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improve network administration and offer reliability, 

scalability, and security.  

According to Kim and feamster [3], there are four essential 

factors in managing legacy networks. 

 Complicated and minimal network configuration: 

 Dynamic change in network topology 

 The complexity of a decentralized and low-level network 

 Heterogeneous proprietary devices 

 

Figure 1 Traditional Networks (vs) Software Defined Networks 

We can say that maintaining the network is complicated as the 

legacy network architecture is inadequate to deal with today’s 

fast-paced network tendencies. SDN is one of the Open 

Network Foundations (ONF) initiatives, which introduced 

new open network architecture to address the challenges faced 

by the legacy networks. In traditional network architecture, 

the control plane and data plane are in a single unit. In 

contrast, the SDN separates the control and forwarding 

functionality by creating an abstraction between them [4]. 

As a result, all the network devices become essential 

forwarding elements. Furthermore, all the control plane 

functionality is moved to a logically centralized controller, 

making the network programmable and flexible in developing 

and deploying customized applications [1]. 

2. BACKGROUND AND RELATED WORK 

Every device in the traditional network architecture has its 

data and control planes. The control plane of various devices 

interchanges topological information and builds its routing 

table that determines the path of the incoming packet to route 

through the data plane. In Software-Defined Networks (SDN), 

the control plane is separated from the underlying hardware 

and moved to a centralized entity called SDN Controller. As a 

result, network operators can have a centralized authority over 

network infrastructure. The data plane in the device forwards 
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the data packets based on the flow table entries of the 

controller. For example, the flow entries consist of match 

fields and instructions.  

When a new packet enters the switch, it checks for a 

particular match field in its flow table. If it is present, then the 

corresponding instruction will be executed. SDN is a new 

technology developed by the Open Networking Foundation 

(ONF) [5] that allows network administrators to design 

dynamic, cost-effective, flexible, secure, high-bandwidth, and 

adaptable to the latest developments. ONF is a non-profit 

organization that promotes network infrastructure and 

business models in developing open-source software and 

SDN protocols. 

2.1. Advantages of SDN 

Some of the advantages of SDN are:- 

 Programmability: By decoupling the network services 

from the forwarding functionality, we can program and 

configure the network policies manually or using open 

source tools like OpenStack. 

 Centralized management: Instead of configuring multiple 

devices, the network administrator can configure one 

centralized controller to distribute policies to all the 

connected switches. 

 Agility and Flexibility: SDN's emergence helped many 

organizations quickly introduce new applications, 

operations, and hardware facilities to meet current 

business needs. 

 SD-WAN: It is one of the SDN applications where it 

improves the operation and management of Wide Area 

Network by removing the control functionality from the 

underlying hardware. Therefore, network operators can 

remotely manage the networks. 

2.2. SDN Challenges 

As an advantage, SDN is also facing some challenges. 

 Security Issues: An attacker can compromise different 

layers of SDN; therefore, a robust security solution is 

essential for additional layers of SDN.  

 Controller Saturation attack: In the presence of only one 

control plane in the SDN environment, its computational 

resources get overwhelmed with massive traffic. 

 Single Point of Failure: If the centralized controller gets 

compromised, the whole network will be affected. 

2.3. SDN Architecture 

The Software-Defined Network architecture is represented 

with three layers or planes, as shown in Figure 2. 

 SDN Application layer/Plane 

 SDN Control layer/Plane  

 SDN Data or Infrastructure layer/Plane 

 

Figure 2 Layers of SDN Architecture 

2.3.1. SDN Data Plane / Infrastructure Layer 

The SDN Infrastructure layer comprises network devices like 

Switches, Routers, Firewalls, etc., the same as the legacy 

networks [1]. The significant distinction to the legacy 

physical devices is that these are just dumb forwarding 

devices without control logic to make routing decisions. Thus, 

the network intelligence is detached from the forwarding 

elements and shifted to a centralized controller. More 

crucially, SDN architecture is developed on top of the open 

standard API (i.e., Open Flow) effectively ensures 

configuration and communication across various control plane 

and data plane devices. 

There are two primary entities in the SDN architecture, i.e., 

The Controller and the forwarding elements. The Forwarding 

device may be physical hardware or a logical entity that 

focuses on forwarding the packets. The controller is the 

“Brain of the Network” and also called Network Operating 

System, which runs on specialized hardware. The open flow 

enables switches to forward the packets based on flow tables. 

Each flow table entry consists of: a. Matching Rule, b. actions 

on a matched rule, c. counters for tracking matched packet 

statistics. When a new packet enters the open flow device, it 

checks the flow table entries in sequence. If a match finds in 

the entry, appropriate action performs. Generally, if there is 

no match, the most common scenario is to create and deploy a 

default rule in the switch such that the packet forwards to the 

controller. The flow rule is developed by considering various 
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attributes like Source IP and Ethernet address, Destination IP 

and Ethernet address, source and destination port numbers, 

Packet Size, VLAN ID, VLAN priority, etc. [6]. If there is no 

match and no default rule created, then the switch drops the 

packet. Open flow enabled switches, routers, and other 

devices are available in the market and ready to deploy. The 

list of Open-flow devices is shown is table 1. 

Switch Type Switch Model Make 

 

 

Hardware 

8200 zl & 5400zl [7] Hawlett-Packard 

Arista 7150 Series [8] Arista Networks 

Black Diamond X8 [9] 
Extreme 

Networks 

CX600 Series [10] Huawei 

EX9200 Ethernet [11] Juniper 

MLX Series [12] Brocade 

RackSwitch G8264 

[13] 
IBM 

Pica8 3920 [14] Pica8 

 

 

Software 

Contrail-vRouter [15] 
Juniper 

Networks 

LINC [16] FlowForwarding 

ofSoftSwitch13 [17] Ericsson 

OpenvSwitch [18,19] 
Open 

Community 

Open-Flow Reference 

[20] 
StanFord 

Table 1 List of Open-Flow Devices 

2.3.2. SDN Control Plane / Network Operating System 

SDN isolates the control functionality from forwarding 

elements and places it in a centralized SDN controller. The 

SDN controller [21] implements the control plane 

functionalities. It manages and directs the entire network via 

the Network Operating System (NOS) from a centralized 

location. The NOS gathers data using APIs to analyze and 

operate a network similar to the operating system. As an 

essential component of SDN, the control plane is responsible 

for deploying flow configurations in the forwarding devices, 

i.e., Open-Flow switches. Based on the controller instructions, 

it performs all the flow operations.  

The open flow protocol offers an open standard interface to 

interact with switches in SDN architecture [22]. When a new 

packet reaches the forwarding device, it searches the 

corresponding flow in its flow table. If a flow match exists, 

the instruction executes. Else, it forwards to the control plane. 

The list of the controllers is shown below in table 2. 

Table 2 List of SDN Controllers 

2.3.3. Application Layer/Plane 

The Application layer comprises network applications and 

operations performed on the network, and we can implement 

a wide range of applications on this layer. For example, 

intrusion detection systems, firewalls, load balancers, network 

administration, network virtualization, and network 

monitoring are just a few available technologies. One of the 

main reasons for SDN adoption is the massive range of 

applications associated with real-world challenges. Besides 

their wide usage, we can classify most applications into five 

groups. Namely: Traffic Engineering, Security, Monitoring, 

Controller Name Architecture 
Programming 

Language 

Beacon [23] Centralised Java 

DISCO [24] Distributed Java 

ElastiCon [25] Distributed Java 

Fleet [26] Distributed - 

FloodLight [27] Centralised Java 

HP VAN SDN 

[28] Distributed Java 

HyperFlow [29] Distributed C++ 

Kandoo [30] Distributed C, C++, Python 

Onix [31] Distributed Python, C 

Maestro [32] Centralised Java 

Meridian [33] Centralised Java 

NOX [34] Centralised C++ 

NVP Controller 

[35] Distributed - 

OpenDayLight 

[36] Distributed Java 

ONOS [37] Distributed Java 

PANE [38] Distributed - 

POX [39] Centralised Python 

RoseMary [40] Centralised - 

Ryu NOS [41] Centralised Python 

SMaRtLight [42] Distributed Java 

Trema [43] Centralised C, Ruby 
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Data Centre Networking. The list of the SDN applications is 

shown below in table 3. 

Application 

Type 
Application Name Controller 

Security 

Active Security [44] FloodLight 

AVANT-GUARD [45] POX 

CloudWatcher [46] NOX 

Cognition [47]  

DDoS Detection [48] NOX 

Elastic IP & security 

[49] 
NOX 

Ethane [50] - 

FlowNAC [49] NOX 

FortNOX [50] NOX 

FRESCO [51] NOX 

LiveSec [52] NOX 

Mapper [53] - 

NetFuse [54] - 

OpenSAFE [55] NOX 

SANE [56] 
SANE 

Controller 

VAVE [57] NOX 

 

 

 

Data Centre 

Networking 

Big Data Apps [58] - 

CloudNaaS [59] NOX 

FlowComb [60] NOX 

FlowDiff [61] FlowVisor 

LIME [62] FloodLight 

NetGraph [63] - 

OpenTCP [64] - 

 

 

Monitoring 

DCM [65] DCM Controller 

OpenNetMon [66] POX 

OpenTM [67] NOX 

PaFlowMon [68] FlowVisor 

PayLess [69] FloodLight 

 

 

ALTO VPN [70] NMS 

Aster*x [71] NOX 

 

Traffic 

Engineering 

ElasticTree [72] NOX 

MicroTE [73] NOX 

Pronto [74] Beacon 

QNOX [75] NOX 

QueuePusher [76] FloodLight 

Table 3 List of SDN Applications 

3. SECURITY RELATED OPEN CHALLENGES IN SDN 

ARCHITECTURE 

SDN Layers Attack Type Description 

 

 

Application 

Authentication 

&Authorization 

In many applications, 

there is an absence of 

proper Authentication 

and Authorization 

protocols which poses a 

significant risk. [78] 

Malicious Flow 

rule insertion 

When an attacker 

deploys malicious 

applications, it generates 

a lot of malicious flow 

rules, and it will 

compromise the entire 

network, and it is hard to 

identify. 

Access control 

&Accessibility 

Access control and 

Accountability are tough 

to implement on third-

party applications. 

 

 

 

Control  

Distributed 

Denial of 

Service attack 

Single point of control, 

Global view, centralized 

intelligence are the 

significant reasons for an 

attacker to implement 

DDoS on the Control 

plane 

Unauthorized 

access 

There are no proper 

authentication protocols 

for the third-party 

applications while 

communicating with the 

control plane is the 

primary threat. 

Scalability In the control pane, one 
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&Availability of the challenges is the 

centralized controller's 

scalability and 

availability issues.  

 

 

 

Data plane 

Malicious flow 

rules 

As the switches are 

dumb, an attacker can 

insert malicious flow 

rules. 

DDos Attack 

The switches can be 

overwhelmed by 

flooding malicious flows 

Compromising 

controller 

When the controller gets 

compromised, the data 

plane will become dumb.  

TCP Attack 

Transport Layer Security 

(TLS) is vulnerable and 

prone to this attacks   

Man in the 

Middle attack 

(MITM) 

Most forwarding devices 

don't use TLS, leading to 

a MITM attack. 

Table 4 Attacks on Layers of SDN 

The overall network security depends on the safety of the 

controller. If the controller gets exploited, then the whole 

network goes down. A specific application needs to be 

deployed on the controller to mitigate threats like Spoofing, 

DoS, DDoS, MITM, Privilege escalation, insider threats, etc. 

A faulty Open-flow header can compromise the controller in a 

single controller environment, resulting in performance 

degradation and network services unavailable for legitimate 

users. Apart from the attacks mentioned above, there is a need 

for authentic protocols to validate and verify controllers in the 

distributed controller architecture. Those protocols enable 

authentication between controllers before sharing flow 

information. Because of two control planes and a wide range 

of switches, spoofing and DDoS are likely attacks in the 

hybrid controller environment. Hence, we need to protect 

SDN APIs with security protocols to mitigate from above 

risks.  

Using the global perspective and centralized control of 

switches, an SDN controller can perform integrated network 

functionalities. On the other hand, the central authority of 

network control is more vulnerable to security risks. An 

attacker can easily compromise this single point rather than 

distributed environment [77]. When the attacker floods the 

controller with flow requests, its resources become 

overwhelmed and its services are unavailable to legitimate 

users. Therefore, we must authenticate the communication 

channel to overcome the above challenges before providing 

access to the control plane. 

The usage of SDN in networking raised plenty of security 

issues. To get the full benefit from SDN, we need to address 

these issues by adopting security protocols. Here we are going 

to discuss attacks and threats on SDN layers. The list of 

various attacks on different layers of SDN is shown below in 

table 4. 

3.1. Application Plane Security Challenges 

Application authentication and authorization play a significant 

challenge in the present high-speed networks in the SDN 

environment. Network control and centralized intelligence are 

the two main characteristics that serve as the foundation for 

networking innovation. However, we implement many 

network functions as SDN apps. As a result, an illegitimate 

application can compromise the entire network, and its 

resources become unavailable to legitimate users.  Here, we 

discuss the security challenges related to the application layer 

in detail.  

The apps installed on the top of the application plane can 

impose severe security breaches and create a significant 

impact on the network's resources and operations. Even 

though Open-Flow allows us to install user-defined flow-

based security apps, there are no predefined security apps 

installed and no standards to support open APIs for apps to 

control planes' resources and operations. Hence, an attacker 

can deploy the malicious app and can compromise the entire 

network. So, detecting a malicious application is an open 

challenge. Apart from that, a wide range of vendors and third-

party application developers in the SDN open flow 

environment use various programming technologies, leading 

to interoperability, scalability, reliability, and security issues. 

Some of the challenges faced by the application plane are 

discussed below. 

3.1.1. Threat From Third Party Applications 

Third-party applications are responsible for the deployed 

applications on the controller. As a result, these applications 

gain administrative access and manipulate network resources 

and operations without appropriate security standards to 

safeguard the network from attackers. 

Kreutz et al. [83] proposed three vectors to outline security 

threats in Software Defined Networks: 

 Since there are no effective techniques for establishing a 

trustworthy connection between controller and 

applications, a malicious application can compromise the 

entire network. 

 The attacker can compromise the application server and 

exploit the user credentials in the same way. 
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 Using these credentials, an attacker can infect malicious 

flows into the network. 

There are several approaches for authenticating network 

resources, but there is no technique to authenticate 

applications in the SDN. Furthermore, the functionality of the 

network depends on the deployed applications. Therefore, 

there is necessary to develop a centralized approach to 

authenticate applications currently unavailable in the SDN 

environment. Hence it is one of the open challenges to the 

security of the application plane. 

3.1.2. Threat Related to Access Management and 

Accountability 

Access management and accountability are required to assure 

network security in SDN since applications are responsible 

for network operations. In this context, Hartman et al. [79] 

distinguished three types of applications. First, applications 

corresponding to network attributes like traffic path, traffic 

flow costs, routing, etc. Secondary applications are security 

related such as firewalls, IDS/IPS. The third types of 

application are Nested applications, which use the first two 

types of applications to perform their functionalities. As a 

result, a malicious application of the third type can use the 

second type of application and bypass the security and 

compromise the entire network and perform malicious 

activities. Hence access management and accountability are 

significant security challenges in the application plane. 

The author in [80] demonstrates that the applications in the 

network can be SDN-based or non-SDN applications. SDN-

based applications can directly communicate with the control 

plane, whereas non-SDN applications will use application 

datagrams for communication. In this context, an exploitable 

application might be a vehicle for illegal entry to the control 

plane. Hence access management among nested applications 

can be an open challenge in the application plane 

3.2. Control Plane Security Challenges 

As it is typical for the single controller to control all the 

heterogeneous devices in the network, we need to install 

additional controllers to achieve load balancing. It is 

challenging to deploy privacy policies for multiple controllers 

by dividing the network into sub-networks. The author in [81] 

developed and deployed an application on the SDN named 

ALTO (Application-Layer Traffic Optimization) to optimize 

network traffic. This application requires topological 

information from the controller. In this scenario, the malicious 

application access the network, leading to much security-

related vulnerability. 

The author in [82] stated that several controllers in a network 

might result in configuration issues because they are 

responsible for implementing network-wide services. In 

multiple controller environments, one of the significant 

challenges is synchronization issues. For example, if we make 

some changes in the network, all the controllers may not sync 

simultaneously. As a result, some apps like load balancers and 

firewalls may not work as they lack link-state change 

information in advance. 

3.3. Data Plane Security Challenges 

The control plane deploys the flow rules in the forwarding 

devices. Although the devices have limited TCAM, the flow 

rules have to deploy when a host sends the first packet to a 

new host or before a new host sends a packet. As the control 

logic decoupled from the switches, they cannot differentiate 

between malicious and legitimate incoming flow rules. 

Hence, the forwarding device's limited TCAM is the primary 

security challenge for the data plane to buffer the incoming 

flow requests until the controller deploys flow rules. It may 

also lead to DOS attacks [83]. 

The security of the data plane depends on the control plane’s 

security. When the centralized controller gets compromised, 

the entire network becomes unavailable, and the 

communication between the controller and switches will be 

lost. When there are no flow rules from the controller, the 

switches cannot forward the packets. Hence this will be 

another challenge to be focused. The attacker can take 

advantage of the decoupling nature of the switches and can 

deploy malicious flows or alter existing flow rules, leading to 

various attacks. It can be another security challenge for data 

planes. 

The initial Open-Flow specifications include Transport Layer 

Security (TLS) and Datagram Transport Layer Security 

(DLS). However, the inclusion of TLS and DLS is not 

mandatory in the latest version of Open-Flow specifications. 

Hence, most vendors opted not to include TLS in their 

devices. It requires configuration overhead, which involves 

creating certificates and signing the certificates with 

cryptographic keys, and deploying the keys and certificates on 

all the devices. Therefore the absence of TLS can be 

vulnerable to open flow communication. According to Benton 

et al. [84], MITM attacks are severe in SDN networks 

compared to traditional networks because of the absence of 

TLS among the open flow communication. Hence hackers can 

gain complete access to the underlying devices and launch 

side-channel attacks. In addition to that, the author in [85] 

proved that unauthorized TCP communication could lead to 

many TCP level attacks in the Open-Flow network. 

One of the open challenges in data plane security switches 

memory depletion due to fraudulent flows. When a new flow 

enters the device, it checks the relevant flow rule in the flow 

table. When a rule is present, it takes necessary actions, but it 

sends the flow to the corresponding control plane to get the 

rule if it is not available. This process may take some time. As 

an advantage, the attacker will flood such malicious flows to 
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the switch so that the switch’s TCAM will become 

overwhelmed and lead to a DDOS attack. In their paper [16], 

Dimitri et al. reported that restoration within less time in 

massive Open-Flow networks is complex. Furthermore, delay 

in installing flow rules in the Open-Flow switch might cause 

authentication and authorization problems and lead to side-

channel attacks. 

4. SOLUTIONS FOR THE SECURITY CHALLENGES IN 

SDN 

The centralized controller can decide on the network’s global 

view in SDN. In addition, the SDN framework inherits 

various security services such as monitoring and analyzing, 

which help in inserting new security policies and changing 

existing policies. It also supports a rapid and adaptable threat 

detection framework by capturing network intelligence and 

analyzing, updating, and reprogramming the network 

accordingly. SDN creates an environment where it is easy to 

design and deploy security policies in the forwarding devices. 

Therefore it eliminates the risk of device misconfigurations 

and policy conflicts in the networks. Furthermore, as SDN 

provides a global network view, it is easy to deploy security 

devices like firewalls and IDS/IPS according to the defined 

security policies. In this section, we will discuss various 

security solutions, strategies, Frameworks, platforms for 

protecting the SDN layers as shown in table 5. 

SDN Layers 
Proposed 

Solution 
Solution Type 

 

 

Application 

Layer 

FRESCO [51]  

To develop Open-Flow 

based security 

applications and Security 

framework 

PermOF [57] 

Provides Authentication 

platform for Open-Flow 

Applications to access 

control and data plane. 

Assertion [88] 

Developed an assertion 

based framework for 

validating and 

debugging SDN 

applications  

Flover [89] 

The proposed control 

plane architecture will 

use a set of pre - defined 

parameters to evaluate 

flow rules given by the 

controller. 

OF-Testing 

Proposed a framework 

for identifying malicious 

flows 

 

 

 

Control 

Layer 

SE-FloodLight 

Developed Security 

enabled Floodlight 

controller, which 

provides an ideal secured 

control layer and secured 

Northbound API 

HybridCtrl 

Developed a hybrid 

controller architecture 

works reactively to build 

routing and runs 

proactively to analyze 

traffic patterns 

DISCO [90] 

Proposed a framework 

DISCO developed in 

collaboration with 

floodlight, which 

provides distributed and 

heterogeneous 

functionalities to control 

plane 

HyperFlow [91] 

Proposed Hyperflow, an 

event-based control 

plane framework to 

increase the control 

plane scalability. It 

allows us to deploy 

various controllers 

which can able to make 

local decisions and 

decreases the flow setup 

time 

DDoS Detection 

Proposed a DDoS 

detection framework 

which comprises of three 

modules and used SOM 

technique to discover 

hidden connections 

between the incoming 

flows into the network  

 

 

Forwarding 

Layer 

FortNOX [92] 

Proposed a platform 

FortNOX, which allows 

NOX based controllers 

to analyze flow rule 

inconsistencies among 

Open-Flow applications  

FlowChecker 

[92] 

Proposed a tool 

FlowChecker, which 

finds the errors in open 

flow rules in the 

forwarding devices 
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VeriFlow [93] 

Proposed a tool, 

VeriFlow, which helps 

in detecting and 

preventing malicious 

rules implemented by 

SDN applications  

Resonance  

Proposed a tool 

Resonance, which uses 

real-time notifications 

and flowsstream 

information to 

implement dynamic 

access control policies to 

control traffic congestion 

in the network 

CPRecovery 

Controller replicas are 

used in the proposed 

framework to keep the 

network functioning, 

even if some of the 

network portions gets 

compromised   

Table 5 Proposed Solution for Various Challenges 

4.1. Solutions for the Security Challenges in Application 

Plane 

The control plane mediates the application and data planes in 

the SDN framework, hiding the network complexity. As a 

result, the centralized control plane provides a comfortable 

environment to deploy custom applications that access the 

network information and packet characteristics. Several 

programming languages, which include Frentic [94], Procera 

[95], and NetCore [96], are used to develop SDN applications. 

The author in [51] proposed FRESCO. An efficient program 

to create new security applications that can deploy on any 

open-flow device. Moreover, they offered several security 

standards to determine whether SDN applications can act 

following security policies.  

The author in [87] proposed PermOF an effective permission 

management system that allows Open-Flow applications to 

access control and data plane. A collection of privileges and 

isolation strategies is presented to implement permission 

management, including reading, writing, and notify. The 

application needs read permission to access the sensitive data 

and control the flow of sensitive data. We require notification 

permission to get notification messages to the applications 

when a specific event occurs. The write permission provides 

to control the application's ability to modify the behavior of 

data plane elements. Finally, the isolation strategy provides 

the controller an environment to administer the applications, 

separate control plane and data plane, and provide an interface 

to manage all the application's interactions with the outside 

world.  

All the applications should maintain steady network’s view 

and be adaptable to all the changes in the network. The author 

in [88] proposed a strategy for debugging and validating 

applications to achieve consistency and adaptability. 

Application developers can use the Assertion-based 

debugging tool to validate dynamic attributes of controller 

applications using high-level programs. Assertion techniques 

are helpful in the detection of errors in the code before the 

deployment of the applications. The strategy proposed in [88] 

is an algorithm that presents a mechanism to analyze the 

runtime environment's flow rules. The VeriFlow [93] 

verification algorithm is an incremental data structure that 

effectively validates the characteristics of all the changes in 

the network. 

The author in [89] proposed a tool Flover. This Open-Flow-

based application, deployed on the controller, verifies the 

flow rules generated by the control plane with the predefined 

rules. Hence, the flows don't deviate from the network 

security policies. The author also proposed other automatic 

testing tools to detect errors in Open-Flow programs. For 

example, the author in [97] proposed the ndb framework, 

which acts as a debugging tool for identifying the errors in the 

network programs. Furthermore, to track down and 

investigate the anomalies in the network, the author in [98] 

developed OFRewind. The ndb and the OFRewind 

frameworks effectively find malicious applications that can 

compromise the network. 

4.2. Solutions for the Security Challenges in Control Plane 

The solutions for the security challenges in the control plane 

depend on strategies and techniques used to secure from the 

following threats. 

 Illegitimate or unauthorized applications 

 Bypassing the security by focusing the control 

plane’s scalability 

 Distributed Denial of Service attacks 

 Reliability issues in Controller placement 

4.2.1. Malicious or Unauthorized Applications 

As the applications require access to all network resources 

and data, it’s essential to safeguard the control plane from 

malicious applications. Therefore it's the responsibility of the 

control plane to provide access to the legitimate applications 

in compliance with their security policies. The author in [99] 

proposed a secured floodlight controller (SE_Floodlight), 

which is an advanced version of the existing floodlight 

controller [100] which strives to secure the control plane. It 

integrates northbound API to the control plane, which acts as 
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an interface between application and data plane, enabling 

privilege separation. Furthermore, it features an application 

authentication module for evaluating the integrity of the flow-

rule generation module. The SE_FloodLight controller offers 

authorized privileges to applications, resolving rule conflicts 

by examining competing role generators' authority roles. It 

can also limit Packet_out messages generated by a variety of 

applications. Moreover, the SE_Floodlight controller has a 

new assessment module that can monitor any security-related 

activities in the control plane.  

4.2.2. Bypassing the SDN Security by Targeting Control 

Plane’s Scalability 

In the SDN environment, the controller deploys specific rules 

for every new client connection, resulting in many flows in 

the switches and creating a severe workload on the control 

plane. As a result, several strategies are proposed to reduce 

the burden on the controller. It also provides a wildcard 

strategy, allowing the controller to redirect the set of client 

requests to server replicas. To achieve high scalability and 

maintain load balancing on the control plane, it takes the 

leverage of wildcard rules of the forwarding devices.  

The author in [101] compares re-active and pro-active open-

flow controllers for scalability. Proactive controllers deploy 

rules in advance of the packet arriving at the switch, 

depending on specific preset rules. In contrast, the re-active 

controllers get the initial packet from the switch to update the 

flow table for that corresponding flow. According to the 

author in [101], the proactive controllers' scalability is likely 

more significant than the re-active controllers. Pro-active 

controllers require the traffic flows to be known ahead, which 

is not impossible in reality. As a result, the author proposes a 

hybrid controller strategy, wherein controllers work reactively 

to design routes while also possessing some intellect to 

proactively analyze the behavior of the flow and determine a 

route ahead of time. 

Many initiatives are proceeding to improve the computational 

resources and distribute responsibilities among the 

controllers. For example, in [102], the author proposed 

McNettle, an enhanced control plane environment with high 

processing capability to process complex algorithms. 

Compared with NOX, McNettle is more scalable, scaling up 

to 46 cores versus ten cores for NOX and being more efficient 

in performance. 

The author in [103], [90] proposed DISCO, a distributed 

controller which distributes the control plane's functionality. It 

implements the Advanced Messaging Queuing Protocol 

(AMPQ) [104], which is the enhanced version of the 

Floodlight controller [100]. The AMPQ is the collection of 

two modules: the intra-domain and the inter-domain modules. 

The intra-domain modules allow the controller to compute 

priority flow channels by monitoring the network and 

managing flow prioritization. In addition, these modules 

provide a dynamic solution to network problems by 

forwarding or dropping the traffic based on the severity of the 

packet. The inter-domain module consists of a messenger and 

agents, facilitating the interaction between controllers. The 

messenger detects adjacent controllers and establishes 

communication among them. The agents use the messenger's 

channels to communicate with other controllers on a network-

wide level. 

The author in [91] proposed HyperFlow, a scalable controller 

platform, which enables network programmers to install a set 

of controllers capable of making effective decisions to 

increase controller throughput and reduce latency. The author 

in [105], recommended that the controllers be placed at the 

starting point to minimize latency and then load balancing 

methods be used to distribute the load across the controllers. 

4.2.3. Distributed Denial of Service Attacks 

We can mitigate these attacks by analyzing the forwarding 

devices' incoming flow patterns and flow statistics. In open-

flow, we can easily collect statistics of the switch from the 

Open-Flow controller. The author in [48] proposed a strategy 

by implementing Self Organizing Maps (SOM) [106]. SOM is 

a form of unsupervised neural network that converts an n-

dimensional input pattern into a 1- or 2-dimensional map. We 

gather topological ordering and statistical properties for future 

analysis during the transformation process. The SOM 

procedure is adopted in [48] to uncover hidden relationships 

between packets arriving in the network. 

The attack detection mechanism proposed in [48] contains 

three components: a flow_collector, a feature_extractor, and a 

classifier. The flow_collector collects flow from all of the 

flow tables of the forwarding devices at regular intervals. The 

feature extractor extracts critical features and sent to the 

classifier that helps in identifying an attack. Using SOM, the 

classifier determines if a particular tuple represents malicious 

or legitimate traffic. We have to train the SOM using a 

tremendous collection of samples captured during an attack or 

during regular traffic to produce a network topology with 

distinct areas representing different types of traffic. The 

trained SOM algorithm will distinguish traffic as either 

legitimate or malicious when we activate it. 

4.2.4. Reliability Issues in the Controller Placement 

The author in [105] highlights that; the scalability and 

robustness depend on the count of the controllers and 

topological design. These two are the significant challenges 

for the software-Defined network. As a result, researchers 

have given considerable importance to controller placement, 

and a broad range of algorithms have been investigated and 

implemented. For example, the authors in [107], [108], and 

[109] proposed the Simulated Annealing (SA) approach as the 

most effective strategy for placing the controller. In addition, 
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a graph partitioning framework is developed in [110] to 

enhance robustness through effective controller placement. 

The authors in [107] proposed a strategy where the controllers 

should synchronize and coordinate among themselves to 

improve the efficiency of SDN control plane operations. The 

procedures enhance the network by reducing the estimated 

loss percentage. The authors investigated various 

methodologies and their benefits for controller placement 

using realistic topologies. 

The authors in [109] explore the Dynamic Controller 

Provisioning Problem (DCPP). It provides a support for the 

deployment of several controllers in a WAN environment. 

The size and positioning of controllers should update 

according to network conditions. DCPP analyzes traffic 

patterns to reduce the burden on the forwarding devices, 

proper coordination among the controllers, and the device to 

controller synchronization. Similarly, the author proposes a 

controller placement approach by providing a solid ratio 

between throughput and latency. 

The authors in [111] propose a strategy to improve SDN 

resiliency. According to the author, one controller may not be 

sufficient to meet latency thresholds, but several controllers 

are required to meet network resilience requirements. Thus, 

the suggested strategy enhances the latency, throughput, 

resiliency, failure recovery and load balancing among the 

controllers. 

4.3. Solutions for the Security challenges in Data plane 

The illegitimate applications installed on the control plane can 

compromise the devices on the data plane. Furthermore, such 

programs can deploy, update, alter flow rules in the data plane 

as an initial point. Therefore, an efficient approach must 

authenticate and authorize the programs that modify the flow 

rules. FortNox [112] is a framework that allows the NOX 

Open-Flow controller to verify flow anomalies and 

authenticate the programs before altering the flow rules. 

FortNOX authorizes the flow rules using digital signatures 

before deploying on the data plane. It handles all flow rule 

insertion requests employing a live rule conflict detection and 

analysis engine. FortNOX prevents other apps from inserting 

contradictory flow rules in the network when a security 

application installs a flow rule. 

FlowChecker [92] is an application that detects errors in 

Open-Flow rules within a switch or across multiple switches. 

To verify, analyze, and implement Open-Flow end-to-end 

configurations at runtime, FlowChecker is an Open-Flow 

application or a master controller. VeriFlow [93] is a network 

debugging tool for identifying and preventing malicious rules 

implemented by SDN applications from generating abnormal 

network activity. Even though a switch's performance 

depends on controller connectivity, the forwarding devices 

should have backup links. The Open-Flow devices employ 

connection detection techniques to verify controller 

connectivity, such as regularly transmitting activity probing 

packets to the controller. In addition, the Open-Flow protocol 

allows us to install a backup connection with a standby 

controller in case the primary controller fails. The authors in 

[113] recommend a controller replication strategy when the 

primary controller fails; it keeps the switch functioning. A 

switch regularly sends a probing signal to the control plane in 

this scenario. In addition, the switch assumes the controller is 

offline if it does not respond within a certain period. The 

Open-Flow switch then attempts to link with the redundant 

controller by executing a handshake and connecting instantly 

[113]. 

With effective network design and partitioning, we can 

improve the reliability of Open-Flow switches and their 

communication with controllers. An Open-Flow switch 

connected to the controller will be less vulnerable to 

saturation attacks because it will not be essential to keep 

unauthorized flows for more extended periods. The author in 

[114] evaluated that the increase in distance between the 

switch and the controller results in connectivity issues. As a 

result, the authors in [114] suggest that the distance between 

controllers and switches should be as minimal as possible to 

improve latency limitations. Still, it will also allow for faster 

restoration and maximize availability. 

5. BENCH PERFORMANCE METRICS AND TOOLS 

Here we discuss a collection of benchmarking metrics for 

SDN controllers. We use the keywords like Throughput and 

latency as basic metrics for performance measurement in 

SDN. We can also consider some other factors include 

security, reliability, availability, etc., to examine the 

performance of the SDN. The benchmark metrics can be 

categorized as follows. 

 Throughput: The rate at which the controller processes the 

flow requests are generally referred to as Throughput. The 

speed at which the control plane receives packet_out 

messages from the open flow switch and generates 

corresponding flow at a unit time.  

 Latency: Latency is the time the switch takes to transmit a 

packet to the controller and respond to the corresponding 

flow back to the switch. The Control plane’s latency 

depends on the control plane’s computational cost and 

delay. 

 Flow installation based: This metric depends on the time 

taken to install the flow rules at all the switches in the 

network. Based on this metric, we can configure load 

balancing.  

 System Performance: This metric accesses the control 

plane’s ability to use the SDN framework, hardware, 

Input/Output elements, etc., effectively. By implementing 
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multithreading, we can enhance the flow processing time 

of the control plane. Metrics such as power constraints, 

hardware failures, convergence time, link recovery, etc., 

can also be critical to evaluating SDN performance.   

5.1. Benchmarking Tools 

The below are the most often used benchmarking tools. 

 CBench[115] is one of the famous benchmarking tools 

explicitly developed to evaluate the performance of the 

control plane. Throughput and latency are the primary 

assessment measures in CBench. We can calculate the 

Throughput by transmitting massive packet_in messages 

from each switch to estimate the controller’s capacity. We 

can measure the latency by sending a packet_in request to 

the control plane and waiting for a reply. The above step 

repeats many times to calculate the average latency by the 

total number of responses received at each switch. This 

tool is limited to open flow 1.0 and 1.3 to access better 

performance of the SDN control plane. 

 HCprobe is an enhancement to CBench developed using 

python to assess the performance of the control plane. 

Scalability and Reliability are the assessment measures in 

HCprobe. To test resilience and trustworthiness the 

simulated switch generates and transmits malicious 

packets to the control plane. As we run the test on the 

linux kernel we can acquire better control plane 

performance statistics.  

 WCBench is a python-based updated version of CBench 

that automatically measures throughput and latency with 

graphical analysis. In addition, it supports a higher version 

of OpenFlow. But its support is confined to only particular 

versions of OpenDayLight Controllers.  

 OFCBenchmark is a tool introduced to overcome the 

drawbacks of CBench.  It consists of a Graphical User 

Interface (GUI) based console with a virtual switch and 

multiple clients to perform tests. In addition to existing 

benchmark metrics, it includes CPU consumption, rate of 

flow installation, Round trip time, etc., to access the 

performance of the SDN controller. 

 OFCProbe[116] is an enhanced form of OFCBenchmark, 

which is platform-independent and focuses on improving 

the functionality and reducing the SDN control plane's 

overhead. It creates a large-scale simulation testbed with a 

substantial amount of switches and clients. This tool is 

intelligent in examining the network's impact in test 

conditions. 

 OFNet[117] is a hybrid tool that provides an SDN 

simulation environment with control plane performance 

monitoring and debugging. In addition, it provides a large 

variety of network topologies and traffic generation 

modules to generate a variety of traffic patterns. 

6. OVERVIEW OF RECENT RESEARCH RESULTS IN 

SDN SECURITY 

Researchers initially used entropy to identify security threats 

in SDN due to its simplicity and low overhead. However, as 

research in SDN grows exponentially, researchers have 

claimed that entropy is inefficient in detecting some attacks, 

especially DDoS attacks, due to its high false positives rate. 

Therefore, mathematical and statistical models are widely 

adopted. Recently machine learning (ML) and deep learning 

(DL) have been extensively used to analyze network security 

threats. The author in [118] has concluded their results using 

ML algorithms. The Support Vector Machine has shown a 

significant performance compared with others. Its accuracy is 

about 97.50%, whereas the accuracy of Naive-Bayes is 

96.03%, the Decision tree is 96.78%, the Logistic Regression 

is 89.98%. The author in [119] has concluded their results 

using DL algorithms. The accuracy of RNN is about 98.09%, 

whereas the accuracy of LSTM and GRU is 98.87% and 

98.20%. But the worrying factor is its efficacy. The overall 

efficacy of the model depends on the dataset used to train the 

model. Unfortunately, most of the datasets used are obsolete 

with outdated attack patterns. As a result, these models cannot 

detect the latest attacks, which become a significant 

challenge. Recently, the security of the SDN has enhanced 

with the evolution and adoption of blockchain technology. 

However, despite multiple advantages, we still face several 

security threats due to the limitations in SDN design, high 

processing time, and computational cost, affecting the 

network's confidentiality, integrity, and availability. 

7. CONCLUSION AND FUTURE WORKS 

With the gradual introduction of SDN architecture, new 

threats are pretty likely to evolve. Similarly, the attack surface 

is likely to expand because standard network security risks 

spread alongside SDN-related security challenges. On the 

other hand, SDN aims to bring innovation to communication 

networks. According to the previous studies on SDN security, 

it enables the rapid development of cost-effective security 

services. To ensure security, various security policies are 

enabled in the network, and the security demands of multiple 

applications, services, resources, and devices are collected by 

the distribution layer of SDN. The network programmability 

and centralized control can improve the reliability and 

scalability of the networks. 

Moreover, SDN significantly improves security by achieving 

a global view of the entire network. But on the other side, new 

security challenges are evolving. This paper has discussed 

various open challenges related to security in SDN’s 

application, control, and data planes. Also, we have presented 

some of the flaws related to security and techniques to 
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strengthen the network and mitigate attacks related to security 

in SDN. . In this work, we have found most of the existing 

SDN controllers lack security protocols and standards. 

Therefore, we can conclude that the existing SDN architecture 

must be strengthened, upgraded, and enhanced to address the 

aforementioned challenges.The open challenges which were 

discussed in section 3 are the future directions for the research 

community. 
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