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Abstract – In today’s era, there is fast development in the field of 

Information Technology. It is a matter of great concern for cyber 

professionals to maintain security and privacy. Studies revealed 

that the number of new malware is increasing tremendously. It is 

a never-ending cycle between the world of attack and the defense 

of malicious software. Antivirus companies are always putting 

their efforts to develop signatures of malicious software and 

attackers are always in try to overcome those signatures. For the 

detection of malware machine learning are highly efficient. The 

process of detection of malware is split into two categories 

first is feature extraction and the second is malware 

classification. The effectiveness of classification algorithms 

depends on the feature extracted. In this paper, firstly an in-

depth study of the features is provided that can be used to 

differentiate malware. Thereafter describe the various stages of 

machine learning and deep learning that researchers use in their 

research work and the pros and cons they face that can assist 

new researchers while selecting an algorithm for their research 

work. 

Index Terms – Malware Detection, Static Analysis, Dynamic 

Analysis, Security, Features of Malware, Machine Learning, 

Deep Learning. 

1. INTRODUCTION 

There has been a mushroom growth of malware which is 

articulated by various encyclopedias such as; in 2014 panda 

reported 84 million new variants [1]. Similarly, in the 

3rdquarter of 2020 McAfee reported new MacOS malware 

surged 420% [2]. At the stage of inception, the computer virus 

was developed just for fun. The malicious code that was 

evolved by teenagers to play pranks with their friends has 

now turned into a serious malware threat. Malware writers 

have started using their brains professionally to do unlawful 

activities such as stealing money, crashing system, 

burglarizing very important information, etc. 

In Dec 1999, the San Diego Supercomputer Center (SDSC) 

experimented by installing Red Hat Linux 5.2 without any 

security patches on a computer with an internet connection 

[3]. The computer was attacked in just 8 hours of installation 

and in 21 days the computer was attacked 20 times and 

compromised 40 days after installation.  

Anti-virus companies mainly use signature-based detection 

techniques (it is a technique in which detection of malware is 

done based on features extracted from previously known 

malware) to capture malware, but using this technique only 

known malware can be detected. Zero-day malware (new and 

unseen malware) can't be detected using this approach. 

Moreover, malware writers practice evasion techniques like 

encryption and obfuscation to prevent them from being 

detected at an early stage. After knowing the catastrophic 

effects of malware, it is necessary to protect systems from 

malware. 

1.1. Background Motivation 

In 2012 Egele et.al. [4] Surveyed the default strategies and 

tools for malware detection. They first describe the malware 

and its variants and then the vectors of infection. After that, 

the malware analysis techniques used are described, namely 

parameter analysis of function, monitoring of function calls, 

information flow tracking instruction trace, and automated 

extensible points. Malware analysis is defined in the context 

of the user/kernel space, emulator and virtual machine, etc. 

The researchers explained a lot of tools that run malware 

samples like Anubis, CWSandbox, Norman Sandbox, Joebox, 

WiLDCAT, etc. According to their observation, most of the 

dynamic tools analyze system call and API they are required 

to interact with the system. Some tools observe the sensitivity 

of processed data. This information can be used to determine 

if the sample is malware. 

 In 2013 Bazrafshan et. al. [5] discussed 3 methods namely, 

behavior-based, signature-based and heuristic-based malware 

detection. He first explained these methods and then the 

strategies to hide the malware. They mainly focus on 
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describing heuristic malware detection methods using features 

such as opcodes, API calls, N-grams and discuss their pros 

and cons. 

In 2014 Gandotra et.al.[6] surveyed various papers on 

malware analysis using machine learning. They categorized 

work done by authors into static, dynamic, and hybrid 

techniques.  In 2015 LeDoux &Lakhotia[7] surveyed malware 

and machine learning. They explained the pipeline process of 

malware detection, challenges in Malware Analysis, machine 

learning concepts like supervised, unsupervised, semi-

supervised, and ensemble learning, and features of malware 

detection. They mainly focused on pointing problems in 

malware analysis and machine learning concepts to tackle 

those problems. 

In 2016 Basu et.al.[8] surveyed data mining techniques in the 

context of malware detection. The researchers have explained 

the work of various authors, their malware sample sources, 

and techniques used by authors and also distinguished the 

work of various authors based on features used by authors like 

API calls, byte sequence, PE header, etc. After that, they 

proposed a malware detection approach in which they used 

the Xptruss tool to detect API calls and apply Naïve Bayes for 

testing and training. 

In 2017 Ye et.al.[9] explained data mining methods based on 

both static and dynamic representations and some novel 

representations. Researchers have divided the malware 

detection process into two phases the first phase is feature 

extraction and the second phase is classification/ clustering. 

They concluded that data mining frameworks could be 

designed to detect malware with a low false-positive rate. 

In 2017 Ucci et.al. [10] outlined 7 different objectives to 

detect malware and grouped malware features according to 

their specific type. They also noticed some issues in the 

dataset. They feel that mainly the dataset used is not balanced. 

Therefore they proposed 3 characteristics for benchmark 

datasets namely labeling according to objective, balanced, and 

maintaining them over time. They also introduced the concept 

of malware analysis economics. They have identified a 

tradeoff between performance metrics and economical costs.  

In 2019 Berman et.al. [11] explained two approaches towards 

dynamic analysis; one is by analyzing the difference between 

defined points and the second by observing runtime behavior. 

They also discussed the advantages and disadvantages of both 

malware detection techniques namely, signature-based and 

behavior-based.   

In 2019 Gibert et.al. [12] compared shallow learning i.e. ANN 

and deep learning. They provide an overview of different 

methods of deep learning like RNN, CNN, etc. They also 

described Deep Learning evaluation strategies using various 

metrics. 

Many authors have done handsome surveys on malware with 

machine learning techniques but this paper aims to survey 

based on features used by various researchers along with 

machine learning techniques and highlighting advantages and 

limitations faced by them. 

In this paper, the following section contains types of malware. 

Section 3 includes features of malware detection which are 

extracted from various samples are explained in this section. 

Section 4 contains a study of machine learning and its types. 

Section 5 explains deep learning and lists the work done by 

various authors for malware classification using deep 

learning. Section 6 shows the results of the survey of various 

papers and at last Section 7 concludes the paper. 

2. MALWARE 

Malware (malicious software) is a software program that 

enters into a user's computer his permission and has intentions 

to cause damage or to steal sensitive information.  

Virus: These viruses enter the system illegally and then cause 

infections or get replicated on the system by attaching 

themselves to other executable. One of the most primitive 

forms of the virus was 'Creeper' which was an experimental 

outcome of a program written by Bob Thomas at BBN in 

1971[9]. It was not active malicious software as it didn’t harm 

any data. 'Elk cloner' was written in 1982 by Rich Skrenta 

which spread by the floppy disk and it attached itself to Apple 

II operating system [7]. 

Worms: These are types of a virus but worms can also spread 

over the internet and can replicate themselves without human 

intervention on to various machines. Unlike viruses, worms 

are self-contained and they don’t need to be a part of other 

programs to propagate themselves. The term worm was taken 

from the novel ‘The Shockwave Rider’ written by John 

Brunner in 1970. The first functional worm was created in 

1978[13]. In January 2004 the scandalous worm named 

Mydoom was used by attackers to cause severe damage. This 

worm launches DoS Attack on www.sco.com, due to which 

the website was inaccessible for several months [14]. 

Trojan: Trojan appears to be useful files but is malicious files 

that are just used as a trick to get entry into the system. There 

is a story behind the word Trojan horse, in which the Greeks 

invaded human power hidden inside a huge wooden horse 

into the independent city of Troy and won the war. 

Metaphorically, a Trojan horse is any ploy used to enter a 

system. In August 2006 Scandinavian bank Nordea's client 

started to receive emails to install antispam products which 

were a trick by cybercriminals to install Trojan named 

Haxdoor to their system. This trojan key logged the victim's 

system and send information to the cyber criminal's server 

which caused the theft of over $1million [14]. 
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Backdoor: It is a technique in which one can bypass security 

mechanisms undetectably. Software writers sometimes 

develop backdoors to facilitate software testing. Default 

passwords kept for first-time use of hardware or software is 

an example of a backdoor. In February 2005 a businessman 

from Florida lost $90,000 from his account because of his 

computer infected by a backdoor [14]. 

Rootkits: These provide attackers, higher-level access to data 

rather than authorized access, i.e. it can provide administrative 

rights of the victim to the attacker. Rootkits are designed to 

remain hidden i.e. it masks their (and/or other software) 

existence on the host PC. This achieves sustained and 

maintained privileged access, as well as hiding this access.  

Keylogger: It keeps a record of the keys pressed by the user 

or can also take screenshots and send them to the attacker thus 

stealing banking or other important information of a user.  

Banking sites provides virtual keyboards to prevent 

keylogging attack. There are many examples of key loggers 

across the world. This malicious program has caused major 

damage.  It can be used by combining with other malicious 

programs. In February 2006, 55 people were arrested by 

Brazilian police, for stealing an approximate amount of $4.7 

million from 20 clients across 6 countries[14]. 

Spyware: Generally, referred to as Potentially Unwanted 

Program (PUP). It is an unwanted program intended to steal 

Internet usage data, delicate information (such as user 

passwords or bank account information) without the user's 

knowledge. The term spyware was firstly coined in 1995 but 

got popularity in 2000[15]. 

Adware: It is a subclass of spyware. But the major difference 

is that adware doesn’t harm the computer intentionally. Its 

main purpose is to capture a user’s interest so that similar 

kinds of advertisements, emails and pop-ups can be displayed 

on the victim's system. 

R.A.T: It provides remote control access to the victim's 

system without his consent. It is like a team viewer but with 

wrong intentions.  

Ransomware: A type of malicious software in which an 

attacker encrypts all the files of the victims and asks for a 

ransom to decrypt those files. 

3. MALWARE FEATURES 

There are two phases of malware detection namely feature 

extraction and classification/clustering. Features of malware 

mean the input which can be provided to machine learning 

algorithms. These define the set of all possible concepts 

which can be modeled using machine learning. Malware 

features can be classified into two categories namely static 

and dynamic. Static features are those features that can be 

extracted without the execution of malware. Such features are 

extracted by studying binaries of malware [16]. While 

dynamic features [4] are those which are extracted after 

executing a binary file. These features are extracted through 

dynamic analysis. Classification/ clustering of malware is 

done using machine learning techniques. In this paper, only 

classification techniques are explained. This section listed 

some of the features of malware detection. 

3.1. N-Gram 

It is one of the common static features which consists of a 

consecutive sequence containing n bytes which are taken from 

hexdump (a tool that converts a binary file into corresponding 

hexadecimal portrayal) output. Authors Lin et.al.[17], Ahmadi 

et.al.[18]& Anderson et.al.[19] worked upon 1Gram, Lin 

et.al.[17], Ahmadi et.al.[18], Sexton et.al.[20] Kolter et.al.[21] 

worked upon 2 Gram, Ahmadi et.al.[18], Kolter et.al.[21] & 

Khodamoradi et.al.[22]worked upon 4 Gram, etc. 4 Gram is 

the most commonly used feature which means to take a 

combination of 4 bytes. N-Gram can be used in overlapping 

or Non-overlapping. In case of overlapping the byte used once 

can be used again in the next gram but in a non-overlapping 

byte is not used twice. An example of the overlapping and 

non-overlapping concept of N-Gram with a value of N=2 is 

shown in Table 1. 

Byte Code Overlapping Non-overlapping 

0f4b 

0e3f 

fe0f 

efef 

0f4b 0e3f 

0e3f fe0f 

fe0f efef 

0f4b 0e3f 

fe0f efef 

Table 1 Overlapping and Non-Overlapping Byte Sequence 

3.2. Opcodes 

Different machine-level operations performed by 

programmable executable (PE) are called opcodes. These 

opcodes can be obtained from the assembly code [19]. Sexton 

et. al. [20] worked upon branch instructions, count, and 

memory instruction count. Belaoued et. al.[23]used math, 

stack, logic, NOP, and other instruction counts in their 

research work. Ahmadi et. al.[18] used data to define 

instruction proportions in their research. Darabian et. al.[24]a 

used sequence of opcodes for the detection of malware. 

3.3. Strings 

Strings were firstly noticed by Schultz et.al.[25]and are 

defined as consecutive printable characters. They noticed that 

PE-format headers consist of plain text which could be used 

to extract information. Moreover, non-PE executables also 

have encoded strings that could be used along with their 

dataset. This definition of strings is more refined by Ye et. al. 

[9] which says that only "interpretable" strings which make 

some semantic sense can be used. Ito &Mimura [26] uses 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2021/210724                 Volume 8, Issue 6, November – December (2021) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       761 

     

SURVEY ARTICLE 

ASCII strings with Natural Language Processing for malware 

detection. 

3.4. Call Graph 

The call graph shows how data is exchanged between 

different functions. The call graph is a directed graph that 

depicts the relation between various procedures of a program. 

The call graph doesn’t give information on how control of 

program flows instead it provides information on calling of 

various procedures. Call graphs are employed in [27]–[30] to 

depict the relation of procedures. An example of a call graph 

is shown in Figure 1 [7]. 

void doActivity(){ 

//Activity 

doEducationalActivity(); 

} 

void doSportsActivity() { 

doEducationalActivity(); 

if(need cultural) 

doCulturalActivity(); 

} 

void doEducationalActivity() { 

doActivity(); 

if(need Sports) 

doSportsActivity(); 

} 

void doCulturalActivity() { 

//Do Cultural Activity 

} 

int main() { 

doActivity(); 

                                    } 

Figure 1: Example of a Call Graph 

3.5. Control Flow Graph 

The control flow graph is a more refined variety of call graphs 

[31]. It depicts flow within a single function. The control flow 

graph reflects how the flow of control is accomplished 

through the function. It shows all possible way outs of a flow 

of a program. Chionis et.al.[32] used control flow graph in 

their research. Figure 2 depicts an example of a control flow 

graph 2[6]. 

0 : mov  [ebp-8], 0 

1 :mov  [ebp-10], 0 

2 :mov  [ebp-12], 0 

3 :jmp  6 

4 :add  [ebp-10], eax 

5 :add  [ebp-8], 1 

6 :cmp  [ebp-12], 1 

7 :jle  4 

8 :return 

(a)                                                       (b) 

Figure 2: Control Flow Graph Example 

3.6. PE File Characteristics 

PE file is a data structure, designed by Microsoft for 

enveloping information based on Win 32 systems [33]. Even 

scrutinizing the PE header statically can yield handsome 

information [34]. Structural information is mainly present in 

the PE header. Moreover, the PE header also stores the 

information required by the loader to load the program into 

memory [7].  

Hence, the PE header contains information about size, 

selection, symbols, used compiler, and so forth. PE file header 

can be useful to detect malware at the triage phase [7]. 

Asquith [35] used some PE file characteristics like resource 

icon’s checksum, section attribute, PE header checksum, 

section names and sizes, import table location and size, and 

entry point offset in their study.  

While other researchers like Yonts[36] studied several 

symbols, a pointer to the symbol table, PE characteristics 

flags, and section count and Bai[37] carried their work on 

section count, resource’s directory table, symbols in export 

table count, and items in .reloc section count. Wadkar et.al. 

[38] used PE file characteristics to study the evolution of 

malware families over time. 

main () 

doActivity() 

doEducationalActivity() 

doSportsActivity() 

doCulturalActivity() 

mov  [ebp-8], 0 

mov  [ebp-10], 

0 

mov  [ebp-12], 0 
cmp  [ebp-12], 1 

jle  

add [ebp-8], eax 

add  [ebp-10], 1 

 

return 
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3.7. Memory Access 

A large amount of data passes through the main memory like 

a window registry key, configuration, and network activity. 

Thus, important information about malware can be extracted 

by analyzing how memory is accessed. Author Egele et.al. 

[39] used memory-based features by tracking values of the 

stack (read/write from/to) dynamically and heap in 

combination with calls to import library functions, system 

calls, and return values stored in %rax registers.  

Other authors like Kong et.al.[29]carried their research in 

memory read-write operations count and several I/O read-

write operations in association with other features of API and 

opcodes. 

3.8. CPU Register 

How CPU registers are used can also indicate valuable 

information about malware. Kong et.al.[29]excelled in their 

research using several flags changed in a register, register 

read, and write count while Egele et. al. [39] used return 

values stored in %rax registers and Ahmadi et. al. [18] used 

registers usage frequency and register value respectively. 

3.9. Raised Exceptions 

It is a common trick used by malware writers is to throw 

malware code in exception and to raise an exception in a 

program. So, to understand malware evasion techniques it’s 

better to scrutinize exceptions raised [35], [40].  

3.10. Network 

The interaction of PE with the network also reveals huge 

information about malware. Malware like a key logger steals 

a user’s personal information and sends it over the network to 

its attacker. Sometimes, attackers also send instructions to 

their malware program over the internet like in the case of 

botnets. Some malware tries to generate traffic over the 

network by floating false packets. So, a study of the network 

can reveal some information about malware. Many authors 

survey dynamic analysis to extract information about 

networks [32], [41]–[45].  Vadrevu et al., 2013 [46] used 

download domain, download history, destination IP, 

download request, and queried URL’s while [28], [41] used 

connection count and [47] worked upon Unique IP count, 

protocol type, connection count, HTTP request/response type 

count, and request-response packet size. M. Belaoued et. al. 

[23] worked on network traffic, domain names and IP 

addresses, which are used by malware to have remote access. 

3.11. Sandbox Submissions 

Sandboxes are used to execute files in an isolated 

environment to detect any malicious activity. Many 

sandboxes are available online. Malware writers take leverage 

of sandbox and execute their malware code on this sandbox 

first to test the effectiveness of their code and to check if their 

code can evade the most commonly used antivirus[28], [41]. 

So, studying these sandbox submissions can provide 

important information about malware.  

3.12. API Calls 

Application Programming Interface (API) acts as a mediator 

between software and operating system. Some tasks can be 

directly performed by the operating system only like writing a 

file to the disk and the system library contains a library of 

such functions. When a program invokes a call to the system 

library is referred to as an API call [7]. For example, when 

there is a need to copy a file, CopyFileW API will be called. 

API calls are a very important feature for malware detection 

and are used by many researchers. If we can preserve a 

sequence of API calls, it is called an API trace [48]. This API 

trace can detect high-level behavior of malware [49]–[51] 

such as “walk through directories” or “copies itself to disk”. 

Jinrong Bai et.al. [37] used referred API calls and referred 

DDLs counts along with PE file characteristics in their 

research. Bojan Kolosnjaji et.al. [52] used Kernel API calls in 

their research. They used a system call sequence and build a 

neural network by using recurrent and convolution layers. 

Many other authors like [30], [35], [53], [54];[23], [55] also 

worked on system call sequences while other authors like 

[27], [42] used system call dependencies. Table 2 represents 

the summary of features extracted in malware detection. 

4. MACHINE LEARNING 

The interaction of PE with the network also reveals huge 

information about malware. Malware like a key logger steals 

a user’s personal information and sends it over the network to 

its attacker. Sometimes, attackers also send instructions to 

their malware program Arthur Samuel in 1959 [75] in his 

paper, firstly coined the term Machine Learning, in which he 

builds a game of checkers on computers. The basic motive 

behind machine learning is to train a computer how to act like 

humans or animals in some situations. In the case of machine 

learning, there is no fixed equation, rather a computer learns 

from previous situations. For machine learning, a large 

amount of data is fed to the computer and it co-relates input 

and output from this data and works further based on this 

data. It includes two main modes- the first is training and the 

second is testing. In training mode, a large set of data is 

provided to the computer, and the computer analyzes this data 

and builds its equation of model of this data. In the testing 

mode, a small subset of the sample is used to test what the 

computer has learned in the training phase. The accuracy of 

results increases with the increment of training data. Machine 

learning algorithms don’t directly work on the provided data. 

It will first extract features from the provided data. These 

features act as input to machine learning classifiers [6]. For 

example, if we have to classify different kinds of animals its 

features may include size, color, presence of trunk, size of the 
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neck, etc. An elephant would have features “size = big, color= 

grey, presence of trunk = yes, size of neck= small”. A giraffe 

would have features “size= big, color =yellow, brown, 

presence of trunk= no, size of neck= long”.  If we talk about 

machine learning in the case of malware, it is a very powerful 

tool. Using machine learning we can detect malware and can 

also label the types of malware, i.e. if it is a virus, worm, 

rootkit, or any other kind. The features used for the detection 

of malware can be call graphs, API calls, strings, etc. 

Author and Year Static Dynamic 

M.G. Schultz et al. 2001 [56] Byte Sequence, Strings X 

J. Zico Kolter et al. 2006[57] n gram X 

F. Ahmed et al. 2009[58] x 
Arguments & Sequences 

Extracted from API 

D. H. Chau et al. 2010[59] File System  X 

Firdausi et al.  2010[60] File System 
Win Reg, Sys Call 

Monitoring 

B. Anderson et al.  2011[61] Byte Sequence API calls 

Santos et al. 2011[62] Byte Sequence X 

B. Anderson et al. 2012[63] 
Binary File, Disassembled 

Binary, Control Flow Graph 

Instruction trace system call 

trace 

J. Bai et al. 2014[64] PE file characteristic   X 

K. Bojan et al. 2016[65] x Kernel API calls 

M. Ehsan et al. 2017[66] x 
duration, network features, 

API frequencies 

H. William et al. 2017[67] x Window API calls 

M. Asha Jerlin et. al. 2018[68] 
 

API call sequences 

N. Maleki et. al. 2019[69] PE header and Section header 
 

Wadkar et al., 2020[70] PE file characteristic   X 

Jagsir Singh et. al. 2020[71] X API calls 

Ajay Kumar et.al. 2020 [72] PE file X 

JeyaprakashHemalatha et.al. 

2021[73] 
Binary Image X 

 Omar N. Elayan et.al. 2021[74] X API calls + Permissions 

Table 2 Summary of Feature Extracted in Malware Detection 

4.1. Naïve Bayes Classification 

Naïve Bayes classifiers are a family of the classifier which 

work on probability and are based on the Bayes theorem[76]. 

Naïve Bayes classifiers take an assumption that features of 

every set are independent of one and another, say values of 

features V1, V2, V3, …………… Vn is conditionally 

independent of a given class C. Even if features have a 

dependency on each other it is said to be a dependency in the 

classification of something. That is why it is called Naïve. To 

measure the probability (P) Naïve Bayes classifier works 

according to equation 1. 

𝑃(𝑦|𝑥1, … . , 𝑥𝑛) =
𝑃(𝑥1|𝑦)𝑃(𝑥2|𝑦).  .  .  𝑃(𝑥𝑛|𝑦)𝑃(𝑦)

𝑃(𝑥1)𝑃(𝑥2)  .  .   .  𝑃(𝑥𝑛)
       (1) 

Where y is class variable and x1, x2…,xn is the feature vector of 

size n. 

4.2. k-Nearest Neighbor (k-NN) 

The basic fundamental behind this algorithm is that two 

objects which belong to the same class have some 

commonalities which can be detected based on some distance 

metric[77]. It maps the unknown class to the known class by 

simply calculating the Euclidean, Manhattan, Minkowski, or 

Hamming distance among its k nearest neighbors, and then 
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voting for maximum class. k here represents the number of 

nearest neighbors which is the main factor and its value is 

generally small odd numbers like 1, 3, 5, or 7. Consider one 

has to find a class for point A1. To do so firstly find k nearest 

neighbors of A1, then voting is done for class. Then the class 

having maximum votes will be added with point A1. The 

main advantage of using k-NN is its simplicity and easiness to 

use and understanding but it becomes significantly slow when 

there is a large number of entries. 

4.3. SVM 

SVM [78] is a binary classifier that finds out a hyperplane to 

make a clear separation between two classes with the largest 

margin. SVM is mainly classified into two types: Linear SVM 

and polynomial SVM. In the case of linear SVM, it is possible 

to distinguish between classes with a linear hyperplane. But 

sometimes the dataset is dispersed in such a manner that it 

becomes difficult to distinguish between classes with a linear 

hyperplane then the kernel method is used for separation of 

classes. In this method, a polynomial function is used for the 

separation of classes. It is known as polynomial SVM. 

4.4. Decision Tree 

This classifier is represented like a tree [79], its internal nodes 

represent some conditions and leaf nodes represent the label 

of class. This tree-like structure helps to make decisions using 

the divide and conquer technique. While going from root to 

leaf nodes the feature values are captured for an unknown 

variable. Consider an unknown variable A1 whose class has 

to find then starting from the root node, one has to choose the 

path according to features of A1 and move down in a tree 

until a leaf node is encountered and on reaching leaf node 

label of class (which is contained by that particular leaf node) 

is given to A1. 

4.5. Random Forest 

Random Forest [64]  has become popular recently on different 

problems of classifications and is an upgraded version of 

Decision Tree. As the name suggests random forest comprises 

numerous trees that work in a group. There are two types of 

randomness, selection of input variable and bootstrap 

sampling are used to collaborate with different trees in the 

forest. For the process of classification in Random forest, a 

class with maximum votes out of all trees is chosen. Having 

different trees using randomness provides better prediction 

rather than an individual tree. 

4.6. Gradient Boosting 

Gradient Boosting is somewhat similar to Random forest as 

they both focus to improve the weak classifier of the Decision 

Tree. Unlike Random Forest, Gradient Boosting doesn’t use 

multiple decision trees but uses regression to estimate the 

relationship between independent and dependent variables. 

4.7. XGBoost:  

XG Boost algorithm is proposed by Tianqi Chen[81]Each 

base studying set of rules learns from its preceding base 

learner and decreases its error. Eventually, the very last 

learner shows minimal bias and variance in the course of the 

training process. In general, the XGBoostset of rules 

combines numerous base learners (decision trees) to the 

construction of sturdy aggregated models. To be expecting the 

very last output, the XGBoostset of rules combines the 

weights of the leaves of all trees T. 

Table 3 represents the summary of algorithms and their 

advantages and limitations used in process of detection of 

malware. 

Author Data Set Algorithm Accuracy Advantage Limitation 

M.G. Schultz et. 

al. 2001 [56] 

3265 - 

Malware, 1001 

- Benign 

Naïve Bayes 97.11 

1. Tested for new malicious 

executables 

1. High false positive  

2. Needs to do work in 

terms of time and accuracy 

3. Used non-over-lapping 

byte sequence.  

4. The collection is mainly 

of viruses only. 

Multi Naïve 

Bayes 
96.88 

J. Zico Kolter 

et. al. 2006[57] 

1651 - 

Malware, 1971 

- Benign 

Naïve Bayes -- 

1. Used overlapping byte 

sequence.  

2. ROC curves are shown. 

1. Dataset is stored on a 

server, when there is a 

change in training data 

evaluation of a variety of 

methods becomes critical 

for a server 

 

 

Multi Naïve 

Bayes 
-- 
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F. Ahmed et. al. 

2009[58] 

316 - Malware, 

100 - Benign 

J48 -- 
1. Used spatial-temporal 

information available in API 

calls which helps to provide 

high accuracy and also helps 

to detect from some of the 

evasion techniques 

Processing and memory 

overheads. 
NB -- 

RIPPER -- 

Author Data Set Algorithm Accuracy Advantage Limitation 

D. H. Chau et. 

al. 2010[59] 

903 Million 

Files 

Graph 

Mining 
-- 

1. Used a large dataset hence 

providing good results. 2. 

Results improved on iteration 

1. All files are treated with 

of same weight which is not 

in a real-time situation  

2. Execution time is high 

which can be reduced using 

parallelization techniques 

Firdausi et al.  

2010[60] 

220 - Malware, 

250 - Benign 

KNN 92.9 

Feature selection and feature 

reduction are used which 

used training time. 

It reduced the performance 

of the system 

Naïve Bayes 92.3 

J48 Dec tree 96.8 

SVM 94.9 

MLP 94.2 

. Anderson et al.  

2011[61] 

1615 - 

Malware, 615 - 

Benign 

Similarity 

Graph 
-- 

1. Computational Complexity 

would restrictive 

progressively setting. 

2. Used kernel learning 

framework which provides a 

logical way to measure 

different aspects of program 

trace 

1. Ethers are not completely 

invisible 

2. String setting can be 

easily changed so that can't 

be detected 

3 Slow for analysis 

Santos et al. 

2011[62] 

1000 - 

Malware, 1000 

- Benign 

Learning 

with local & 

Global 

Consistency 

(LLGC) 

-- Reduce Req labels 
Less Accuracy than 

supervised learning 

B. Anderson et 

al. 2012[63] 

780 - Malware, 

776 - Benign 

Multiple 

Kernel-

based 

learning 

98.07 

1. Combines both static & 

dynamic approaches.  

2. A future data source can 

be easily added 

Intel pin program is used 

which is not as transparent 

tracing tool like ether 

framework 

J. Bai et al. 

2014[64] 

10421 - 

Malware, 8592 

- Benign 

Decision 

Tree 
-- 

1. Better Accuracy  

2. Timely Detection 

PE header of malware can 

be forged by malware 

writers to evade detection Random 

Forest 
-- 

K. Bojan et al. 

2016[65] 

4753 - 

Malware 

Tensor Flow 

Supervised 

Learning 

-- 

1. Better results than hidden 

Markov and SVM 

2. Takes benefits of two 

types of layering of ANN 

After insertion of noise 

malware can evade 

detectors that are not 

considered by authors. 
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M. Ehsan et al. 

2017[66] 

23146 - 

Malware 

Supervised 

ANN 
-- 

Classification reduces the 

effort of analysis 
Computationally expensive 

H. William et 

al. 2017[67] 

22500 -

Malware, 

22500 - 

Benign 

 

 

Deep 

Learning 
93.68 

Worked on real industrial 

application 

Sparsity constraints can be 

imposed on AutoEncoder 

 

CG_SVM 88.24 

CG_ANN 87.88 

CG_NB 77.94 

CG_DT 

 

 

87.42 

 

Author Data Set Algorithm Accuracy Advantage Limitation 

M. Asha Jerlin 

et. al. 2018[68] 
- 

Multidimens

ional Naïve 

Bayes 

Classificatio

n (MDNBS) 

-- 

High detection rate, and low 

time and computational 

complexity. 

They used a normalized 

dataset that is not available 

in real-time. 

N. Maleki et.al. 

2019[69] 

761 - Malware, 

210 - Benign 

DT classifier 98.26 

The low detection error rate 

PE header of malware can 

be forged by malware 

writers to evade detection 

NN 97.92 

ID3 95.83 

NB 95.14 

SVM 95.14 

 

Wadkar et al., 

2020[70] 

26245 SVM - 
Detect evolutionary changes 

in malware families 

Malware obfuscation has a 

great impact on static 

feature 

Jagsir Singh et. 

al. 2020 [71] 

8634 - 

Malware, 

6434- Benign 

kNN 98.4 

High Accuracy - 

Decision Tree 98.14 

SVM 98.14 

Multi Naive 

Bayes 
85.4 

Random 

Forest 
99.1 

Ajay Kumar 

et.al. 2020 [72] 

Brazilian 

malware 

dataset with 

1,21,000 rows 

Random 

Forest 
99.7 

High accuracy - 
Decision Tree 99.7 

Gradient 

Boost 
98.48 

SVM 96.9 
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Logistic 

Regression 
96.8 

XGBoost 96.7 

AdaBoost 94.3 

JeyaprakashHe

malatha et.al. 

2021[73] 

MalImg - 

7268(training) 

BIG 2015- 

8338(training) 

MaleVis-

9958(training) 

Malicia- 

testing 

k-NN 76.75 

- 
1. MalImg and BIG 2015 

are imbalanced datasets 

LR 56.33 

SVM 80.33 

Naïve Bayes 46.93 

Decision Tree 77.77 

Random 

Forest 
82.10 

Adaboost 75.31 

Omar N. Elayan 

et.al. 2021[74] 

347 - Benign 

365 - Malware 

SVM 96.2 

  

k-NN 97.2 

Decision Tree 96.6 

Random 

Forest 
97.8 

Naive Bayes 
93.9 

 

Table 3 Summary of Algorithms and Their Advantages and Limitations Used in the Detection of Malware 

5. NEURAL NETWORK 

3.5. Artificial Neural Network (ANN) 

It is inspired by the working of the human brain along with 

statistics and applied math. There are large numbers of brain 

cells in the human brain which are interlinked with each other. 

These are called neurons. These neurons are used for 

transferring information in the form of signals. Human sense 

organs receive a lot of information and the neuron web 

interprets it to the sensory part of the brain. Similarly, ANN 

works in the form of artificial neurons. Each neuron consists 

of a non-linear function.  

The neurons in ANN are organized in the form of layers. 

ANN consists of 3 types of layers namely input layer, hidden 

layer, and output layer. Data transform from the input layer to 

the output layer via the hidden layer. ANN can be known as 

shallow learning. When there are multiple hidden layers it 

becomes deep learning [12]. 

3.6. Deep Learning 

Deep Learning is a subset of machine learning. It can learn 

from unsupervised data which is not structured or even not 

labeled. It works by imitating the human brain, processes data 

and creating patterns by self-understanding and making the 

decision on basis of it. Deep Learning consists of 

interconnected neurons. The neural network's structure is 

composed of connected layers. Neural Network consists of 

many layers like an input layer, an output layer, and a hidden 

layer. A hidden layer is any layer that is in between the input 

layer and output layer. The network consists of more than 2 

layers is represented as deep. The signal strength provided as 

input to the next layer depends upon bias, weight, and 

activation function [82]. The complexity of the network 

increases with the increase in the number of layers. 

In the case of machine learning for classification purposes 

there need to extract features from images, while in deep 

learning it is capable to extract features by itself. Some 

practical applications of deep learning are in the field of 

natural language processing, self-driving cars, virtual 

assistants, etc. Deep learning used by various authors on 

malware datasets is shown in Table 4 and accuracies achieved 

by various authors using deep learning are shown in Figure 3. 
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Author and year 
Paper 

cited 
Feature Dataset 

Number of 

Malware 

samples 

Number of 

Malware 

Classes 

Method Accuracy 

Aziz Makandar 

et.al. 2015 [83] 
58 

Malware 

Binary 

Mahenhur 

dataset 
3131 24 ANN 96.35 %. 

Kyoung Soo Han 

et.al. 2015 [84] 
115 

Visualized 

images and 

entropy 

graphs 

- 1,000 50 - 97.9% 

Espoir K. 

Kabangaet.al. 

2017[85] 

35 

Visualizing 

Malware as 

Image 

MalIMG 9458 25 CNN 98% 

Mahmoud Kalash 

et.al. 2018 [86] 
111 

Visualizing 

Malware as 

Image 

MalIMG 9339 25 CNN 98.52% 

HiromuYakuraet.al

. 2018 [87] 
41 

To extract 

important 

byte 

sequences to 

reduce human 

effort 

- 147803 542 CNN 50.97% 

Matilda Rhode 

et.al. 2018[88] 
128 

Snap sort of 

behavioral 

data 

- 

2345 benign 

2286 

malicious 

samples 

2 RNN 96.01% 

Author and year 
Paper 

cited 
Feature Dataset 

Number of 

Malware 

samples 

Number of 

Malware 

Classes 

Method Accuracy 

Jin-Young Kim 

et.al. 2018 [89] 
90 

Malware 

Images 
- 10800 9 

transferred 

deep-

convolution 

generative 

adversarial 

network 

95.74% 

Daniel Gibertet.al.  

2019 [12] 
37 

Visualizing 

Malware as 

Image 

MalIMG 9458 25 CNN 98.48% 

Microsoft 

Malware 

Dataset 

10868 9 CNN 97.49% 

Danish Vasan et.al. 

2020 [90] 
50 

Image-based 

malware 
MalIMG 9435 25 CNN 98.82% 

Jeyaprakash 

Hemalatha et.al. 

2021[73] 

15 
Binary 

Images 

MalImg 7268(training) 

2 

CNN 71.42 

VGG16 77.66 

BIG 2015 8338(training) 
VGG19 82.92 

Inception-v3 83.7 

MaleVis 9958(training) 
Resnet-50 83.52 

Densenet-121 83.02 

Malicia Testing 
Xception 83.02 

DenseNet based 89.48 
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proposed 

Omar N. Elayan 

et.al. 2021[74] 
- 

API calls 

+Permissions 
- 

347-Benign 

365 - Malware 
2 GRU of RNN 99.2 

Abdul basit Darem 

2021[91] 
- 

Malware 

binary 

Images 

BIG 2015 10868 9 

XGBoost+Opco

de 
92.67 

XGBoost+Opco

de+Segment 
94.2 

XGBoost+Opco

de+Segment+S

econdary 

features 

96.8 

CNN+Malware 

Images 
98 

Ensemble 99.12 

Table 4 List of Work Done by Various Authors for Malware Classification using Deep Learning 

 

Figure 3 Malware Classification Accuracy in Surveyed Paper Using Deep Learning 

5.2.1. Recurrent Neural Network (RNN) 

RNN is a class of neural networks in which a directed graph 

along with a temporal sequence is used to make a connection 

between nodes. It can capture information about the sequence 

present in data [12]. In the case of RNN, it has some memory 

i.e. it remembers the past and its decisions are influenced by 

what is learned in past. So, we can say it is a feed backward 

network. Feed forward networks can only remember what to 

do but feed backward can also remember what was done in 

past. 

5.2.2. Convolution Neural Network (CNN) 

CNN is feeding forward neural networks. It consists of a 

convolution layer, pooling layer and fully connected layer. 

The convolution layer is the building block of CNN. This 

layer is made up of filters which are useful to detect a specific 

pattern in an image. Multiple filters are applied in parallel on 

the whole image symmetrically. Each filter detects a different 

type of pattern in an image. Strides are also used along with 

filters which define the movement of several pixel units of a 
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filter [92]. Activation functions are also used in convolution 

layers like relu, sigmoid, softmax, etc.  

Pooling layers are used to reduce the dimensions of an image 

so that complexity of calculation can be reduced. The window 

size used for the pooling layer is less than the size of the filter. 

Generally, the pooling layer is used of 2 x 2 sizes to minimize 

the reduction of data. 3 types of pooling layers are used 

namely max-pooling, min-pooling and avg-pooling. In the 

case of min-pooling minimum value is chosen out of these 

partitions. Similarly in max-pooling and avg-pooling 

maximum and average values are chosen from the partition. A 

fully connected layer gets input from each neuron of the 

previous layer. These layers are generally followed by a 

dropout layer to avoid over-fitting the model. 

6. SURVEY RESULTS 

The mushroom growth of malware has raised challenges for 

its detection. A large number of new malware is reported 

daily and lots of automated toolkits for the development of 

malware are available like Zesus [93]. These toolkits use 

methods to evade malware at an early stage which has 

increased complexity for various researchers and antivirus 

companies. We have studied some papers in which 

researchers have worked to detect malware using various 

approaches. The numbers of malware samples used by 

various researchers are shown in Figure 4. In Figure 5 

algorithms used by various researchers are listed on the x-axis 

and the percentage accuracy achieved by it is on the y-axis. 

 

Figure 4 Number of Dataset Samples in Surveyed Papers 
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6.1. 

Comparative Analysis of Machine Learning and Deep     

Learning 

There is a significant contribution of machine and deep 

learning algorithms for malware detection. These algorithms 

provide great aid to increase the accuracy of malware 

detection. In 2001 M.G. Schultz [56] was the first to use 

machine learning in terms of malware detection. He changed 

the whole way of detection of malware. Various machine 

learning algorithms like Naïve Bayes, Multi Naïve Bayes, 

SVM, Decision Tree, Random Forest are used by authors. 

Some authors used machine learning as well as deep learning 

algorithms on their dataset. H.William [67] used both 

machine and deep learning algorithms and got maximum 

accuracy of 93.68% on deep learning while the highest 

accuracy on machine learning. 

Algorithms are achieved by him is 88.24% using CG_SVM. 

Similarly, Jeyaprakash Hemalatha et.al. 2021[73] and Omar 

N. Elayan et.al. 2021[74] also achieved maximum accuracy 

using deep learning as 89.48% and 99.2% respectively. While 

they received the highest accuracy using machine learning are 

82.10% and 97.8% using Random Forest respectively. Two 

observations are made while doing a comparative analysis of 

machine and deep learning algorithms, firstly while working 

on the same dataset deep learning is always providing better 

results than machine learning. Secondly, no single machine 

learning algorithm can provide the best result on all datasets. 

 
Figure 5 Malware Detection Accuracy in Surveyed Papers 
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7. CONCLUSION 

There is an exponential growth of malware with each passing 

day. Malware writers are also writing code to evade the 

signatures used by various antivirus companies. This has 

become a great threat and providing security to the 

information has become challenging for cyber professionals. 

Moreover, many tools are available in the market which can 

write malware code from scratch and can also obfuscate the 

malware code to prevent it from being detected at an early 

stage. Due to this mushroom growth of malware, efficient and 

intelligent algorithms for malware detection are required 

which can detect malware in less time to minimize the 

damage. The process of malware detection consists of two 

phases, the first phase is the extraction of features and the 

other phase is classification/clustering.  Accuracy of 

classification majorly relies on the features so the feature 

extraction phase has become important. Malware features can 

be of two types: static well as dynamic. Static features are 

extracted from binary itself without its execution while 

dynamic features are extracted after the execution of the 

sample in an isolated environment.  

In this paper, a survey is conferred on malware features and 

classification techniques using machine learning and deep 

learning. Firstly, the term malware and its types are explained. 

Then malware features like n-gram, opcodes, call graph, 

control flow graph, PE file characteristics, Memory Access, 

CPU registers, Raised Exceptions, Network, Sandbox 

Submissions, and API calls are explained. A summary is also 

provided for malware features used by various authors. 

Furthermore, machine learning techniques like Naive Bayes, 

kNN, 

VM, Decision Tree, and Random Forest are explained for the 

classification of malware. Machine learning classifiers used 

by authors along with the advantages and disadvantages faced 

by them are also summarized.   

Then deep learning is explained and a list of the work done by 

various authors for malware classification using deep learning 

is presented. Afterward survey results are explained which 

consists of the number of dataset samples used in surveyed 

papers and malware detection accuracy in surveyed papers. 

As per observations made in this paper, there is no single 

classifier that can always provide the best result in all kinds of 

features. Each type of malware detection, namely static and 

dynamic, has its advantages and disadvantages. Extraction of 

static features is fast and can detect malware at an early stage 

while these cannot detect zero-day-malware while dynamic 

features are more reliable to detect this zero-day-malware. 

However, to enhance the performance of malware 

classification abundant number of samples of malware as well 

as benign are required for training. 
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