
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 758

SURVEY ARTICLE

A Survey on Malware Classification Using Machine

Learning and Deep Learning

Manish Goyal

Department of Computer Science and Engineering, IK Gujral Punjab Technical University, Kapurthala, Punjab, India

manishgoyalpup@gmail.com

Raman Kumar

Department of Computer Science and Engineering, IK Gujral Punjab Technical University, Kapurthala, Punjab, India

raman.kumarptu@gmail.com

Received: 01 October 2021 / Revised: 12 November 2021 / Accepted: 17 November 2021 / Published: 30 December 2021

Abstract – In today’s era, there is fast development in the field of

Information Technology. It is a matter of great concern for cyber

professionals to maintain security and privacy. Studies revealed

that the number of new malware is increasing tremendously. It is

a never-ending cycle between the world of attack and the defense

of malicious software. Antivirus companies are always putting

their efforts to develop signatures of malicious software and

attackers are always in try to overcome those signatures. For the

detection of malware machine learning are highly efficient. The

process of detection of malware is split into two categories

first is feature extraction and the second is malware

classification. The effectiveness of classification algorithms

depends on the feature extracted. In this paper, firstly an in-

depth study of the features is provided that can be used to

differentiate malware. Thereafter describe the various stages of

machine learning and deep learning that researchers use in their

research work and the pros and cons they face that can assist

new researchers while selecting an algorithm for their research

work.

Index Terms – Malware Detection, Static Analysis, Dynamic

Analysis, Security, Features of Malware, Machine Learning,

Deep Learning.

1. INTRODUCTION

There has been a mushroom growth of malware which is

articulated by various encyclopedias such as; in 2014 panda

reported 84 million new variants [1]. Similarly, in the

3rdquarter of 2020 McAfee reported new MacOS malware

surged 420% [2]. At the stage of inception, the computer virus

was developed just for fun. The malicious code that was

evolved by teenagers to play pranks with their friends has

now turned into a serious malware threat. Malware writers

have started using their brains professionally to do unlawful

activities such as stealing money, crashing system,

burglarizing very important information, etc.

In Dec 1999, the San Diego Supercomputer Center (SDSC)

experimented by installing Red Hat Linux 5.2 without any

security patches on a computer with an internet connection

[3]. The computer was attacked in just 8 hours of installation

and in 21 days the computer was attacked 20 times and

compromised 40 days after installation.

Anti-virus companies mainly use signature-based detection

techniques (it is a technique in which detection of malware is

done based on features extracted from previously known

malware) to capture malware, but using this technique only

known malware can be detected. Zero-day malware (new and

unseen malware) can't be detected using this approach.

Moreover, malware writers practice evasion techniques like

encryption and obfuscation to prevent them from being

detected at an early stage. After knowing the catastrophic

effects of malware, it is necessary to protect systems from

malware.

1.1. Background Motivation

In 2012 Egele et.al. [4] Surveyed the default strategies and

tools for malware detection. They first describe the malware

and its variants and then the vectors of infection. After that,

the malware analysis techniques used are described, namely

parameter analysis of function, monitoring of function calls,

information flow tracking instruction trace, and automated

extensible points. Malware analysis is defined in the context

of the user/kernel space, emulator and virtual machine, etc.

The researchers explained a lot of tools that run malware

samples like Anubis, CWSandbox, Norman Sandbox, Joebox,

WiLDCAT, etc. According to their observation, most of the

dynamic tools analyze system call and API they are required

to interact with the system. Some tools observe the sensitivity

of processed data. This information can be used to determine

if the sample is malware.

 In 2013 Bazrafshan et. al. [5] discussed 3 methods namely,

behavior-based, signature-based and heuristic-based malware

detection. He first explained these methods and then the

strategies to hide the malware. They mainly focus on

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 759

SURVEY ARTICLE

describing heuristic malware detection methods using features

such as opcodes, API calls, N-grams and discuss their pros

and cons.

In 2014 Gandotra et.al.[6] surveyed various papers on

malware analysis using machine learning. They categorized

work done by authors into static, dynamic, and hybrid

techniques. In 2015 LeDoux &Lakhotia[7] surveyed malware

and machine learning. They explained the pipeline process of

malware detection, challenges in Malware Analysis, machine

learning concepts like supervised, unsupervised, semi-

supervised, and ensemble learning, and features of malware

detection. They mainly focused on pointing problems in

malware analysis and machine learning concepts to tackle

those problems.

In 2016 Basu et.al.[8] surveyed data mining techniques in the

context of malware detection. The researchers have explained

the work of various authors, their malware sample sources,

and techniques used by authors and also distinguished the

work of various authors based on features used by authors like

API calls, byte sequence, PE header, etc. After that, they

proposed a malware detection approach in which they used

the Xptruss tool to detect API calls and apply Naïve Bayes for

testing and training.

In 2017 Ye et.al.[9] explained data mining methods based on

both static and dynamic representations and some novel

representations. Researchers have divided the malware

detection process into two phases the first phase is feature

extraction and the second phase is classification/ clustering.

They concluded that data mining frameworks could be

designed to detect malware with a low false-positive rate.

In 2017 Ucci et.al. [10] outlined 7 different objectives to

detect malware and grouped malware features according to

their specific type. They also noticed some issues in the

dataset. They feel that mainly the dataset used is not balanced.

Therefore they proposed 3 characteristics for benchmark

datasets namely labeling according to objective, balanced, and

maintaining them over time. They also introduced the concept

of malware analysis economics. They have identified a

tradeoff between performance metrics and economical costs.

In 2019 Berman et.al. [11] explained two approaches towards

dynamic analysis; one is by analyzing the difference between

defined points and the second by observing runtime behavior.

They also discussed the advantages and disadvantages of both

malware detection techniques namely, signature-based and

behavior-based.

In 2019 Gibert et.al. [12] compared shallow learning i.e. ANN

and deep learning. They provide an overview of different

methods of deep learning like RNN, CNN, etc. They also

described Deep Learning evaluation strategies using various

metrics.

Many authors have done handsome surveys on malware with

machine learning techniques but this paper aims to survey

based on features used by various researchers along with

machine learning techniques and highlighting advantages and

limitations faced by them.

In this paper, the following section contains types of malware.

Section 3 includes features of malware detection which are

extracted from various samples are explained in this section.

Section 4 contains a study of machine learning and its types.

Section 5 explains deep learning and lists the work done by

various authors for malware classification using deep

learning. Section 6 shows the results of the survey of various

papers and at last Section 7 concludes the paper.

2. MALWARE

Malware (malicious software) is a software program that

enters into a user's computer his permission and has intentions

to cause damage or to steal sensitive information.

Virus: These viruses enter the system illegally and then cause

infections or get replicated on the system by attaching

themselves to other executable. One of the most primitive

forms of the virus was 'Creeper' which was an experimental

outcome of a program written by Bob Thomas at BBN in

1971[9]. It was not active malicious software as it didn’t harm

any data. 'Elk cloner' was written in 1982 by Rich Skrenta

which spread by the floppy disk and it attached itself to Apple

II operating system [7].

Worms: These are types of a virus but worms can also spread

over the internet and can replicate themselves without human

intervention on to various machines. Unlike viruses, worms

are self-contained and they don’t need to be a part of other

programs to propagate themselves. The term worm was taken

from the novel ‘The Shockwave Rider’ written by John

Brunner in 1970. The first functional worm was created in

1978[13]. In January 2004 the scandalous worm named

Mydoom was used by attackers to cause severe damage. This

worm launches DoS Attack on www.sco.com, due to which

the website was inaccessible for several months [14].

Trojan: Trojan appears to be useful files but is malicious files

that are just used as a trick to get entry into the system. There

is a story behind the word Trojan horse, in which the Greeks

invaded human power hidden inside a huge wooden horse

into the independent city of Troy and won the war.

Metaphorically, a Trojan horse is any ploy used to enter a

system. In August 2006 Scandinavian bank Nordea's client

started to receive emails to install antispam products which

were a trick by cybercriminals to install Trojan named

Haxdoor to their system. This trojan key logged the victim's

system and send information to the cyber criminal's server

which caused the theft of over $1million [14].

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 760

SURVEY ARTICLE

Backdoor: It is a technique in which one can bypass security

mechanisms undetectably. Software writers sometimes

develop backdoors to facilitate software testing. Default

passwords kept for first-time use of hardware or software is

an example of a backdoor. In February 2005 a businessman

from Florida lost $90,000 from his account because of his

computer infected by a backdoor [14].

Rootkits: These provide attackers, higher-level access to data

rather than authorized access, i.e. it can provide administrative

rights of the victim to the attacker. Rootkits are designed to

remain hidden i.e. it masks their (and/or other software)

existence on the host PC. This achieves sustained and

maintained privileged access, as well as hiding this access.

Keylogger: It keeps a record of the keys pressed by the user

or can also take screenshots and send them to the attacker thus

stealing banking or other important information of a user.

Banking sites provides virtual keyboards to prevent

keylogging attack. There are many examples of key loggers

across the world. This malicious program has caused major

damage. It can be used by combining with other malicious

programs. In February 2006, 55 people were arrested by

Brazilian police, for stealing an approximate amount of $4.7

million from 20 clients across 6 countries[14].

Spyware: Generally, referred to as Potentially Unwanted

Program (PUP). It is an unwanted program intended to steal

Internet usage data, delicate information (such as user

passwords or bank account information) without the user's

knowledge. The term spyware was firstly coined in 1995 but

got popularity in 2000[15].

Adware: It is a subclass of spyware. But the major difference

is that adware doesn’t harm the computer intentionally. Its

main purpose is to capture a user’s interest so that similar

kinds of advertisements, emails and pop-ups can be displayed

on the victim's system.

R.A.T: It provides remote control access to the victim's

system without his consent. It is like a team viewer but with

wrong intentions.

Ransomware: A type of malicious software in which an

attacker encrypts all the files of the victims and asks for a

ransom to decrypt those files.

3. MALWARE FEATURES

There are two phases of malware detection namely feature

extraction and classification/clustering. Features of malware

mean the input which can be provided to machine learning

algorithms. These define the set of all possible concepts

which can be modeled using machine learning. Malware

features can be classified into two categories namely static

and dynamic. Static features are those features that can be

extracted without the execution of malware. Such features are

extracted by studying binaries of malware [16]. While

dynamic features [4] are those which are extracted after

executing a binary file. These features are extracted through

dynamic analysis. Classification/ clustering of malware is

done using machine learning techniques. In this paper, only

classification techniques are explained. This section listed

some of the features of malware detection.

3.1. N-Gram

It is one of the common static features which consists of a

consecutive sequence containing n bytes which are taken from

hexdump (a tool that converts a binary file into corresponding

hexadecimal portrayal) output. Authors Lin et.al.[17], Ahmadi

et.al.[18]& Anderson et.al.[19] worked upon 1Gram, Lin

et.al.[17], Ahmadi et.al.[18], Sexton et.al.[20] Kolter et.al.[21]

worked upon 2 Gram, Ahmadi et.al.[18], Kolter et.al.[21] &

Khodamoradi et.al.[22]worked upon 4 Gram, etc. 4 Gram is

the most commonly used feature which means to take a

combination of 4 bytes. N-Gram can be used in overlapping

or Non-overlapping. In case of overlapping the byte used once

can be used again in the next gram but in a non-overlapping

byte is not used twice. An example of the overlapping and

non-overlapping concept of N-Gram with a value of N=2 is

shown in Table 1.

Byte Code Overlapping Non-overlapping

0f4b

0e3f

fe0f

efef

0f4b 0e3f

0e3f fe0f

fe0f efef

0f4b 0e3f

fe0f efef

Table 1 Overlapping and Non-Overlapping Byte Sequence

3.2. Opcodes

Different machine-level operations performed by

programmable executable (PE) are called opcodes. These

opcodes can be obtained from the assembly code [19]. Sexton

et. al. [20] worked upon branch instructions, count, and

memory instruction count. Belaoued et. al.[23]used math,

stack, logic, NOP, and other instruction counts in their

research work. Ahmadi et. al.[18] used data to define

instruction proportions in their research. Darabian et. al.[24]a

used sequence of opcodes for the detection of malware.

3.3. Strings

Strings were firstly noticed by Schultz et.al.[25]and are

defined as consecutive printable characters. They noticed that

PE-format headers consist of plain text which could be used

to extract information. Moreover, non-PE executables also

have encoded strings that could be used along with their

dataset. This definition of strings is more refined by Ye et. al.

[9] which says that only "interpretable" strings which make

some semantic sense can be used. Ito &Mimura [26] uses

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 761

SURVEY ARTICLE

ASCII strings with Natural Language Processing for malware

detection.

3.4. Call Graph

The call graph shows how data is exchanged between

different functions. The call graph is a directed graph that

depicts the relation between various procedures of a program.

The call graph doesn’t give information on how control of

program flows instead it provides information on calling of

various procedures. Call graphs are employed in [27]–[30] to

depict the relation of procedures. An example of a call graph

is shown in Figure 1 [7].

void doActivity(){

//Activity

doEducationalActivity();

}

void doSportsActivity() {

doEducationalActivity();

if(need cultural)

doCulturalActivity();

}

void doEducationalActivity() {

doActivity();

if(need Sports)

doSportsActivity();

}

void doCulturalActivity() {

//Do Cultural Activity

}

int main() {

doActivity();

 }

Figure 1: Example of a Call Graph

3.5. Control Flow Graph

The control flow graph is a more refined variety of call graphs

[31]. It depicts flow within a single function. The control flow

graph reflects how the flow of control is accomplished

through the function. It shows all possible way outs of a flow

of a program. Chionis et.al.[32] used control flow graph in

their research. Figure 2 depicts an example of a control flow

graph 2[6].

0 : mov [ebp-8], 0

1 :mov [ebp-10], 0

2 :mov [ebp-12], 0

3 :jmp 6

4 :add [ebp-10], eax

5 :add [ebp-8], 1

6 :cmp [ebp-12], 1

7 :jle 4

8 :return

(a) (b)

Figure 2: Control Flow Graph Example

3.6. PE File Characteristics

PE file is a data structure, designed by Microsoft for

enveloping information based on Win 32 systems [33]. Even

scrutinizing the PE header statically can yield handsome

information [34]. Structural information is mainly present in

the PE header. Moreover, the PE header also stores the

information required by the loader to load the program into

memory [7].

Hence, the PE header contains information about size,

selection, symbols, used compiler, and so forth. PE file header

can be useful to detect malware at the triage phase [7].

Asquith [35] used some PE file characteristics like resource

icon’s checksum, section attribute, PE header checksum,

section names and sizes, import table location and size, and

entry point offset in their study.

While other researchers like Yonts[36] studied several

symbols, a pointer to the symbol table, PE characteristics

flags, and section count and Bai[37] carried their work on

section count, resource’s directory table, symbols in export

table count, and items in .reloc section count. Wadkar et.al.

[38] used PE file characteristics to study the evolution of

malware families over time.

main ()

doActivity()

doEducationalActivity()

doSportsActivity()

doCulturalActivity()

mov [ebp-8], 0

mov [ebp-10],

0

mov [ebp-12], 0
cmp [ebp-12], 1

jle

add [ebp-8], eax

add [ebp-10], 1

return

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 762

SURVEY ARTICLE

3.7. Memory Access

A large amount of data passes through the main memory like

a window registry key, configuration, and network activity.

Thus, important information about malware can be extracted

by analyzing how memory is accessed. Author Egele et.al.

[39] used memory-based features by tracking values of the

stack (read/write from/to) dynamically and heap in

combination with calls to import library functions, system

calls, and return values stored in %rax registers.

Other authors like Kong et.al.[29]carried their research in

memory read-write operations count and several I/O read-

write operations in association with other features of API and

opcodes.

3.8. CPU Register

How CPU registers are used can also indicate valuable

information about malware. Kong et.al.[29]excelled in their

research using several flags changed in a register, register

read, and write count while Egele et. al. [39] used return

values stored in %rax registers and Ahmadi et. al. [18] used

registers usage frequency and register value respectively.

3.9. Raised Exceptions

It is a common trick used by malware writers is to throw

malware code in exception and to raise an exception in a

program. So, to understand malware evasion techniques it’s

better to scrutinize exceptions raised [35], [40].

3.10. Network

The interaction of PE with the network also reveals huge

information about malware. Malware like a key logger steals

a user’s personal information and sends it over the network to

its attacker. Sometimes, attackers also send instructions to

their malware program over the internet like in the case of

botnets. Some malware tries to generate traffic over the

network by floating false packets. So, a study of the network

can reveal some information about malware. Many authors

survey dynamic analysis to extract information about

networks [32], [41]–[45]. Vadrevu et al., 2013 [46] used

download domain, download history, destination IP,

download request, and queried URL’s while [28], [41] used

connection count and [47] worked upon Unique IP count,

protocol type, connection count, HTTP request/response type

count, and request-response packet size. M. Belaoued et. al.

[23] worked on network traffic, domain names and IP

addresses, which are used by malware to have remote access.

3.11. Sandbox Submissions

Sandboxes are used to execute files in an isolated

environment to detect any malicious activity. Many

sandboxes are available online. Malware writers take leverage

of sandbox and execute their malware code on this sandbox

first to test the effectiveness of their code and to check if their

code can evade the most commonly used antivirus[28], [41].

So, studying these sandbox submissions can provide

important information about malware.

3.12. API Calls

Application Programming Interface (API) acts as a mediator

between software and operating system. Some tasks can be

directly performed by the operating system only like writing a

file to the disk and the system library contains a library of

such functions. When a program invokes a call to the system

library is referred to as an API call [7]. For example, when

there is a need to copy a file, CopyFileW API will be called.

API calls are a very important feature for malware detection

and are used by many researchers. If we can preserve a

sequence of API calls, it is called an API trace [48]. This API

trace can detect high-level behavior of malware [49]–[51]

such as “walk through directories” or “copies itself to disk”.

Jinrong Bai et.al. [37] used referred API calls and referred

DDLs counts along with PE file characteristics in their

research. Bojan Kolosnjaji et.al. [52] used Kernel API calls in

their research. They used a system call sequence and build a

neural network by using recurrent and convolution layers.

Many other authors like [30], [35], [53], [54];[23], [55] also

worked on system call sequences while other authors like

[27], [42] used system call dependencies. Table 2 represents

the summary of features extracted in malware detection.

4. MACHINE LEARNING

The interaction of PE with the network also reveals huge

information about malware. Malware like a key logger steals

a user’s personal information and sends it over the network to

its attacker. Sometimes, attackers also send instructions to

their malware program Arthur Samuel in 1959 [75] in his

paper, firstly coined the term Machine Learning, in which he

builds a game of checkers on computers. The basic motive

behind machine learning is to train a computer how to act like

humans or animals in some situations. In the case of machine

learning, there is no fixed equation, rather a computer learns

from previous situations. For machine learning, a large

amount of data is fed to the computer and it co-relates input

and output from this data and works further based on this

data. It includes two main modes- the first is training and the

second is testing. In training mode, a large set of data is

provided to the computer, and the computer analyzes this data

and builds its equation of model of this data. In the testing

mode, a small subset of the sample is used to test what the

computer has learned in the training phase. The accuracy of

results increases with the increment of training data. Machine

learning algorithms don’t directly work on the provided data.

It will first extract features from the provided data. These

features act as input to machine learning classifiers [6]. For

example, if we have to classify different kinds of animals its

features may include size, color, presence of trunk, size of the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 763

SURVEY ARTICLE

neck, etc. An elephant would have features “size = big, color=

grey, presence of trunk = yes, size of neck= small”. A giraffe

would have features “size= big, color =yellow, brown,

presence of trunk= no, size of neck= long”. If we talk about

machine learning in the case of malware, it is a very powerful

tool. Using machine learning we can detect malware and can

also label the types of malware, i.e. if it is a virus, worm,

rootkit, or any other kind. The features used for the detection

of malware can be call graphs, API calls, strings, etc.

Author and Year Static Dynamic

M.G. Schultz et al. 2001 [56] Byte Sequence, Strings X

J. Zico Kolter et al. 2006[57] n gram X

F. Ahmed et al. 2009[58] x
Arguments & Sequences

Extracted from API

D. H. Chau et al. 2010[59] File System X

Firdausi et al. 2010[60] File System
Win Reg, Sys Call

Monitoring

B. Anderson et al. 2011[61] Byte Sequence API calls

Santos et al. 2011[62] Byte Sequence X

B. Anderson et al. 2012[63]
Binary File, Disassembled

Binary, Control Flow Graph

Instruction trace system call

trace

J. Bai et al. 2014[64] PE file characteristic X

K. Bojan et al. 2016[65] x Kernel API calls

M. Ehsan et al. 2017[66] x
duration, network features,

API frequencies

H. William et al. 2017[67] x Window API calls

M. Asha Jerlin et. al. 2018[68]

API call sequences

N. Maleki et. al. 2019[69] PE header and Section header

Wadkar et al., 2020[70] PE file characteristic X

Jagsir Singh et. al. 2020[71] X API calls

Ajay Kumar et.al. 2020 [72] PE file X

JeyaprakashHemalatha et.al.

2021[73]
Binary Image X

 Omar N. Elayan et.al. 2021[74] X API calls + Permissions

Table 2 Summary of Feature Extracted in Malware Detection

4.1. Naïve Bayes Classification

Naïve Bayes classifiers are a family of the classifier which

work on probability and are based on the Bayes theorem[76].

Naïve Bayes classifiers take an assumption that features of

every set are independent of one and another, say values of

features V1, V2, V3, …………… Vn is conditionally

independent of a given class C. Even if features have a

dependency on each other it is said to be a dependency in the

classification of something. That is why it is called Naïve. To

measure the probability (P) Naïve Bayes classifier works

according to equation 1.

𝑃(𝑦|𝑥1, … . , 𝑥𝑛) =
𝑃(𝑥1|𝑦)𝑃(𝑥2|𝑦). . . 𝑃(𝑥𝑛|𝑦)𝑃(𝑦)

𝑃(𝑥1)𝑃(𝑥2) . . . 𝑃(𝑥𝑛)
 (1)

Where y is class variable and x1, x2…,xn is the feature vector of

size n.

4.2. k-Nearest Neighbor (k-NN)

The basic fundamental behind this algorithm is that two

objects which belong to the same class have some

commonalities which can be detected based on some distance

metric[77]. It maps the unknown class to the known class by

simply calculating the Euclidean, Manhattan, Minkowski, or

Hamming distance among its k nearest neighbors, and then

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 764

SURVEY ARTICLE

voting for maximum class. k here represents the number of

nearest neighbors which is the main factor and its value is

generally small odd numbers like 1, 3, 5, or 7. Consider one

has to find a class for point A1. To do so firstly find k nearest

neighbors of A1, then voting is done for class. Then the class

having maximum votes will be added with point A1. The

main advantage of using k-NN is its simplicity and easiness to

use and understanding but it becomes significantly slow when

there is a large number of entries.

4.3. SVM

SVM [78] is a binary classifier that finds out a hyperplane to

make a clear separation between two classes with the largest

margin. SVM is mainly classified into two types: Linear SVM

and polynomial SVM. In the case of linear SVM, it is possible

to distinguish between classes with a linear hyperplane. But

sometimes the dataset is dispersed in such a manner that it

becomes difficult to distinguish between classes with a linear

hyperplane then the kernel method is used for separation of

classes. In this method, a polynomial function is used for the

separation of classes. It is known as polynomial SVM.

4.4. Decision Tree

This classifier is represented like a tree [79], its internal nodes

represent some conditions and leaf nodes represent the label

of class. This tree-like structure helps to make decisions using

the divide and conquer technique. While going from root to

leaf nodes the feature values are captured for an unknown

variable. Consider an unknown variable A1 whose class has

to find then starting from the root node, one has to choose the

path according to features of A1 and move down in a tree

until a leaf node is encountered and on reaching leaf node

label of class (which is contained by that particular leaf node)

is given to A1.

4.5. Random Forest

Random Forest [64] has become popular recently on different

problems of classifications and is an upgraded version of

Decision Tree. As the name suggests random forest comprises

numerous trees that work in a group. There are two types of

randomness, selection of input variable and bootstrap

sampling are used to collaborate with different trees in the

forest. For the process of classification in Random forest, a

class with maximum votes out of all trees is chosen. Having

different trees using randomness provides better prediction

rather than an individual tree.

4.6. Gradient Boosting

Gradient Boosting is somewhat similar to Random forest as

they both focus to improve the weak classifier of the Decision

Tree. Unlike Random Forest, Gradient Boosting doesn’t use

multiple decision trees but uses regression to estimate the

relationship between independent and dependent variables.

4.7. XGBoost:

XG Boost algorithm is proposed by Tianqi Chen[81]Each

base studying set of rules learns from its preceding base

learner and decreases its error. Eventually, the very last

learner shows minimal bias and variance in the course of the

training process. In general, the XGBoostset of rules

combines numerous base learners (decision trees) to the

construction of sturdy aggregated models. To be expecting the

very last output, the XGBoostset of rules combines the

weights of the leaves of all trees T.

Table 3 represents the summary of algorithms and their

advantages and limitations used in process of detection of

malware.

Author Data Set Algorithm Accuracy Advantage Limitation

M.G. Schultz et.

al. 2001 [56]

3265 -

Malware, 1001

- Benign

Naïve Bayes 97.11

1. Tested for new malicious

executables

1. High false positive

2. Needs to do work in

terms of time and accuracy

3. Used non-over-lapping

byte sequence.

4. The collection is mainly

of viruses only.

Multi Naïve

Bayes
96.88

J. Zico Kolter

et. al. 2006[57]

1651 -

Malware, 1971

- Benign

Naïve Bayes --

1. Used overlapping byte

sequence.

2. ROC curves are shown.

1. Dataset is stored on a

server, when there is a

change in training data

evaluation of a variety of

methods becomes critical

for a server

Multi Naïve

Bayes
--

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 765

SURVEY ARTICLE

F. Ahmed et. al.

2009[58]

316 - Malware,

100 - Benign

J48 --
1. Used spatial-temporal

information available in API

calls which helps to provide

high accuracy and also helps

to detect from some of the

evasion techniques

Processing and memory

overheads.
NB --

RIPPER --

Author Data Set Algorithm Accuracy Advantage Limitation

D. H. Chau et.

al. 2010[59]

903 Million

Files

Graph

Mining
--

1. Used a large dataset hence

providing good results. 2.

Results improved on iteration

1. All files are treated with

of same weight which is not

in a real-time situation

2. Execution time is high

which can be reduced using

parallelization techniques

Firdausi et al.

2010[60]

220 - Malware,

250 - Benign

KNN 92.9

Feature selection and feature

reduction are used which

used training time.

It reduced the performance

of the system

Naïve Bayes 92.3

J48 Dec tree 96.8

SVM 94.9

MLP 94.2

. Anderson et al.

2011[61]

1615 -

Malware, 615 -

Benign

Similarity

Graph
--

1. Computational Complexity

would restrictive

progressively setting.

2. Used kernel learning

framework which provides a

logical way to measure

different aspects of program

trace

1. Ethers are not completely

invisible

2. String setting can be

easily changed so that can't

be detected

3 Slow for analysis

Santos et al.

2011[62]

1000 -

Malware, 1000

- Benign

Learning

with local &

Global

Consistency

(LLGC)

-- Reduce Req labels
Less Accuracy than

supervised learning

B. Anderson et

al. 2012[63]

780 - Malware,

776 - Benign

Multiple

Kernel-

based

learning

98.07

1. Combines both static &

dynamic approaches.

2. A future data source can

be easily added

Intel pin program is used

which is not as transparent

tracing tool like ether

framework

J. Bai et al.

2014[64]

10421 -

Malware, 8592

- Benign

Decision

Tree
--

1. Better Accuracy

2. Timely Detection

PE header of malware can

be forged by malware

writers to evade detection Random

Forest
--

K. Bojan et al.

2016[65]

4753 -

Malware

Tensor Flow

Supervised

Learning

--

1. Better results than hidden

Markov and SVM

2. Takes benefits of two

types of layering of ANN

After insertion of noise

malware can evade

detectors that are not

considered by authors.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 766

SURVEY ARTICLE

M. Ehsan et al.

2017[66]

23146 -

Malware

Supervised

ANN
--

Classification reduces the

effort of analysis
Computationally expensive

H. William et

al. 2017[67]

22500 -

Malware,

22500 -

Benign

Deep

Learning
93.68

Worked on real industrial

application

Sparsity constraints can be

imposed on AutoEncoder

CG_SVM 88.24

CG_ANN 87.88

CG_NB 77.94

CG_DT

87.42

Author Data Set Algorithm Accuracy Advantage Limitation

M. Asha Jerlin

et. al. 2018[68]
-

Multidimens

ional Naïve

Bayes

Classificatio

n (MDNBS)

--

High detection rate, and low

time and computational

complexity.

They used a normalized

dataset that is not available

in real-time.

N. Maleki et.al.

2019[69]

761 - Malware,

210 - Benign

DT classifier 98.26

The low detection error rate

PE header of malware can

be forged by malware

writers to evade detection

NN 97.92

ID3 95.83

NB 95.14

SVM 95.14

Wadkar et al.,

2020[70]

26245 SVM -
Detect evolutionary changes

in malware families

Malware obfuscation has a

great impact on static

feature

Jagsir Singh et.

al. 2020 [71]

8634 -

Malware,

6434- Benign

kNN 98.4

High Accuracy -

Decision Tree 98.14

SVM 98.14

Multi Naive

Bayes
85.4

Random

Forest
99.1

Ajay Kumar

et.al. 2020 [72]

Brazilian

malware

dataset with

1,21,000 rows

Random

Forest
99.7

High accuracy -
Decision Tree 99.7

Gradient

Boost
98.48

SVM 96.9

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 767

SURVEY ARTICLE

Logistic

Regression
96.8

XGBoost 96.7

AdaBoost 94.3

JeyaprakashHe

malatha et.al.

2021[73]

MalImg -

7268(training)

BIG 2015-

8338(training)

MaleVis-

9958(training)

Malicia-

testing

k-NN 76.75

-
1. MalImg and BIG 2015

are imbalanced datasets

LR 56.33

SVM 80.33

Naïve Bayes 46.93

Decision Tree 77.77

Random

Forest
82.10

Adaboost 75.31

Omar N. Elayan

et.al. 2021[74]

347 - Benign

365 - Malware

SVM 96.2

k-NN 97.2

Decision Tree 96.6

Random

Forest
97.8

Naive Bayes
93.9

Table 3 Summary of Algorithms and Their Advantages and Limitations Used in the Detection of Malware

5. NEURAL NETWORK

3.5. Artificial Neural Network (ANN)

It is inspired by the working of the human brain along with

statistics and applied math. There are large numbers of brain

cells in the human brain which are interlinked with each other.

These are called neurons. These neurons are used for

transferring information in the form of signals. Human sense

organs receive a lot of information and the neuron web

interprets it to the sensory part of the brain. Similarly, ANN

works in the form of artificial neurons. Each neuron consists

of a non-linear function.

The neurons in ANN are organized in the form of layers.

ANN consists of 3 types of layers namely input layer, hidden

layer, and output layer. Data transform from the input layer to

the output layer via the hidden layer. ANN can be known as

shallow learning. When there are multiple hidden layers it

becomes deep learning [12].

3.6. Deep Learning

Deep Learning is a subset of machine learning. It can learn

from unsupervised data which is not structured or even not

labeled. It works by imitating the human brain, processes data

and creating patterns by self-understanding and making the

decision on basis of it. Deep Learning consists of

interconnected neurons. The neural network's structure is

composed of connected layers. Neural Network consists of

many layers like an input layer, an output layer, and a hidden

layer. A hidden layer is any layer that is in between the input

layer and output layer. The network consists of more than 2

layers is represented as deep. The signal strength provided as

input to the next layer depends upon bias, weight, and

activation function [82]. The complexity of the network

increases with the increase in the number of layers.

In the case of machine learning for classification purposes

there need to extract features from images, while in deep

learning it is capable to extract features by itself. Some

practical applications of deep learning are in the field of

natural language processing, self-driving cars, virtual

assistants, etc. Deep learning used by various authors on

malware datasets is shown in Table 4 and accuracies achieved

by various authors using deep learning are shown in Figure 3.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 768

SURVEY ARTICLE

Author and year
Paper

cited
Feature Dataset

Number of

Malware

samples

Number of

Malware

Classes

Method Accuracy

Aziz Makandar

et.al. 2015 [83]
58

Malware

Binary

Mahenhur

dataset
3131 24 ANN 96.35 %.

Kyoung Soo Han

et.al. 2015 [84]
115

Visualized

images and

entropy

graphs

- 1,000 50 - 97.9%

Espoir K.

Kabangaet.al.

2017[85]

35

Visualizing

Malware as

Image

MalIMG 9458 25 CNN 98%

Mahmoud Kalash

et.al. 2018 [86]
111

Visualizing

Malware as

Image

MalIMG 9339 25 CNN 98.52%

HiromuYakuraet.al

. 2018 [87]
41

To extract

important

byte

sequences to

reduce human

effort

- 147803 542 CNN 50.97%

Matilda Rhode

et.al. 2018[88]
128

Snap sort of

behavioral

data

-

2345 benign

2286

malicious

samples

2 RNN 96.01%

Author and year
Paper

cited
Feature Dataset

Number of

Malware

samples

Number of

Malware

Classes

Method Accuracy

Jin-Young Kim

et.al. 2018 [89]
90

Malware

Images
- 10800 9

transferred

deep-

convolution

generative

adversarial

network

95.74%

Daniel Gibertet.al.

2019 [12]
37

Visualizing

Malware as

Image

MalIMG 9458 25 CNN 98.48%

Microsoft

Malware

Dataset

10868 9 CNN 97.49%

Danish Vasan et.al.

2020 [90]
50

Image-based

malware
MalIMG 9435 25 CNN 98.82%

Jeyaprakash

Hemalatha et.al.

2021[73]

15
Binary

Images

MalImg 7268(training)

2

CNN 71.42

VGG16 77.66

BIG 2015 8338(training)
VGG19 82.92

Inception-v3 83.7

MaleVis 9958(training)
Resnet-50 83.52

Densenet-121 83.02

Malicia Testing
Xception 83.02

DenseNet based 89.48

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 769

SURVEY ARTICLE

proposed

Omar N. Elayan

et.al. 2021[74]
-

API calls

+Permissions
-

347-Benign

365 - Malware
2 GRU of RNN 99.2

Abdul basit Darem

2021[91]
-

Malware

binary

Images

BIG 2015 10868 9

XGBoost+Opco

de
92.67

XGBoost+Opco

de+Segment
94.2

XGBoost+Opco

de+Segment+S

econdary

features

96.8

CNN+Malware

Images
98

Ensemble 99.12

Table 4 List of Work Done by Various Authors for Malware Classification using Deep Learning

Figure 3 Malware Classification Accuracy in Surveyed Paper Using Deep Learning

5.2.1. Recurrent Neural Network (RNN)

RNN is a class of neural networks in which a directed graph

along with a temporal sequence is used to make a connection

between nodes. It can capture information about the sequence

present in data [12]. In the case of RNN, it has some memory

i.e. it remembers the past and its decisions are influenced by

what is learned in past. So, we can say it is a feed backward

network. Feed forward networks can only remember what to

do but feed backward can also remember what was done in

past.

5.2.2. Convolution Neural Network (CNN)

CNN is feeding forward neural networks. It consists of a

convolution layer, pooling layer and fully connected layer.

The convolution layer is the building block of CNN. This

layer is made up of filters which are useful to detect a specific

pattern in an image. Multiple filters are applied in parallel on

the whole image symmetrically. Each filter detects a different

type of pattern in an image. Strides are also used along with

filters which define the movement of several pixel units of a

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 770

SURVEY ARTICLE

filter [92]. Activation functions are also used in convolution

layers like relu, sigmoid, softmax, etc.

Pooling layers are used to reduce the dimensions of an image

so that complexity of calculation can be reduced. The window

size used for the pooling layer is less than the size of the filter.

Generally, the pooling layer is used of 2 x 2 sizes to minimize

the reduction of data. 3 types of pooling layers are used

namely max-pooling, min-pooling and avg-pooling. In the

case of min-pooling minimum value is chosen out of these

partitions. Similarly in max-pooling and avg-pooling

maximum and average values are chosen from the partition. A

fully connected layer gets input from each neuron of the

previous layer. These layers are generally followed by a

dropout layer to avoid over-fitting the model.

6. SURVEY RESULTS

The mushroom growth of malware has raised challenges for

its detection. A large number of new malware is reported

daily and lots of automated toolkits for the development of

malware are available like Zesus [93]. These toolkits use

methods to evade malware at an early stage which has

increased complexity for various researchers and antivirus

companies. We have studied some papers in which

researchers have worked to detect malware using various

approaches. The numbers of malware samples used by

various researchers are shown in Figure 4. In Figure 5

algorithms used by various researchers are listed on the x-axis

and the percentage accuracy achieved by it is on the y-axis.

Figure 4 Number of Dataset Samples in Surveyed Papers

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 771

SURVEY ARTICLE

6.1.

Comparative Analysis of Machine Learning and Deep

Learning

There is a significant contribution of machine and deep

learning algorithms for malware detection. These algorithms

provide great aid to increase the accuracy of malware

detection. In 2001 M.G. Schultz [56] was the first to use

machine learning in terms of malware detection. He changed

the whole way of detection of malware. Various machine

learning algorithms like Naïve Bayes, Multi Naïve Bayes,

SVM, Decision Tree, Random Forest are used by authors.

Some authors used machine learning as well as deep learning

algorithms on their dataset. H.William [67] used both

machine and deep learning algorithms and got maximum

accuracy of 93.68% on deep learning while the highest

accuracy on machine learning.

Algorithms are achieved by him is 88.24% using CG_SVM.

Similarly, Jeyaprakash Hemalatha et.al. 2021[73] and Omar

N. Elayan et.al. 2021[74] also achieved maximum accuracy

using deep learning as 89.48% and 99.2% respectively. While

they received the highest accuracy using machine learning are

82.10% and 97.8% using Random Forest respectively. Two

observations are made while doing a comparative analysis of

machine and deep learning algorithms, firstly while working

on the same dataset deep learning is always providing better

results than machine learning. Secondly, no single machine

learning algorithm can provide the best result on all datasets.

Figure 5 Malware Detection Accuracy in Surveyed Papers

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 772

SURVEY ARTICLE

7. CONCLUSION

There is an exponential growth of malware with each passing

day. Malware writers are also writing code to evade the

signatures used by various antivirus companies. This has

become a great threat and providing security to the

information has become challenging for cyber professionals.

Moreover, many tools are available in the market which can

write malware code from scratch and can also obfuscate the

malware code to prevent it from being detected at an early

stage. Due to this mushroom growth of malware, efficient and

intelligent algorithms for malware detection are required

which can detect malware in less time to minimize the

damage. The process of malware detection consists of two

phases, the first phase is the extraction of features and the

other phase is classification/clustering. Accuracy of

classification majorly relies on the features so the feature

extraction phase has become important. Malware features can

be of two types: static well as dynamic. Static features are

extracted from binary itself without its execution while

dynamic features are extracted after the execution of the

sample in an isolated environment.

In this paper, a survey is conferred on malware features and

classification techniques using machine learning and deep

learning. Firstly, the term malware and its types are explained.

Then malware features like n-gram, opcodes, call graph,

control flow graph, PE file characteristics, Memory Access,

CPU registers, Raised Exceptions, Network, Sandbox

Submissions, and API calls are explained. A summary is also

provided for malware features used by various authors.

Furthermore, machine learning techniques like Naive Bayes,

kNN,

VM, Decision Tree, and Random Forest are explained for the

classification of malware. Machine learning classifiers used

by authors along with the advantages and disadvantages faced

by them are also summarized.

Then deep learning is explained and a list of the work done by

various authors for malware classification using deep learning

is presented. Afterward survey results are explained which

consists of the number of dataset samples used in surveyed

papers and malware detection accuracy in surveyed papers.

As per observations made in this paper, there is no single

classifier that can always provide the best result in all kinds of

features. Each type of malware detection, namely static and

dynamic, has its advantages and disadvantages. Extraction of

static features is fast and can detect malware at an early stage

while these cannot detect zero-day-malware while dynamic

features are more reliable to detect this zero-day-malware.

However, to enhance the performance of malware

classification abundant number of samples of malware as well

as benign are required for training.

REFERENCES

[1] “Panda Lab: Pandalabs annual report 2015,” 2015.
http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandal

abs-2015-anual-EN.pdf (accessed Mar. 19, 2020).

[2] “McAfee Labs Threats Reports – Threat Research | McAfee.”
https://www.mcafee.com/enterprise/en-in/threat-center/mcafee-

labs/reports.html (accessed Jun. 01, 2021).

[3] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue Univ., vol. 48, pp. 2007–2, 2007.

[4] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated

dynamic malware-analysis techniques and tools,” ACM Comput. Surv.
CSUR, vol. 44, no. 2, pp. 1–42, 2008.

[5] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A survey

on heuristic malware detection techniques,” in The 5th Conference on
Information and Knowledge Technology, 2013, pp. 113–120.

[6] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and

classification: A survey,” J. Inf. Secur., vol. 2014, 2014.
[7] C. LeDoux and A. Lakhotia, “Malware and machine learning,” in

Intelligent Methods for Cyber Warfare, Springer, 2015, pp. 1–42.

[8] I. Basu, N. Sinha, D. Bhagat, and S. Goswami, “Malware detection
based on source data using data mining: A survey,” Am. J. Adv.

Comput., vol. 3, no. 1, pp. 18–37, 2016.

[9] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A Survey on Malware
Detection Using Data Mining Techniques,” ACM Comput. Surv., vol.

50, no. 3, pp. 1–40, Jun. 2017, doi: 10.1145/3073559.

[10] D. Ucci, L. Aniello, and R. Baldoni, “Survey on the usage of machine
learning techniques for malware analysis,” ArXivPrepr.

ArXiv171008189, 2017.

[11] D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A survey
of deep learning methods for cyber security,” Information, vol. 10, no.

4, p. 122, 2019.

[12] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolutional
neural networks for classification of malware represented as images,” J.

Comput. Virol. Hacking Tech., vol. 15, no. 1, pp. 15–28, 2019.

[13] “Worm definition by The Linux Information Project.”
http://www.linfo.org/worm.html (accessed Mar. 20, 2020).

[14] “Keyloggers: How they work and how to detect them (Part 1) |

Securelist.” https://securelist.com/keyloggers-how-they-work-and-how-
to-detect-them-part-1/36138/ (accessed Mar. 20, 2020).

[15] J. Allain, The Ugly Truth About Adware and Spyware. Lulu Press, Inc,

2015.
[16] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of

malicious code by applying machine learning classifiers on static

features: A state-of-the-art survey,” Inf. Secur. Tech. Rep., vol. 14, no.
1, pp. 16–29, 2009.

[17] C.-T. Lin, N.-J. Wang, H. Xiao, and C. Eckert, “Feature Selection and
Extraction for Malware Classification.,” J Inf Sci Eng, vol. 31, no. 3,

pp. 965–992, 2015.

[18] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware

family classification,” in Proceedings of the sixth ACM conference on

data and application security and privacy, 2016, pp. 183–194.

[19] B. Anderson, C. Storlie, and T. Lane, “Improving malware

classification: bridging the static/dynamic gap,” p. 12, 2012.

[20] J. Sexton, C. Storlie, and B. Anderson, “Subroutine based detection of
APT malware,” J. Comput. Virol. Hacking Tech., vol. 12, no. 4, pp.

225–233, 2016.

[21] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A. K.
Sangaiah, “Classification of ransomware families with machine learning

based on N-gram of opcodes,” Future Gener. Comput. Syst., vol. 90, pp.

211–221, 2019.
[22] P. Khodamoradi, M. Fazlali, F. Mardukhi, and M. Nosrati, “Heuristic

metamorphic malware detection based on statistics of assembly

instructions using classification algorithms,” in 2015 18th CSI
International Symposium on Computer Architecture and Digital

Systems (CADS), 2015, pp. 1–6.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 773

SURVEY ARTICLE

[23] M. Belaoued, A. Boukellal, M. A. Koalal, A. Derhab, S. Mazouzi, and

F. A. Khan, “Combined dynamic multi-feature and rule-based behavior
for accurate malware detection,” Int. J. Distrib. Sens. Netw., vol. 15, no.

11, p. 1550147719889907, 2019.

[24] H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, and K.-K.

R. Choo, “An opcode‐based technique for polymorphic Internet of
Things malware detection,” Concurr. Comput. Pract. Exp., vol. 32, no.

6, p. e5173, 2020.

[25] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in Proceedings

2001 IEEE Symposium on Security and Privacy. S&P 2001, Oakland,

CA, USA, 2001, pp. 38–49. Accessed: Apr. 06, 2020. [Online].
Available: http://ieeexplore.ieee.org/document/924286

[26] R. Ito and M. Mimura, “Detecting Unknown Malware from ASCII

Strings with Natural Language Processing Techniques,” in 2019 14th
Asia Joint Conference on Information Security (AsiaJCIS), 2019, pp. 1–

8.

[27] A. A. Elhadi, M. A. Maarof, and B. Barry, “Improving the Detection of
Malware Behaviour Using Simplified Data Dependent API Call Graph,”

Int. J. Secur. Its Appl., vol. 7, no. 5, pp. 29–42, Sep. 2013, doi:

10.14257/ijsia.2013.7.5.03.
[28] M. Graziano et al., “Needles in a haystack: Mining information from

public dynamic analysis sandboxes for malware intelligence,” in 24th

{USENIX} Security Symposium ({USENIX} Security 15), 2015, pp.
1057–1072.

[29] D. Kong and G. Yan, “Discriminant malware distance learning on

structural information for automated malware classification,” in
Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining - KDD ’13, Chicago, Illinois,

USA, 2013, p. 1357. doi: 10.1145/2487575.2488219.
[30] J. Kwon and H. Lee, “BinGraph: Discovering mutant malware using

hierarchical semantic signatures,” in 2012 7th International Conference

on Malicious and Unwanted Software, Fajardo, PR, USA, Oct. 2012,
pp. 104–111. doi: 10.1109/MALWARE.2012.6461015.

[31] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,

“Polymorphic worm detection using structural information of
executables,” in International Workshop on Recent Advances in

Intrusion Detection, 2005, pp. 207–226.

[32] I. Chionis, S. Nikolopoulos, and I. Polenakis, “A survey on algorithmic
techniques for malware detection,” 2013.

[33] T.-Y. Wang, C.-H. Wu, and C.-C. Hsieh, “Detecting Unknown

Malicious Executables Using Portable Executable Headers,” in 2009
Fifth International Joint Conference on INC, IMS and IDC, Seoul,

South Korea, 2009, pp. 278–284. doi: 10.1109/NCM.2009.385.

[34] G. Laurenza, L. Aniello, R. Lazzeretti, and R. Baldoni, “Malware
Triage Based on Static Features and Public APT Reports,” in Cyber

Security Cryptography and Machine Learning, vol. 10332, S. Dolev and
S. Lodha, Eds. Cham: Springer International Publishing, 2017, pp. 288–

305. doi: 10.1007/978-3-319-60080-2_21.

[35] M. Asquith, “Extremely scalable storage and clustering of malware
metadata,” J. Comput. Virol. Hacking Tech., vol. 12, no. 2, pp. 49–58,

May 2016, doi: 10.1007/s11416-015-0241-3.

[36] J. Yonts, “Attributes of malicious files,” Inst. InfoSec Read. Room,

2012.

[37] J. Bai, J. Wang, and G. Zou, “A Malware Detection Scheme Based on

Mining Format Information,” Sci. World J., vol. 2014, pp. 1–11, 2014,
doi: 10.1155/2014/260905.

[38] M. Wadkar, F. Di Troia, and M. Stamp, “Detecting malware evolution

using support vector machines,” Expert Syst. Appl., vol. 143, p.
113022, 2020.

[39] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:

Dynamic similarity testing for program binaries and components,” in
23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014,

pp. 303–317.

[40] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “OPEM: A
Static-Dynamic Approach for Machine-Learning-Based Malware

Detection,” in International Joint Conference CISIS’12-ICEUTE´12-

SOCO´12 Special Sessions, vol. 189, Á. Herrero, V. Snášel, A.

Abraham, I. Zelinka, B. Baruque, H. Quintián, J. L. Calvo, J. Sedano,
and E. Corchado, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 271–280. doi: 10.1007/978-3-642-33018-6_28.

[41] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J.
Nazario, “Automated classification and analysis of internet malware,”

in International Workshop on Recent Advances in Intrusion Detection,

2007, pp. 178–197.
[42] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,

“Scalable, behavior-based malware clustering.,” in NDSS, 2009, vol. 9,

pp. 8–11.
[43] T. Lee, “Behavioral classification,” Proc. EICAR 2006 4, 2006.

[44] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting

environment-sensitive malware,” in International Workshop on Recent
Advances in Intrusion Detection, 2011, pp. 338–357.

[45] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, and M. Antonakakis,

“Measuring and Detecting Malware Downloads in Live Network

Traffic,” in Computer Security – ESORICS 2013, vol. 8134, J.

Crampton, S. Jajodia, and K. Mayes, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013, pp. 556–573. doi: 10.1007/978-3-642-40203-
6_31.

[46] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, and M. Antonakakis,
“Measuring and detecting malware downloads in live network traffic,”

in European Symposium on Research in Computer Security, 2013, pp.

556–573.
[47] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: High-fidelity,

behavior-based automated malware analysis and classification,”

Comput. Secur., vol. 52, pp. 251–266, Jul. 2015, doi:
10.1016/j.cose.2015.04.001.

[48] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated

dynamic malware-analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, no. 2, pp. 1–42, Feb. 2012, doi: 10.1145/2089125.2089126.

[49] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of

malicious behavior,” in Proceedings of the 1st conference on India
software engineering conference - ISEC ’08, Hyderabad, India, 2008, p.

5. doi: 10.1145/1342211.1342215.

[50] A. Pfeffer et al., “Malware Analysis and attribution using Genetic
Information,” in 2012 7th International Conference on Malicious and

Unwanted Software, Fajardo, PR, USA, Oct. 2012, pp. 39–45. doi:

10.1109/MALWARE.2012.6461006.
[51] “Rootkits - Computing and Software Wiki.”

http://wiki.cas.mcmaster.ca/index.php/Rootkits (accessed Mar. 21,

2020).
[52] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep Learning for

Classification of Malware System Call Sequences,” in AI 2016:

Advances in Artificial Intelligence, vol. 9992, B. H. Kang and Q. Bai,
Eds. Cham: Springer International Publishing, 2016, pp. 137–149. doi:

10.1007/978-3-319-50127-7_11.

[53] K. Huang, Y. Ye, and Q. Jiang, “ISMCS: An intelligent instruction
sequence based malware categorization system,” in 2009 3rd

International Conference on Anti-counterfeiting, Security, and

Identification in Communication, Hong Kong, China, Aug. 2009, pp.
509–512. doi: 10.1109/ICASID.2009.5276989.

[54] D. Uppal, R. Sinha, V. Mehra, and V. Jain, “Malware detection and

classification based on extraction of API sequences,” in 2014
International Conference on Advances in Computing, Communications

and Informatics (ICACCI), Delhi, India, Sep. 2014, pp. 2337–2342. doi:

10.1109/ICACCI.2014.6968547.
[55] J. Singh and J. Singh, “Assessment of supervised machine learning

algorithms using dynamic API calls for malware detection,” Int. J.

Comput. Appl., pp. 1–8, Feb. 2020.
[56] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining

methods for detection of new malicious executables,” in Proceedings

2001 IEEE Symposium on Security and Privacy. S&P 2001, 2000, pp.
38–49.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 774

SURVEY ARTICLE

[57] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious

executables,” in Machine Learning and Data Mining for Computer
Security, Springer, 2006, pp. 47–63.

[58] F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq, “Using spatio-

temporal information in API calls with machine learning algorithms for
malware detection,” in Proceedings of the 2nd ACM Workshop on

Security and Artificial Intelligence, 2009, pp. 55–62.

[59] C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos, “Polonium:
Tera-scale graph mining for malware detection,” 2010.

[60] I. Firdausi, A. Erwin, and A. S. Nugroho, “Analysis of machine learning

techniques used in behavior-based malware detection,” in 2010 second
international conference on advances in computing, control, and

telecommunication technologies, 2010, pp. 201–203.

[61] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based
malware detection using dynamic analysis,” J. Comput. Virol., vol. 7,

no. 4, pp. 247–258, 2011.

[62] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning for

unknown malware detection,” in International Symposium on

Distributed Computing and Artificial Intelligence, 2011, pp. 415–422.

[63] B. Anderson, C. Storlie, and T. Lane, “Improving malware
classification: bridging the static/dynamic gap,” in Proceedings of the

5th ACM workshop on Security and artificial intelligence, 2012, pp. 3–
14.

[64] J. Bai, J. Wang, and G. Zou, “A malware detection scheme based on

mining format information,” Sci. World J., vol. 2014, 2014.
[65] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for

classification of malware system call sequences,” in Australasian Joint

Conference on Artificial Intelligence, 2016, pp. 137–149.
[66] E. Moshiri, A. B. Abdullah, R. Mahmood, and Z. Muda, “Malware

Classification Framework for Dynamic Analysis using Information

Theory,” Indian J. Sci. Technol., vol. 10, no. 21, pp. 1–10, 2017.
[67] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “Dl4md: A deep learning

framework for intelligent malware detection,” in Proceedings of the

International Conference on Data Science (ICDATA), 2016, p. 61.
[68] M. A. Jerlin and K. Marimuthu, “A new malware detection system

using machine learning techniques for API call sequences,” J. Appl.

Secur. Res., vol. 13, no. 1, pp. 45–62, 2018.
[69] N. Maleki, “A behavioral based detection approach for business email

compromises,” University of New Brunswick., 2019.

[70] M. Wadkar, F. Di Troia, and M. Stamp, “Detecting malware evolution
using support vector machines,” Expert Syst. Appl., vol. 143, p.

113022, 2020.

[71] J. Singh and J. Singh, “Assessment of supervised machine learning
algorithms using dynamic API calls for malware detection,” Int. J.

Comput. Appl., pp. 1–8, 2020.

[72] A. Kumar et al., “Malware Detection Using Machine Learning,” in
Iberoamerican Knowledge Graphs and Semantic Web Conference,

2020, pp. 61–71.

[73] J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R.
Damaševičius, “An efficient DenseNet-based deep learning model for

malware detection,” Entropy, vol. 23, no. 3, p. 344, 2021.

[74] O. N. Elayan and A. M. Mustafa, “Android Malware Detection Using
Deep Learning,” Procedia Comput. Sci., vol. 184, pp. 847–852, 2021.

[75] A. L. Samuel, “Some Studies in Machine Learning Using the Game of

Checkers,” IBM J. Res. Dev., vol. 3, no. 3, pp. 210–229, Jul. 1959, doi:
10.1147/rd.33.0210.

[76] G. H. John and P. Langley, “Estimating continuous distributions in

Bayesian classifiers,” ArXivPrepr. ArXiv13024964, 2013.
[77] E. Fix and J. L. Hodges, “Discriminatory analysis: Nonparametric

discrimination: Consistency properties: (471672008-001).” American

Psychological Association, 1951. doi: 10.1037/e471672008-001.
[78] T. Joachims, “Making large-scale support vector machine learning

practical, Advances in Kernel Methods,” Support Vector Learn., 1999.

[79] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986, doi: 10.1007/BF00116251.

[80] L. Breiman, “[No title found],” Mach. Learn., vol. 45, no. 1, pp. 5–32,

2001, doi: 10.1023/A:1010933404324.

[81] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in

Proceedings of the 22nd acmsigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[82] P. M. Kavitha and B. Muruganantham, “A study on deep learning

approaches over Malware detection,” in 2020 IEEE International
Conference on Advances and Developments in Electrical and

Electronics Engineering (ICADEE), 2020, pp. 1–5.

[83] A. Makandar and A. Patrot, “Malware analysis and classification using
artificial neural network,” in 2015 International conference on trends in

automation, communications and computing technology (I-TACT-15),

2015, pp. 1–6.
[84] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis using

visualized images and entropy graphs,” Int. J. Inf. Secur., vol. 14, no. 1,

pp. 1–14, 2015.
[85] E. K. Kabanga and C. H. Kim, “Malware images classification using

convolutional neural network,” J. Comput. Commun., vol. 6, no. 1, pp.

153–158, 2017.

[86] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and F.

Iqbal, “Malware classification with deep convolutional neural

networks,” in 2018 9th IFIP international conference on new
technologies, mobility and security (NTMS), 2018, pp. 1–5.

[87] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma,
“Malware analysis of imaged binary samples by convolutional neural

network with attention mechanism,” in Proceedings of the Eighth ACM

Conference on Data and Application Security and Privacy, 2018, pp.
127–134.

[88] M. Rhode, P. Burnap, and K. Jones, “Early-stage malware prediction

using recurrent neural networks,” Comput. Secur., vol. 77, pp. 578–594,
2018.

[89] J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using

transferred generative adversarial networks based on deep
autoencoders,” Inf. Sci., vol. 460, pp. 83–102, 2018.

[90] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng,

“IMCFN: Image-based malware classification using fine-tuned
convolutional neural network architecture,” Comput. Netw., vol. 171, p.

107138, 2020.

[91] A. Darem, J. Abawajy, A. Makkar, A. Alhashmi, and S. Alanazi,
“Visualization and deep-learning-based malware variant detection using

OpCode-level features,” Future Gener. Comput. Syst., vol. 125, pp.

314–323, 2021.
[92] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a

convolutional neural network,” in 2017 International Conference on

Engineering and Technology (ICET), 2017, pp. 1–6.
[93] D. Song et al., “BitBlaze: A new approach to computer security via

binary analysis,” in International Conference on Information Systems

Security, 2008, pp. 1–25.

Authors

Manish Goyal is pursuing his Ph.D in Computer

Science and Engineering at I. K. Gujral Punjab
Technical University, Kapurthala. He did his Bachelor

of Technology in Computer Science and Engineering

from Yadavindra College of Engineering, Punjabi

University GuruKashi Campus, Talwandi Sabo. He did

his Master ofTechnology in Computer Science and

Engineering fromYadavindra College of Engineering,
Punjabi UniversityGuru Kashi Campus, Talwandi Sabo. His major area of

research is Malware Detections and Information Security. (Email:

manishgoyalpup@gmail.com, er.manishgoyal.ghudda@gmail.com).

Raman Kumar is working as an Assistant

Professor in the Department of Computer Science

and Engineering, I. K. Gujral Punjab Technical
University, Kapurthala, formerly worked at DAV

Institute of Engineering and Technology, Jalandhar

as Assistant Professor in the Department of
Computer Science and Engineering. Before joining

mailto:manishgoyalpup@gmail.com
mailto:er.manishgoyal.ghudda@gmail.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210724 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 775

SURVEY ARTICLE

I K Gujral Punjab Technical University, Kapurthala, He did hisBachelor of

Technology with honors in Computer Science and Engineering from Guru
Nanak Dev University, Amritsar (A 5 Star NAAC University). He did his

Master of Technology with honors in Computer Science and Engineering

from Guru Nanak Dev University, Amritsar (A 5 Star NAAC University). He
did his Ph. D with an A Grade in Computer Science and Engineering from the

National Institute of Technology, Jalandhar (Deemed University). His major

area of research in Cryptography, Security Engineering and Information
security. He has published many papers in refereed journals, chapters, books

and conference proceedings on his research areas. (Email:

raman.kumarptu@gmail.com, er.ramankumar@aol.in).

How to cite this article:

Manish Goyal, Raman Kumar, “A Survey on Malware Classification Using Machine Learning and Deep Learning”,

International Journal of Computer Networks and Applications (IJCNA), 8(6), PP: 758-775, 2021, DOI:

10.22247/ijcna/2021/210724.

mailto:raman.kumarptu@gmail.com
mailto:er.ramankumar@aol.in

