
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 702

RESEARCH ARTICLE

Optimization of Smart Mobile Device Work Time

Using an Optimal Decision Tree Classifier and Data

Caching Technique in on Premise Network

Sridhar S K

Department of Computer Science and Engineering, Ballari Institute of Technology and Management, Ballari,

Karnataka, India

sridhar@bitm.edu.in

J. Amutharaj

Department of Information Science and Engineering, RajaRajeswari College of Engineering, Bengaluru, Karnataka,

India

amutharajj@yahoo.com

Received: 12 September 2021 / Revised: 05 October 2021 / Accepted: 26 October 2021 / Published: 30 December 2021

Abstract – Today, Most smart mobile devices are facilitated with

advanced processing hardware and short-range data

communication systems by which they are practically capable to

provide effective execution services to the neighbor mobile device

client request and/or receive services on a need basis within the

local area network. Therefore, to relish the powerful capability

of these smart mobile devices in the private campus network, we

propose an intelligent composite offload decision algorithm

(ICODA) framework that attempts to connect several smart

mobile devices in wireless local area network and make them

apply intelligence before servicing each other request preferably

without the internet. The significance of the proposed

framework is that it has a mechanism to make a data offloading

decision using an optimal decision tree classifier model and also

a mechanism to avoid data offloading operation using the data

cache neural networks model. The experimental results obtained

are obvious to show the minimal client system battery utilization

and hence an optimized work time for a smart mobile client

device that participates in the ICODA framework.

Index Terms – Private Network, Client-Side Local Cache, Device

Status Report Generation, Data Offload Decision, Server Side

Global Cache, Average Battery Energy and Task Run Time

Measure, Optimized Work Time.

1. INTRODUCTION

The brisk advancement of data communication and machine

learning solutions in smart mobile devices has facilitated the

way to discover the research knowledge gaps in the on

premise computing framework. To optimize the work time

and/or battery life consumption, the computational tasks that

arise from mobile devices may be executed locally or

offloaded to neighboring devices [1]. The data caching

mechanism make use of deep learning to predict popular

cache data inclusion accurately [2]. The productive artificial

intelligence solution with past experiences, powerful models,

and an elegant learning ability can robotise the mobile client

data offload decision making capability in the network [3]. To

overcome the problems of high latency, more energy

consumption, high bandwidth, and lack of network

connectivity infrastructures, it is sensible to perform local

computations on the mobile devices alone [4]. The local

mobile devices can release the weight of the workload and

reduce the computation costs in local task execution by

maintaining a coordinated relationship between mobile

devices and servers in offloading frameworks [5]. If

offloading frameworks are a well-planned design then the task

offloading will optimize the mobile device's computational

efficiency with reduced latency and less energy consumption

[6]. The combination of optimized, unsupervised and deep

machine learning solutions are used to cache data at fog

computation model act as a booster to data access in quick

time [7]. Computational intensive applications can receive

major benefits from data offloading mechanisms than the

data-intensive applications which need to spend more time

solely on data communication rather computation [8]. “The

nearby mobile devices can efficiently be utilized as a crowd-

powered resource cloud to complement the remote clouds.

The issues related node heterogeneity, unknown worker

capability, and dynamism are identified as essential

challenges to be addressed when scheduling work among

nearby mobile devices” [9]. The proposed intelligent

composite offload decision algorithm (ICODA) framework is

specially designed for the smart mobile devices attached to a

wireless local area network (WLAN) to address their work

time problem. The main objectives of real-time

implementation of ICODA framework are to create an on

mailto:sridhar@bitm.edu.in
mailto:amutharajj@yahoo.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 703

RESEARCH ARTICLE

premise WLAN with the finite number of mobile devices as

depicted in Figure 1, develop an intelligent data caching

mechanism at both client and centralized server end, and an

optimal supervised decision tree classification approach to

make the appropriate data offload decision and hence perform

remote execution with direct or indirect result transfers based

on idle neighbor mobile device server selection and its current

wireless network coverage information.

Figure 1 On-Premise Computing Model in ICODA

Framework

2. RELATED WORK

A detailed literature review of several different approaches

identified for Mobile Data Offloading strategies based on

Machine Learning, Task scheduling, Congestion awareness,

Server Specification, User Mobility, Mobile Client Energy

Estimation, Communication Path Selection, Cache

Management, and Application workload structure has been

presented in Table 1. The JAY model can performs

computation on local device network based on runtime system

profiler information with fast and privileged access to raw

data [1]. The OREGANO model performs computation in

batches and data streams on private mobile network where the

data reside thereby reducing the data communication

overhead associated with cloud offload computing [4]. The

compute intensive files can gain more benefits out of data

offloading techniques compared to data intensive high size

files [8].

The mobile device heterogeneity, unknown capability and run

time computation are the challenges with data offloading

techniques in private local mobile device networks [9]. A

proficient cache enhancement method is used to store more

popular results in cache server to optimize offloading

operation. As the task run time length increases, more

important processed information are cached to keep them in

tact in the storage server. So, the users intend to move the data

to the server to reduce the run time latency. On simulation it

is observed that “it reduces execution delay up to 42:83% and

33:28% for single-user femto-cloud and single-user mobile

edge computing, respectively. Also for multi-user OOCS can

further reduce 11:71% delay compared to single-user OOCS

through user’s cooperation” [10].

The automated selection of off-loadable code using @offload

annotations, divides the prime task into off-loadable and non-

off-loadable components. It is the application developer with

expertise, who inserts the annotations for selected methods

that can preferably get benefited by data offloading

mechanism. The simulation resulted in less run time and

battery consumption value [11]. An experiment has been

conducted based on file size with different wireless mobile

networks using MECCA model. Different task size and

different network interfaces are made part of implementation

to measure energy consumption and computation time and

then perform the required comparative analysis. “The results

obtained have revealed the cloud potential in the reduction of

power consumption by 61% to 90% for Wi-Fi and 4G

respectively” [12].

The energy-oriented task scheduling and weight assignment

scheme uses energy status and local computing power to

guarantee low residual energy mobile client devices to get

scheduled first for computation which leads more user

satisfaction in network [13]. The architecture of mobile edge

cloud computing has been designed as a computation offload

strategy for mobile devices. It incorporates a deep learning

solution to predict task size, required CPU cycles and total

transfer delay to make appropriate data offload decision and a

computation task migration algorithm for edge cloud on

failures. It divides an ongoing task into several small tasks

and each small task is executed on a node [14]. The adaptive

task allocation approach uses energy consumption estimator

based on power profiles that can increase the execution

performance during data offload operation.

The experiments are conducted for local device, Wi-Fi and

3G transmissions using machine solution for transfer of

source code [15]. The Adaptive job allocation scheduler

(AJAS) allocates jobs to slave nodes using on the go

computing resources and current battery status. The AJAS job

processing time is relatively faster than dynamic, static and

random based job allocation methods [16]. The computation

offloading approach constitutes of a Deep Belief Network

(DBN) and a logistic regression layer. The typical binary

RBM is changed to a Gaussian–Bernoulli RBM Learning

technique. It learns from the request and response record of

nodes in local network and then the response time of

subsequent requests are predicted [17]. The necessity of an

intelligent offloading framework for work time optimization

is identified as a research gap.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 704

RESEARCH ARTICLE

Table 1 Literature Review on Different Offloading Strategies

3. THE PROPOSED ICODA FRAMEWORK

The proposed ICODA framework consists of 4 major

components as shown in Figure 2.

3.1. Client-Side Local Cache (CSLC) Component

The working of CSLC begins with the selection of processer

bound workload on a mobile client device. It checks the

existence of the respective workload transaction history in the

local cache. If the local cache entry is found, then the

corresponding output file is immediately made available to a

client device. Otherwise, it activates the client device status

report generation component. The local cache area contains 8

attributes as shown in Table 2, where the first 6 attributes are

crucial to evaluate the target variable 'X-factor' value. The last

attribute is a corresponding pointer to an output file location.

Ref.

No.
Offload Decision Criteria

Methodology /

Algorithm Used

Limitation

/ Gap Identified

[1]
Based on local applications and system

profiler

JAY- Runtime system profile

generation task scheduling algorithm

A Configurable cloud.

No data caching.

Excess profiled data

communication.

[4]

Based on data location, the computations

are performed on the network where the

data reside.

Data-centric mobile computing aware

processing of tasks generated by co-

located mobile devices (OREGANO

model).

No data caching.

Device battery and CPU

power are not considered for

load balancing operation.

[10]
Most important computation results are

stored in the cache server.

Optimal Offload with Cache

Enhancement Scheme(OOCS)

Significant reduction. Just

Simulated.

[11]
Based on “@offload” annotation in code

by developers.

User Level Online Offloading

Framework.

User Mobility, Multi-User &

Server not considered.

[12]
Based on different task size input to 3G,

4G & Wi-Fi network interfaces.
MECCA Rule-based approach Mobile Client-oriented.

[13]
Low residual Energy mobile clients are

preferred first.

Energy and priority task-oriented

scheduling scheme.

Local energy and computation

status-oriented

[14]

The necessary CPU cycles, maximum

uplink, and data communication time are

computed with proper workload size

prediction.

Deep Learning solution

Sub Task Migration Algorithm.

No Content Caching., User

Mobility

[15]
Adaptable Task Allocation.

Energy consumption estimator.

Decision Tree.

K-Neural Networks.

Power profiler application

programming interface.

Regression, 4G/5G.

[16]
Based on Mobile device battery level

Master slave concept

Dynamic computer resources

allocation.

More focus on job

rescheduling.

Just Simulated.

[17]

Based on request & response record of

nodes, It predicts response time of

subsequent request.

Deep Belief Network with Regression

Layer.

Just Simulated. No Real-world

scenario.

[18]
Local Mobile Cloud Energy Sharing

Effect
ColloboRoid Architecture

Applies only to Mobiles in

Same Access Point.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 705

RESEARCH ARTICLE

Figure 2 Proposed ICODA Framework

Table 2 Client-Side Local Cache Attributes

3.1.1. Local Cache Replacement Policy

The cache data replacement policy relies on File size,

Offloaded history, File selection count, Remote and Local run

time attributes to compute X-factor value as shown in Eq. (1).

Based on this X-factor value, a ‘victim’ row of data

replacement is identified as shown in Table 3. The cache data

replacement policy uses the X-factor value as major criteria to

identify victim.

X − factor =
FS

(FSC ×[(2 ×RRT)+(LRT)]
 (1)

In Eq. (1), FS, FSC, RRT, and LRT denote File size, File

selection count, Remote run time, and Local run time

File

Name

File

Size

(Bytes)

Previously

Offloaded?

File

Selection

count

Remote Run

Time

(Seconds)

Local Run Time

(Seconds)

X-factor Pointer to

Output File

P2.py 512 NO 22 0.0 16.49 1.41 Ptr1

P4.py 586 NO 5 0.0 20.34 5.76 Ptr2

P8.py 610 YES 14 26.28 0.0 0.82 Ptr3

L.py 827 NO 8 0.0 33.05 3.12 Ptr4

H.py 1024 YES 10 40.66 0.0 2.51 Ptr5

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 706

RESEARCH ARTICLE

respectively. The 'Victim' indicates the file location to be

replaced with a new subsequent popular file data with high

run time and low X-factor.

Larger the ‘X-factor' value, the corresponding file get to be a

victim of data replacement. If there is a tie between two rows

then the locally executed file gets replaced with new data. The

'Retain' value indicates that there is no replacement currently

for the row in a cache. This cache area gets more populated

preferably with the source files that are remotely executed

with high run time measures. The design flow of client side

local cache search and replacement policy are presented in

algorithm 1 and algorithm 2.

Table 3 Local Cache Data Replacement Policy Based on X-Factor

Algorithm: Client-side-Local-cache-search

Input: Workload name, Workload size.

Output: Display related output file

BEGIN

 Check local cache area for metadata match of input

workload (W).

 If workload entry matches with entry in Local cache:

 Then

 Display corresponding output file.

 Exit

 If No workload entry matches in the Table:

 Then

 Invoke Report Generation component (CDSRG).

 Receive output file with run time measure.

 Display output file.

 Invoke Local-cache-insert algorithm.

END

Algorithm 1: Client-Side-Local-Cache-Search

Algorithm: Local-cache-insert

Input: Workload name, Workload size, LRT/RRT.

Output: Transaction Insertion

BEGIN

 If local cache space == “Available”:

 Then

 Increment FSC by 1 for the workload (W)

 Compute X-factor value.

 Add transaction to local cache table.

 Exit

 If local cache space ==”Unavailable”:

 Then

 Apply cache replacement policy.

 Find cache data entry with high X-factor.

 Replace it with new transaction data.

END

Algorithm 2 Local-Cache-Insert

3.2. Client Device Status Report Generation (CDSRG)

Component

The CDSRG component collects seven device features from

smart mobile client device profiled resource status data such

as File size, current battery level, CPU core, CPU cycles

utilization percentage, physical memory availability, physical

hard disk availability, and Wi-Fi Signal strength to form an

input report to submit to data offload decision component.

The workflow of CDSRG component is presented in

algorithm 3.

Algorithm: Client-device-status-report-generation

File

Name

File Size

(Bytes)

Previously

Offloaded?

File

Selection

count

RRT

(Sec)

LRT

 (Sec)

X-

factor

Pointer

to

Output

File

Local cache

Replacement

P2.py 512 NO 22 0.0 16.49 1.41 Ptr1 Retain

P4.py 586 NO 5 0.0 20.34 5.76 Ptr2 Victim 1

P8.py 610 YES 14 26.28 0 0.82 Ptr3 Retain

L.py 827 NO 8 0.0 33.05 3.12 Ptr4 Victim 2

H.py 1024 YES 10 40.66 0 2.51 Ptr5 Victim 3

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 707

RESEARCH ARTICLE

Input: Workload path

Output: Profiled resource consumption information

BEGIN

 Obtain Workload Name, Format, and size in bytes to

be offloaded.

 Obtain present battery status of the client device.

 Obtain number of CPU cores in the client device.

 Obtain current availability percentage of main

memory space in the client device.

 Obtain current availability percentage of storage

space in the client device

 Obtain Network signal strength of connection for

communication.

 Call Random forest decision tree classifier function in

CSDOD component.

END

Algorithm 3 Client-Device-Status-Report-Generation

3.3. Client-Side Data Offload Decision (CSDOD)

Component

It uses client device status information report as input to

machine learning classification algorithm, embedded in

CSDOD component to generate an optimal and accurate data

offload decision either to move a computational workload to

the centralized server connected within a private network or to

perform local execution itself. The comparable investigation

has been carried out between Iterative Dichotomiser 3,

CART, and Random forest classifier (RFC) with cross-

validations. The Random forest decision tree classifier has

outperformed the other two with 99.44 classification

accuracy. The detail of comparative analysis has been

presented in Results and discussion section. The workflow of

CSDOD component is presented in algorithm 4.

Algorithm: Random-forest-decision-tree-classifier

Input: Profiled client device resource status report

Output: Local execution decision (LED) / Remote execution

decision (RED)

BEGIN

 Select random K data instances from a specified training

dataset input.

 Generate decision trees for each sub-sample of the dataset

 Predict the output from each decision tree.

 Perform poll for each predicted result.

 Output the majority voted prediction result.

END

Algorithm 4 Random-Forest-Decision-Tree-Classifier

3.4. Server-Side Global Cache (SSGC) Component

In this component, the centralized server maintains a database

that consists of workload name, size in bytes, run time, and a

pointer to a corresponding output file of all computational

workloads that have undergone remote execution. Therefore it

first performs a global cache search to check the existence of

respective workload transaction history. If a transaction is

found then the corresponding output file is immediately

directed towards to the actual client device. Otherwise, it

selects an idle neighbor device with good battery level to

perform remote execution. Once the remote execution is

completed, it is the responsibility of the centralized server to

update the cache with a new workload entry consisting of its

name, size in bytes, run time, and a corresponding pointer to

the output file in the server cache and send the same

information to the actual client to update itself. Hence, the

overall mobile client device work time can be optimized by

reducing the burden of processing workload on a client

device. The device work time is the period for which the

mobile device is operable to perform essential application

execution. The global cache area contains 6 attributes as

shown in Table 4, where the first 4 attributes are crucial to

evaluate the target variable 'X-factor' value. The last attribute

is a corresponding pointer to the output file location.

3.4.1. Global Cache Replacement Policy

Whenever the centralized server directs to update the global

cache, the global replacement policy gets activated. The

global cache data replacement policy relies only on File size

(FS), File selection count (FSC) and Remote run time (RRT)

attributes to compute X-factor value as shown in Eq. (2).

Based on this X-factor value, a ‘victim’ row of data

replacement is identified as shown in Table 5. The formula for

X-factor value computation is:

X − factor =
FS

FSC∗RRT
 (2)

The global cache is beneficial to avoid unnecessary data

offloading operations which incur the cost of device selection,

data transmission, and network traffic. The global cache holds

the most important and high run time-oriented source files

with their respective output files collected from all user

mobile participants in the CODA framework and hence can be

treated as a more diversified cache data relevant to the

specific organization. The workflows of SSGC component in

global cache search and data replacement policy are presented

in algorithm 5 and 6.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 708

RESEARCH ARTICLE

File Name File Size

(Bytes)

File Selection Count Remote Run Time

(seconds)

X-Factor Pointer to Output File

PI-2.py 658 12 16.49 3.32 Sptr1

PI-4.py 575 23 20.34 1.22 Sptr2

PI-8.py 756 41 26.28 0.70 Sptr3

CC.py 950 32 33.05 0.89 Sptr4

DC.py 1024 11 300.66 2.28 Sptr5

Table 4 Server-Side Global Cache Attributes

File Name File Size

(Bytes)

File Selection

Count

Remote Run Time

(Seconds)

X-

Factor

Pointer to

Output File

Global Cache

Replacement

PI-2.py 658 12 16.49 3.32 Sptr1 Victim 1

PI-4.py 575 23 20.34 1.22 Sptr2 Victim 3

PI-8.py 756 41 26.28 0.70 Sptr3 Retain

CC.py 950 32 33.05 0.89 Sptr4 Retain

DC.py 1024 11 300.66 2.28 Sptr5 Victim 2

Table 5 Global Cache Data Replacement Policy Based on X-Factor

Algorithm: Server-side-Global-cache-search

Input: Workload file, Workload name, and its size

Output: Display related output file

BEGIN

Check global cache area for metadata match of input

workload (W).

If workload entry matches in the Global cache:

Then

Display corresponding output file.

Exit

If No workload entry matches in the Global cache:

Then

Select an Idle neighbor device with battery stability to

perform remote execution.

Receive output file with run time measure.

Send output file to an actual request client device.

Invoke Global-cache-insert algorithm.

END

Algorithm 5 Server-Side-Global-Cache-Search

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 709

RESEARCH ARTICLE

Algorithm: Global-cache-insert

Input: Workload name, Workload size, RRT.

Output: Transaction Insertion

BEGIN

 If global cache space == “Available”:

 Then

 Increment FSC by 1 for the workload (W)

 Compute X-factor value.

 Add transaction to global cache table.

 Exit

 If global cache space ==”Unavailable”:

 Then

 Apply cache replacement policy.

 Find cache data entry with high X-factor.

 Replace it with new transaction data.

END

Algorithm 6 Global-Cache-Insert

4. IMPLEMENTATION

The experimental setup comprises of 81 mobile devices which

include smartphones and laptops of different specifications.

The smart devices are powered by android version operating

system, RAM component ranging from 2 to 8 Gigabytes

capacity, processor core ranging from dual to octal numbers,

internal storage ranging from 64 to 128 GB and battery

4000mAh to 6000mAh. The participated laptop computers are

powered by 64-bit Windows 10 operating system with Intel

core i3, i5 and i7 operable at 2.2, 2.3 and 2.5 GHz. These

laptops has RAM ranging from 4 to 8 GB and battery capacity

ranging from 2.29 to 3.3Ah. These specifications of mobile

devices are mentioned to inform that all the different mobile

devices were involved in the implementation and have no

considerable effect on ICODA performance. The laptops are

just part of the mobile network which can request/offer

services to neighbor mobile devices under the supervision of

the centralized server. The Python application programming is

used to design and implement an ICODA mobile application

framework using several popular graphic, process and system

utility packages. The PyCharm integrated development

environment with installed Python version 3.9 interpreter is

utilized to run the python project. Once the mobile application

is developed, it is inputted to a Buildozer tool to translate a

kivy application into an android compatible java application

to make it run on real android supported mobile devices. The

real mobile devices are then connected over Wi-Fi to

communicate the data with each other without necessarily

using the internet is performed using special network and

decision tree classifier packages in python. A 40000 real-time

profiled resource consumption data samples are noted in the

experiment of 80 mobile devices connected through a wireless

access point in the private network, offloading compute-

intensive files of size ranging from 500KB to 1 MB among

each other through the centralized server at different time

conditions. A sample of profiled resource consumption data is

shown in Table 6.

Suppose the Client selected workload: D:\\Files\CI-

2.pyz

ATTRIBUTE VALUE RANGE

Workload Size 0.5 MB
0 < size < 1

MB

Client Battery

Status
72 % 25 – 100 %

Client CPU Count 4 02 – 04 – 08

Client CPU Cycles

%
96.3 50 – 100 %

Client Virtual

Memory %
55.8 50 – 100 %

Client Disk

Storage
97.5% 50 – 100 %

Wi - Fi Network

Signal

Strength

Good
-67 to -50

dBm

Table 6 A Real-Time Profiled Resource Consumption Data

Sample

The ICODA resource status report contains 7 prime input

attributes obtained from smart mobiles devices and a single

target variable i.e. data offload decision (DOD). The threshold

setting for each attribute is presented in Table 7.

Based on the threshold setting as shown in Table 7, the real-

time large data set of 40000 data samples have been

normalized to the practice range with several finite categories

for each feature. After normalization, the total training

samples that represent the large data set is reduced to just

2*4*3*4*4*4*3 = 4608 samples as presented in Table 8.

Based on the training, the optimal decision tree classifier

accepts 7 input attributes, performs analysis on them, and

produces a data offload decision (DOD) on whether to offload

the data to a centralized server for further operation or

perform local execution. This decision-making intelligence

optimizes the overall smart mobile client device work time

and reduces the regular battery usage on specific and

significant workloads.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 710

RESEARCH ARTICLE

SIZE CUR_BAT CPU_CORE CPU_CYCLES

0 – Small

<= 500 KB

0 – LB

(0 – 25)%

0 - Dual

 0 – L

 75% utilized

1 – MB

(26 – 50)%

1 - Quad

1 – M

50% utilized

1 – Large

>500 KB

<= 1 MB

2 – HB

(51 – 75)%

2 - Octa

 2 – H

 25% utilized

3 – Max

(76 – 100)%

 3 – VH

 <25% utilized

PHY_MEM PHY_DISK Wi-Fi Strength Target feature: DOD

0 – LM

(0 to 25)%

Memory Available

0 – LS

(0 to 25)%

Available

0 – Poor signal 0 – Local execution

1 – MM

(26 to 50)%

Memory Available

1 – MS

26 to 50)%

Available

1 – Good signal

2 – HM

(51 to 75)%

Memory Available

2 – HS

(51 to 75)%

Available

2 – Excellent Signal 1 – Remote Execution

3 – VHM

(76 to 100)%

Memory Available

3 – VHS

(76 to 100)%

Available

Table 7 Threshold Setting for the Resource Consumption Status Report

SIZE

(MB)

CUR_BAT CPU_CORE CPU_CYCLES PHY_MEM PHY_DISK Wi-Fi

Signal

DOD

0.5 LB D L LM LS E Y

0.5 MB Q M MM MS G N

0.5 HB O H HM HS E N

0.5 Max D VH VHM VHS P N

1.0 LB D L LM LS E Y

1.0 MB Q M MM MS G Y

1.0 HB O H HM HS E N

1.0 Max D VH VHM VHS P N

Table 8 A Sample Data Frame of Normalized Data Set Containing 4608 Data Samples

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 711

RESEARCH ARTICLE

From Table 8, the values LB, MB, HB, and Max denote low

battery, medium battery, high battery, and Maximum battery

level. The values D, Q, and O denote dual-core, quad-core,

and octa-core processors. The values L, M, H, and VH denote

low, medium, high, and very high CPU cycles availability.

The values LM, MM, HM, and VHM denote low memory,

medium memory, high memory, and very high memory

availability. The values LS, MS, HS, and VHS denote low

storage, medium storage, high storage, and very high storage

availability. The values E, G, and P denote Excellent, Good,

and Poor Wi-Fi signal strength. The values Y and N for target

feature DOD denote ‘yes’ to Offload file for remote execution

and ‘no’ to perform local execution respectively.

Figure 3 Feature-Target Correlation Visualization

Figure 3 represents the relationship between input feature

selection and output target feature. The correlation shows the

capability of selecting the attributes that can make the

predicted target variable value high accurate or removing the

irrelevant attributes which can decrease the classification

accuracy and quality of the model. It is observed that all the

features of the normalized data set have a positive impact on

increasing decision accuracy.

4.1. Optimal Data Offload Decision Tree Classifier

Decision tree classification algorithms are supervised machine

learning algorithm that empowers predictive models with high

accuracy, stability and ease of interpretation. These

algorithms work best when a predefined target variable is

present and can be applied for both categorical and continuous

input/output variables. They are adaptable to solve

classification and regression problems. In the ICODA

framework, we have a data set with a categorical target

variable - Data offload decision (DOD).

4.2. ID3 – Decision tree classifier

The Iterative Dichotomiser 3 (ID3) classification model

constructs a decision tree by placing an attribute with low

entropy or high information gain at the root spot of the

decision tree. The workflow of ID3 classifier is presented in

algorithm 7. The entropy (E) is evaluated as shown in Eq. (3),

E = [− (
Pds

Pds+Nds
) × log2 (

Pds

Pds+Nds
)] +

 [− (
Nds

Pds+Nds
) × log2 (

Nds

Pds+Nds
)] (3)

Where ‘Pds' represents the count of positive samples, 'Nds’

represents the count of negative samples and ‘Pds + Nds’

represents total instances in the given mobile client resource

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 712

RESEARCH ARTICLE

consumption status training data set. The Information gain

(IG) is evaluated as shown in Eq. (4),

IG = Entropy (parent)– [Average Entropy (children)] (4)

Algorithm: ID3 Decision Tree classifier

Input: Profiled client device resource status report

Output: Local execution/Remote execution/No Execution

decision

BEGIN

 Compute entropy for data of client device resource status

report.

 For each data attribute

 Compute entropy for all its possible categorical

values.

 Compute information gain for the data attribute.

 Take out the attribute with high information gain.

 Repeat the cycle until the desired data offload decision tree

is generated

END

Algorithm 7 ID3 Decision Tree Classifier

4.3. CART - Decision Tree Classifier

The Classification and Regression (CART) model constructs

a decision tree by finding the best split through the calculation

of the weighted sum of Gini Impurity (GI) for both child

nodes as shown in Eq. (5). This is repeated for all possible

splits and then takes the one with the lowest Gini Impurity as

the best split. Lower the value higher the purity and

homogeneity of the nodes in a tree. The workflow of CART

Decision Tree classifier is presented in algorithm 8.

GI = 1 – ∑(success probabilities for each class)^2 (5)

Algorithm: CART Decision Tree classifier

Input: Profiled client device resource status report

Output: Local execution/Remote execution/No Execution

decision

BEGIN

 The select Root node(S) is based on Gini Index and

Maximum Information Gain.

 Calculate the Gini Index and Information gain.

 Select the node based on Minimum Gini Index or

Maximum Information Gain.

 Split set S to produce the subsets of data.

 Recur on each subset.

 Create the decision Tree.

END

Algorithm 8 CART Decision Tree Classifier

4.3.1. CART with Grid search Cross-validation (CART-

GSCV)

It represents the application of the Grid search cross-

validation method which tunes hyper-parameters to provide a

better estimation of the performance of the CART model for

every combination of parameters per grid. The parameters of

importance are criterion :("Gini", "entropy"), splitter,

maximum depth, minimum samples for split, minimum

samples at leaf level.

4.4. Random Forest (RF) – Decision Tree Classifier

The Random forest (RF) classifier is an ensemble learning

technique used to construct multiple CART models with

different data instances and unique initial variables. The RF

classifier chooses the classification that has the most votes

among all the trees in the forest. The two major benefits of

ensemble models are more accurate predictions and the

procedure of combining multiple CART models into a single

strong model that helps to provide productive decision can

stabilize the overall machine learning model.

4.4.1. Random Forest Classifier with Randomized Search

Cross-Validation (RF-RSCV)

It represents the application of the Random search cross-

validation method which tunes hyper-parameters to provide a

better estimation of the performance of the RFC model by

selecting a random grid combination of parameters. Random

search can draw hyper-parameter values from continuous

distributions, allowing it to sample the parameter space more

fully and efficiently. The hyper-parameters include maximum

depth, minimum sample for split, maximum leaf nodes,

minimum leaf samples, n-estimators, and maximum features.

4.4.2. Random Forest Classifier with Grid Search CROSS-

Validation (RFC-GSCV)

It represents the application of the Grid search cross-

validation method which tunes hyper-parameters to provide a

better estimation of the performance of the RF Classifier

model for every combination of parameters per grid. The

parameters of importance are maximum depth, minimum

sample for split, maximum leaf nodes, minimum leaf samples,

n-estimators, and maximum features.

4.5. Performance Evaluation Metrics

We have considered the Classification accuracy, Precision,

Recall, and F1 score as the prime performance factors to

evaluate the quality of the training model.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 713

RESEARCH ARTICLE

4.5.1. Classification Accuracy (CA)

It is the ratio of the number of correct predictions to the total

number of predictions made out of all input samples.

CA =
True Positives (TP)+ True Negatives (TN)

TP+TN+False Positives+False Negatives
 (6)

4.5.2. Precision

It is the number of correct positive results divided by the

number of positive results predicted by the classifier.

Precision =
True Positives

True Positives+False Positives
 (7)

4.5.3. Recall

It is the number of correct positive results divided by the

number of all relevant samples.

Recall =
True Positives

True Positives+False Negatives
 (8)

4.5.4. F1- Score

F1 Score is the harmonic mean of precision and Recall used

to find the balance between them. Since it tends to mitigate

the effect of large outliers and intensify the smaller ones, it is

the most effective evaluation metric in the classification

framework to make it precise and robust.

F1 Measure = 2 ×
Precision×Recall

Precision+Recall
 (9)

On training the different machine learning classification

models such as ID3, CART, and Random forest algorithms

with real-time normalized data set, we have the following

comparison graph in terms of classification accuracy as

shown in Figure 4.

Figure 4 Comparison between ID3, CART, and RF Decision Tree Classification Accuracy

Form Figure 4, the random forest classifier can be considered

as a highly accurate and robust method. And it does not suffer

from the over fitting problem since it takes the average of all

the predictions and remains to be unbiased. In the ICODA

framework, it is noted that the classification accuracy of ID3,

CART and RF models is at 92.91%, 99.22% and 99.44%

respectively on applying Eq. (6). On cross-validation with

Random search and Grid search, the RF classification

accuracy estimation is at 99.60% and 99.59% respectively

which implies the best quality training model performance for

the data set on applying Eq. (6). Therefore the Random

Forest Classifier is declared as optimal decision tree algorithm

that outperforms all the other decision tree classifiers in the

CODA framework. To support the result, we have also

applied Eq. (7), Eq. (8), and Eq. (9), to measure Mean

precision, Recall, and F1 score for the optimal random forest

classifier which is at 0.9967 to indicate a significant classifier

model performance. At this point, the successful WLAN

connection between the smart mobile client and the

centralized server is set. The medium-range data offload

operation has been carried out with multiple compute-

intensive task files that can keep the processor busy at all the

available number of cores to measure execution time. The

experiment has been repeated several times to get the

productive result out of the real time device communication

implementation. The graphical view of results obtained and

their meaningful interpretation is presented in the next

section.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 714

RESEARCH ARTICLE

5. RESULTS AND DISCUSSION

The three processor bound source code files namely PI-22.py,

PI-44.py, and PI-88.py of size 542KB, 598KB, and 635KB

which follow the master-slave technique to keep dual, quad,

and octal CPU cores busy with maximum workload possible

respectively, it is noticed that if these three files are run solely

on mobile client device itself, then it need to spend more

energy as presented in Table 9.

Instead, if the files are offloaded to a centralized server for

computation, it will reduce the load on the processor of

mobile client device. From Fig. 5 it is observed that the

battery life sustained measure for each processor bound

source file is 0.55, 0.62, and 0.65 percent respectively. The

data transfer time is < 0.022 seconds for the files moved

between different smart mobile devices as depicted in Table

10.

Table 9: Battery Power Consumption Measure With or Without Data Offloading

Figure 5 Battery Conservation in ICODA Offloading Scheme

File Name File Size Link Speed-in Mbps Mean Data Transfer Time (secs)

PI-22.py 524B 96 0.017 s

PI-44.py 598B
96 0.019 s

PI-88.py 635B
96 0.021 s

Table 10 Data Transfer Time for Compute-Intensive Files

MEAN REAL BATTERY LIFE SPENT ON CLIENT DEVICE

File Name File Size If executed on

Local Device

When Offloaded to

Remote device

PI-22.py 524B 0.69% 0.14%

PI-44.py 598B 0.79% 0.17%

PI-88.py 635B 0.83% 0.18%

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 715

RESEARCH ARTICLE

MEAN REAL EXECUTION TIME MEASURE

File_Name File_Size Local CPU Time On Offloading

PI-22.py 524B 16.49 s 16.578 s

PI-44.py 598B 20.32 s 20.418 s

PI-88.py 635B 26.28 s 26.386 s

Table 11 Execution Time Comparison

The smart mobile device task execution time computation in

ICODA framework on offloading considers several critical

parameters such as CSLC search time, CSDOD time, Task

transmission time from a mobile client device to centralized

server (MC-CS), SSGC search time, Task transmission time

from the centralized server to neighbor mobile device (CS-

NMD), Neighbor mobile device (NMD) run time, Task result

transmission time neighbor mobile device to a centralized

server (NMD-CS) and Task transmission time from a

centralized server to actual smart device client(CS-MC). From

Table11, for task files, PI-22.py, PI-44.py, PI-88.py, the local

device CPU time computed is 16.49s, 20.32, and 26.28s

respectively. But on task data offloading in the ICODA

framework, the task turnaround time is still evaluated to

16.578s, 20.418s, and 26.386s with the difference of about

0.088s, 0.098s, and 0.106s compared to local CPU Time is

still a remarkable operation as shown in Table 12. The real

advantage of the ICODA framework lies when we avoid data

offloading using local or global data cache mechanisms which

are as shown in Table 13.

CSLC

Search

Time

CSDOD

Time

TTT MC-

CS

SSGC

Search

Time

TTT

CS -NMD

NMD

Run Time

TTT

NMD -CS

TTT

CS-MC

Task

Turnaround

Time

0.012s 0.01s 0.016s 0.007s 0.015s 16.49s 0.016s 0.012s 16.578s

0.013s 0.01s 0.018s 0.008s 0.017s 20.32s 0.018s 0.014s 20.418s

0.014s 0.01s 0.02s 0.008s 0.019s 26.28s 0.02s 0.015s 26.386s

Table 12 Turnaround Time Computation for a Task

CODA framework Cache Hit? Remarks Task Turnaround time

Client-side local

cache (CSLC)

search

PI-22 output file

Found

Task execution time is equal to

CSLC search time

0.012s

PI-44 output file

Found

0.013s

PI-88 output file

Found

0.014s

Server-side global

cache (SSGC)

search

PI-22 output file

Found

Task execution time is a sum of

(CSLC search time + CSDOD

time + TTT MC-CS time +

SSGC search time + TTT

CS-MC time)

0.045s

PI-44 output file

Found

0.049s

PI-88 output file

Found

0.072s

Table 13: Turnaround Time Computation for a Task on Successful Cache Hit

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 716

RESEARCH ARTICLE

From Table 13, it is observed that there is a huge time

difference in turnaround time measure since the task file is not

physically executed but the corresponding output file is

extracted from the cache to serve the client device execution

request. Since the compute-intensive files consume less data

communication time, it can lead to minimization of energy

consumption on a client device and is preferable to perform a

data offloading operation on these files for remote server

execution. An artificial neural network back propagation

algorithm is applied on both local and global cache data with

sizes ranging from 1000 to 6000 entries and 3000 to 12000

entries respectively. The results of performance evaluation are

evident to declare that the cache replacement prediction

accuracy increases with the increase in training size as shown

in Table 14 and 15. The Artificial neural network–back

propagation model is the method of fine-tuning the weights of

a neural network based on the error rate obtained in the

previous iteration. This ensures the minimized error rate and

enhanced generalization to produce a more reliable model. It

uses all inputs for training and can make incremental updates

with a stochastic gradient descent algorithm. It is useful for a

continuous data set.

The Steps of ANN-back propagation Training Model:

1. Forward pass

2. Calculate error or loss

3. Backward pass

Algorithm: ANN-back propagation

Input: Cache data attributes

Output: Prediction accuracy

BEGIN

 Assign random weights.

 Find activation rate of hidden Nodes.

 Find the activation rate of Output Nodes.

 Find the error rate at Output Node.

 Cascade and recalibrate the error in the backward process.

END

Algorithm 10 ANN-Back Propagation Model

ANN – Back Propagation Model Performance in CSLC

Training set size 1000 2000 4000 6000

Learning Time (sec) 6.5 10.6 16.7 21.4

Prediction accuracy 88.7 92.2 94.1 96.4

Table 14 Local Cache Performance Evaluation

ANN- Back Propagation Model Performance in SSGC

Training set size 3000 6000 9000 12000

Learning Time (sec) 11.5 18.1 23.7 27.9

Prediction accuracy 91.3 94.6 95.8 98.3

Table 15 Global Cache Performance Evaluation

Frame

work

Cloud

Type

Client data

Caching

System

profiler

Turnaround

Time on an

Offload

Energy-

Saving on

Offload

Experiment

ICODA

Private

cloud /

MEC

Yes Run time Lower 80 – 90% Real-time

JAY

(2021)
Custom No Run time Higher 20 – 40% Real-time

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 717

RESEARCH ARTICLE

Table 16: Performance Evaluation of ICODA with JAY, OREGANO, and ULOOF Offloading Frameworks

Therefore, it is clear from Table 16 that the optimization in

mobile client device work time is possible by adopting

machine learning approaches in data offloads decision and

data caching mechanism of ICODA framework and is

promising to achieve better proficient performance with

reduced run time.

6. CONCLUSION

In this paper, the proposed intelligent composite offload

decision algorithm (ICODA) framework can outperform with

optimized work time proficiency for two main reasons

namely, a popular data caching mechanism to postpone the

offloading operation as long as possible by keeping the most

important results intact on storage and a random forest

classifier algorithm with 99.44% best mean accuracy can

optimize the length of the health of client mobile device work

time. The data caching components of the proposed ICODA

framework has been designed, implemented, and analysed.

The performance of prediction accuracy using the ANN-back

propagation machine learning model on local and global

cache tables has been evaluated. The prediction accuracy was

observed at 96.4% in the local cache and 98.3 in the global

cache which is significant. Therefore, The ICODA framework

is stable with infrastructure-less content caching at user

equipment device level on a private network. A high

bandwidth Wi-Fi-enabled network will be an added advantage

for additional communication efficiency. This framework is

generic and flexible in its architectural nature and can add any

improvised decision-maker scheme to it for better results in

the future for different applications and its real data sets. The

extended experimental observation makes us realize that this

framework can virtually double the energy of mobile devices

since they are not used for workload execution unless the

workload is new and unique in relevant to the specific

organization private cloud giving rise to the substantial

increase in overall mobile device work time enhancement.

REFERENCES

[1] Silva, Joaquim & Marques, Eduardo & Lopes, Luís & Silva, Fernando,

“Energy-aware adaptive offloading of soft real-time jobs in mobile edge
clouds”, Journal of Cloud Computing, volume 10, Pages 1-21,2021.

[2] Wang, Yantong; Friderikos, Vasilis, "A Survey of Deep Learning for

Data Caching in Edge Network" Informatics , volume 7, no. 4, Pages 1-
29, 2020.

[3] Goncalo Carvalho, Bruno Cabral, Vasco Pereira, Jorge Bernardino,

“Computation offloading in Edge Computing environments using
Artificial Intelligence techniques”, Engineering Applications of

Artificial Intelligence, Volume 95, 2020.

[4] Sanches P., Silva J.A., Teofilo A., Paulino H, “Data-Centric Distributed

Computing on Networks of Mobile Devices”, Euro-Par 2020: Parallel

Processing - Lecture Notes in Computer Science, volume 12247.
Springer, Pages 296-311, 2020.

[5] T. Q. Dinh, Q. D. La, T. Q. S. Quek and H. Shin, "Learning for

Computation Offloading in Mobile Edge Computing," in IEEE
Transactions on Communications, vol. 66, no. 12, pp. 6353-6367, Dec.

2018.

[6] Z. Wen, K. Yang, X. Liu, S. Li and J. Zou, "Joint Offloading and
Computing Design in Wireless Powered Mobile-Edge Computing

Systems With Full-Duplex Relaying," in IEEE Access, vol. 6, pp.

72786-72795, 2018.
[7] Z. Chang, L. Lei, Z. Zhou, S. Mao and T. Ristaniemi, "Learn to Cache:

Machine Learning for Network Edge Caching in the Big Data Era," in

IEEE Wireless Communications, vol. 25, no. 3, pp. 28-35, June 2018.
[8] Farhan Azmat Ali, Pieter Simoens, Tim Verbelen, Piet Demeester, B

Dhoedt, "Mobile device power models for energy-efficient dynamic

offloading at runtime", Journal of Systems and Software, Volume 113,
PP. 173-187, 2016.

[9] N. Fernando, S. W. Loke and W. Rahayu, "Computing with Nearby
Mobile Devices: A Work Sharing Algorithm for Mobile Edge-Clouds,"

in IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 329-343, 1

April-June 2019.
[10] S. Yu, R. Langar, X. Fu, L. Wang and Z. Han, "Computation

Offloading With Data Caching Enhancement for Mobile Edge

Computing," in IEEE Transactions on Vehicular Technology, vol. 67,
no. 11, pp. 11098-11112, 2018.

[11] J. L. D. Neto, S. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar and S.

Secci, "ULOOF: A User Level Online Offloading Framework for
Mobile Edge Computing," in IEEE Transactions on Mobile Computing,

vol. 17, no. 11, pp. 2660-2674, 2018.

[12] R. Aldmour, S. Yousef, M. Yaghi and G. Kapogiannis, "MECCA
offloading cloud model over wireless interfaces for optimal power

reduction and processing time," 2017 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computed, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet

of People and Smart City Innovation pp. 1-8, 2017.

[13] S. Ahn, J. Lee, S. Park, S. H. S. Newaz and J. K. Choi, "Competitive
Partial Computation Offloading for Maximizing Energy Efficiency in

Mobile Cloud Computing," in IEEE Access, vol. 6, pp. 899-912, 2018.

[14] Yiming Miao, Gaoxiang Wu, Miao Li, Ahmed Ghoneim, Mabrook Al-
Rakhami, M. Shamim Hossain, “Intelligent task prediction and

computation offloading based on mobile-edge cloud computing”, Future

Generation Computer Systems, Volume 102, Pages 925-931, 2020.

[15] P. Nawrocki, B. Sniezynski, H. Slojewski, “Adaptable mobile cloud

computing environment with code transfer based on machine learning”,

Pervasive and Mobile Computing, Volume 57, Pages 49-63, 2019.
[16] Hyun-Woo Kim, Jong Hyuk Park, Young-Sik Jeong, “Adaptive job

allocation scheduler based on usage pattern for computing offloading of

IoT”, Future Generation Computer Systems, Volume 98, Pages 18-24,
2019.

[17] Abdulhameed Alelaiwi, “An efficient method of computation

offloading in an edge cloud platform”, Journal of Parallel and
Distributed Computing, Volume 127, Pages 58-64, 2019.

[18] Lee, Hochul ; Lee, Jaehun ; Lee, Young Choon ; Kang, Sooyong,

“CollaboRoid : Mobile platform support for collaborative
applications”, Pervasive and Mobile Computing, Vol. 55. pp. 13-31,

2019.

OREGANO

(2020)
MEC No No Higher 71% Real-time

ULOOF

(2018)
MCC No No Higher 36 % Simulation

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/210720 Volume 8, Issue 6, November – December (2021)

ISSN: 2395-0455 ©EverScience Publications 718

RESEARCH ARTICLE

Authors

Mr. Sridhar S K, Research scholar, working as an
Assistant professor in Computer Science and

Engineering department, BITM, Ballari. His

research area is Machine learning assisted mobile
cloud computing. He has undergone expert level

workshop on embedded systems by Wipro in 2016,

received IBM certification on Mobile application
development in 2017, He has received Inspire

Faculty Excellence award in 2018 and acquired

knowledge on Research Methodology & LaTex by
VTU in 2019.

How to cite this article:

Dr. Amutharaj Joyson is a Professor and Head in

the Department of Information Science
Engineering at RajaRajeswari College of

Engineering, Bengaluru. He has received his Ph.D.

doctorate from Anna University in 2012. He was
granted with two International Patents by IP

Australia, Australian Government. He also

published four Indian Patents with Controllers of
Patents, Chennai Office, and 21 research papers in

refereed International Journals and presented 12

papers in International Conferences which includes IEEE and ACEEE
conferences. Currently he is guiding three Ph.D. scholars in the areas of

Mobile Cloud Computing, Sensor Networks and Content Distribution

Networks. He has acted as technical programme committee facilitator and
reviewer for International Journal of Network and Computer Applications

(JNCA), Computer and Communications, Elsevier Publications, International

Journal of Computer Science and Information Security (IJCSIS) - USA, IEEE

sponsored Conferences and reputed Scopus indexed journals. He is a fellow

member of the Institution of Engineers (IE), Institution of Electronics and

Telecommunication Engineers (IETE), a life member of Indian Society for
Technical Education (ISTE), Life member of International Association of

Engineers (IAENG) and also the Life member of International Association of
Computer Science and Information Technologists (IACSIT).

Sridhar S K, J. Amutharaj, “Optimization of Smart Mobile Device Work Time Using an Optimal Decision Tree Classifier

and Data Caching Technique in on Premise Network”, International Journal of Computer Networks and Applications

(IJCNA), 8(6), PP: 702-718, 2021, DOI: 10.22247/ijcna/2021/210720.

