
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 412

RESEARCH ARTICLE

Reduce the Memory Used in Key Management for

Security Systems

Yasser Ali Alahmadi

Department of Computer Science, Sheba Region University, Marib, Yemen

yasser_ali8891@yahoo.com

Mokhtar Alsorori

Department of Computer Science, Sheba Region University, Marib, Yemen

msorori201201@gmail.com

Saleh Noman Alassali

Department of Computer Science, Sheba Region University, Marib, Yemen

sano2010123@gmail.com

Received: 05 July 2021 / Revised: 07 August 2021 / Accepted: 10 August 2021 / Published: 28 August 2021

Abstract – Nowadays, most of the applications are distributed

and require two or more parties to establish a secure

communication channel over an open network. Key management

is one of the major security issues in such applications. A good

security system should reduce more complex problems related to

the proper key management and secure-saving of a little number

of secret keys at every endpoint. So it is difficult to save one key

secretly, and the difficulty will be more and more if the number

of secret keys increased. In the literature, many schemes have

been proposed for key distribution and management. Although,

such schemes have reduced the number of secret keys stored at

the users to only one key, Key Distribution Center (KDC),

known here as Key Managing Center (KMC), still maintains a

shared secret key with each user in the network. In this paper,

we propose a method to reduce the number of secret keys stored

at the KDC to only one key, regardless of the network size. In the

proposed method, the KMC will store a unique stuff data for

every user. The user's secret key will be generated by taking the

stuff data, adding the lifetime of the secret key, and then hashing

the resulting string using the manager secret key. The output

digest will be used as the user's secret key. By this way, KMC

will only store one key called the manager secret key.

Furthermore, we will combine the proposed method with our

previous work to build an efficient key management model.

Analysis and experimental results indicate that the developed

model is highly secure, practical and efficient.

Index Terms – Key Management, Key Distribution, Key Storage,

Public Key Cryptography, Symmetric Key Cryptography,

Formal Verification.

1. INTRODUCTION

In an environment consisting of a large-scale communication

network that requires every pair of users to establish a secure

communication channel and agree on a shared secret key, if

symmetric key cryptography is being used, then key

management can become a critical problem[1-4]. In such a

network every pair of users requires a shared secret key to

secure their communications. Thus every user needs to store

(N - 1) secret keys, where N is the total number of users in the

network. To eliminate this problem, the solution is to employ

a trusted third party called Key Distribution Center (KDC)[5],

where all users share their secret keys with the KDC rather

than share a secret key between every pair of users[6].

In the literature, there are several key distribution and

management schemes based on KDC such as [7-18]. In most

of these schemes, every user shares a unique secret key with

the KDC for purposes of key distribution. If two users wish to

communicate with each other in a secure manner, they can

obtain a secret session key from the KDC which in turn

generates a session key and encrypts it using the secret keys

that it shares with those users, and then sends it to them.

1.1. Problem Description

There is a difficulty in the process of storing and distributing

keys in security systems based on symmetric key

cryptography, especially in a large computer network with

millions of users. This difficulty is, the KDC has more than

one party who want to communicate and exchange

information securely. In most existing key distribution and

management schemes, the KDC stores N secret keys in its

database for all users in the network and the number of secret

keys increases as the number of users increased. Therefore,

such schemes suffer from high key storage at the KDC.

Moreover, if the KDC is compromised, then all the secret

keys will be exposed to the attacker[19, 20]. Thus the secret

key update process must be performed for all users in the

network. The costs associated with updating these keys are

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 413

RESEARCH ARTICLE

painfully high in terms of time, effort, financial resources[21].

In addition, the re-establishment of such keys with all users

requires out-of-band transmission or through a secure

channel.

1.2. Objectives

The important objectives of this paper are:

 To facilitate process of saving keys in a secure manner.

 To generate the required keys and securely distribute

them to the valid users involved in the network.

These objectives will be achieved by building a software key

management model, verifying its security and comparing it

with other ones in terms of the execution time and key

storage.

1.3. Motivation and Contributions

This paper focuses on the problem of reducing the number of

secret keys stored at the KDC and proposes a method to

reduce the number of secret keys stored at the KDC to only

one key, regardless of the number of users involved. In this

method, instead of keeping a shared secret key with every

user involved in the network, the KDC stores a public stuff

data related to every user and the user's secret key will be

generated by taking the stuff data related to corresponding

user, adding the lifetime of the secret key, and then hashing

the resulting string using the manager secret key. The hash

value will be used as the user's secret key. Therefore, the

KDC will only store one key called the manager secret key.

Furthermore, this paper combines the proposed method with

our previous work [22], to build an efficient key management

model, verify its security using a formal verification tool and

compare it with other ones in terms of the execution time and

key storage.

1.4. Organization of the Paper

This paper is organized into six sections, Introduction is in

Section 1, Related Work are in Section 2, The Proposed Key

Management Model is in Section 3, Security Verification is

in Section 4, Performance Evaluation is in Section 5, and

Conclusion is in Section 6.

2. RELATED WORK

This section gives a brief description of previous work

presented in the literature on Key management and

distribution.

M. Khalifa[7], proposed an enhanced authentication model

based on Kerberos system. This model consists of two stages

and is intended to provide protection for Kerberos from

replay, screen shot, key logger, and password-guessing

attacks. In the first stage, author used RSA encryption to

secure the password saved in external device in order to avoid

transmitting password as clear text over the network. In the

second stage, author used CRC algorithm as a complement to

the first stage.

S. Arora and M. Hussain[8], proposed a key agreement

protocol for generation and sharing a session key between two

parties using symmetric key cryptography. In this protocol, a

trusted third party is used only to establish the communication

between the communicating parties. The session key is

generated by the sender and receiver based on a cyclic group

and its security is based on discrete logarithm problem.

Authors analyzed the security of their protocol by using a

formal verification tool and showed that it is safe and secure.

However, due to the session key generation is done at the

sender and receiver, this protocol reduces the computation

overhead at the KDC. But it suffers from key storage

overhead because it assumes that the KDC maintains a shared

secret key with each party.

M. D. Nath and S. Karforma [11], Presented a model based on

Kerberos, combined with IDEA algorithm. The authors

applied the proposed model for logging into the electronic

banking system, and showed that their model would be

beneficial in nature, both to the bank and to the customer

during electronic banking transactions, and also provide

privacy, integrity and confidentiality in such environments.

Tbatou et al. [12], presented an authentication protocol for

distributed systems based on Kerberos V5 and Diffie–

Hellman models. The protocol contains three phases,

registration phase, communication phase and renewal phase.

The objective of this protocol was to protect passwords

chosen by users for removing the dictionary attack and brute

force attack from Kerberos. Authors demonstrated that their

model provides a secure channel to a more secure password

exchange.

J. Ghosh Dastidar [19], proposed a simplified form of the

Kerberos system. This model depends on symmetric key

cryptography and utilizations nonce and time-stamp to

prevent replay attack. In this model, rather than using two

separate entities, a Authentication Server (AS) and a Ticket

Granting Server (TGS), as Key Distribution Center (KDC) as

in Kerberos, it uses just a single entity that plays the role of

both. In this model, the KDC stores N secret keys for all users

involved.

A. Jesudoss and N. Subramaniam.[20], presented an enhanced

version of Kerberos system to protect Kerberos from

password-guessing attack and replay attack. This model uses

additional secret key and nonce value for the initial

authentication in Kerberos. In this model, the KDC stores two

secret keys for every user in the network. This means, the

KDC stores 2N secret keys for all users, where N is the total

number of users in the network.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 414

RESEARCH ARTICLE

H. Saputra and Z. Zhao [21], presented a model for key

management in the SCADA systems. Authors focused on the

long-term keys management and proposed a method to update

and refresh these keys dynamically. They showed that their

method provides a flexibility to update the long-term keys and

reduces the number of long-term keys stored at each endpoint.

Dua et al.[23], presented a modified version of Kerberos to

avoid replay and password guessing attacks. In this system,

the client sends three passwords to the KDC across the

network, these passwords are used for authentication and key

derivation. Due to sending the passwords over the network, if

weak passwords are chosen by the client , this system may be

exposed to attackers[20]. Moreover, this system suffers from

key storage overhead at the KDC, due to, the KDC stores

three secret keys for every user in the network.

P. Shalini and M. Kushwaha[24], presented an authentication

and key distribution protocol. In this protocol, the session key

is generated by the Trusted Server which distributes it

between two communicating parties using symmetric key

encryption. The attack on this protocol is demonstrated in our

previous work[22].

3. PROPOSED KEY MANAGEMENT MODEL

In this section, we present the proposed model for reducing

the number of secret keys stored at the KDC, known here as

Key Managing Center (KMC). The notations used to describe

the proposed model are listed in Table 1, and the following

subsections describe the key hierarchy, proposed method

sequence, and details of the proposed method.

Notation Description

IDa, IDb The identity of users A and B

KMC Key Managing Center

[M]K Encryption of message M with K

SKa The secret key of user A

PKa/RKa The public/private key pair of user A

Na, Nb Nonce value chosen by users A and B

SDa The stuff data related to the user A

L The life time of the secret key

H Hash function

SRNG Pseudorandom Number Generator

|| Concatenation of sets of strings

Table 1 Notations and their Description

3.1. Key Hierarchy

In the proposed model, in order to simplify key management

and achieve the main objectives of this paper, the keys have

been planned from the highest to the lowest into three levels:

at the highest level are the public/private key pair and the

manager secret key, at the middle level is the user secret key,

and at the lowest level is the session key. The block diagram

of Figure 1 shows the hierarchy of these keys.

1. The public/private key pair

The public/private key pair is used to protect the user's secret

key. It has a very long life, usually several years.

2. The manager secret key

The manager secret key is the key used by the system

manager to generate the user's secret key. It also has a very

long life, usually several years.

3. The user secret key

The user secret key is used to encrypt and decrypt the

messages that exchange session keys. Its lifetime is long,

usually several months.

4. The session key

The key used to encrypt and decrypt the original data is

called the session key. The session key exists only when two

users wish to exchange data in a single communication

session. Its lifetime is very short, usually only several

minutes.

Figure 1 Block Diagram of Key Hierarchy Plan

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 415

RESEARCH ARTICLE

3.2. Proposed Method Sequence

In this subsection, we will provide the sequence of steps to be

followed to design the proposed model and details of these

steps will be provided in the next subsection. These steps are

as follows:

1. All users in the network, including KMC have to

generate their own public/private key pair.

2. Each user must register with the manager's database and

obtain the KMC's Public Key. The user will send some

public information about him/herself like: ID, Public

Key, Phone Number, IP address, and so on. Then, the

KMC generates a unique stuff data based on user

identification and stores it along with the user's

information in the manager's database.

3. To compute the user's secret key, the KMC uses a

suitable hash function along with three parameters: the

first one is the manager secret key, the second is the user

stuff data stored in the manager database, and the third is

the life time of the secret key. The output of the hash

function is used as the user's secret key. Then, the KMC

encrypts the user's secret key using the user's public key

and sends it to the user.

4. The intended user receives the encrypted message,

decrypts it using his/her private key and then stores the

retrieved secret key in his/her memory device.

5. To reduce stored secret keys, the user may encrypt

his/her secret key using his/her public key and retrieve it

as needed.

6. If two users, say user A and B, wish to communicate

with each other securely. User A or B can ask the KMC

to generate a suitable session key for them. The KMC

can then send this key to those users encrypted under the

corresponding secret keys.

By those steps, there is no need to store more than one key

securely, and the KMC should periodically change the secret

key and the stuff data for all users based on the life time of the

secret key.

3.3. Details of The Proposed Method

The proposed method includes three phases:

 Registration phase,

 Secret key establishment phase, and

 Session key distribution phase.

Figure 2, summarize the phases of the proposed model and

the details of these phases will be described in the following

sub-sections.

Figure 2 Block Diagram of the Proposed Model

3.3.1. Registration Phase

All users must first generate their own public/private key pair,

register with the manager's database and obtain the KMC's

Public Key. In this phase, each user sends the public

information about him/herself like: ID, PK, PN, IP, and so on

to the KMC. Then, the KMC receives the data sent by the user

and verifies the user ID. If it exists in the manager database,

the KMC replay back an error message. Otherwise, it

generates a unique stuff data for the user based on user

identification using a pseudorandom number generator

according to equation (1).

SD = SRNG(ID || PK || PN || IP) (1).

Finally, the KMC Stores the stuff data along with the user

information in its database and sends its public key to the

user. To avoid the problem that arises if a public key is used

by a party who is not the actual owner of the public key [5,

25]. This phase should be performed through a secure channel

such as e-mail.

The algorithm 1 provides the pseudocode for generating the

user stuff data and the block diagram of the registration

phase is provided in Figure 3.

Stuff-Data-Generation-Algorithm(ID,PK,PN,IP)

Begin

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 416

RESEARCH ARTICLE

1. If ID exists then

 1.1 Return error-message

2. Else

 2.1 SD = SRNG(ID || PK || PN || IP)

 2.2 Store SD along with ID, PK, PN and IP in

 the manager database

 2.3 Return SD

 3. End If

End

Algorithm 1 Pseudocode for Generating the User Stuff Data

Figure 3 Block Diagram of the Registration Phase

3.3.2. Secret Key Establishment Phase

This phase describes the secret key establishment process

between a user and the KMC. The KMC will compute a secret

key for every user in the network at the request of the user.

The following steps describe the protocol used in this phase:

1. User A sends a generation request to the KMC. This

request includes the identity of the user (IDa) along with

the identity of Key Managing Center (IDm) and nonce

value (Na) signed with the user's private key RKa, all

collected together and encrypted by the KMC's public key

PKm.

A KMC : [IDa, [IDm, Na]RKa]PKm

2. KMC receives the request and decrypts it using its private

key. Afterwards, it uses IDa to search of PKa in its

database. Then it verifies the user's signature:

 If true, the KMC generates the user's secret key by

applying a hashing algorithm along with three

parameters, the first one is the manager secret key, the

second is the user's stuff data stored in the manager

database, and the third is the life time of the user's

secret key. The equation 2 provides the formulation of

hashing function for generating the user's secret key.

SKa = H (SKm || SDa || L). (2).

The block diagram of Figure 4. summarizes our

proposed method to generate the user's secret key and

the algorithm 2. provides the pseudocode for

generating the user secret key.

 Otherwise, the KMC reject this request and terminate

the connection with the user.

3. KMC constructs a message for User A encrypted under the

user’s public key. This message includes the user secret

key and Nonce Na. After that it sends this message to that

user.

KMC A : [Na, SKa]PKa

4. User A receives the encrypted message, decrypts it with

his/her private key, and then verifies the integrity of

Nonce Na. So, User A would be sure this message is fresh

and its originator is KMC and not someone else.

Figure 4 Block Diagram of the Secret Key Generation

Secret-Key-Generation-Algorithm(ID)

Begin

1. L = get the life time of secret key

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 417

RESEARCH ARTICLE

2. SKm = get the manager secret key

3. SD = retrieve the user stuff data from the manager

 database based on ID

4. PK = retrieve the user public key from the manager

 database based on ID

5. V = verify the user's signature by using PK

6. If V is true then

 6.1 SK = hash(SKm || SD || L)

 6.2 Return SK

7. Else

 7.1 Return error-message

 8. End If

End

Algorithm 2 Pseudocode for Generating the User Secret Key

3.3.3. Session Key Distribution Phase

This phase describes the distribution of session key between

two users with the help of the KMC, if any two users want to

communicate with each other securely, they can obtain a

session key from the KMC which in turn generates a session

key, encrypts it using the secret keys that it shares with those

users and sends it to them.

Here, we have used an improved key distribution protocol

presented in our previous work[22]. That protocol has been

proposed based on the protocol proposed in[24]. It uses

symmetric key cryptography for distribution of session key

between two parties with the help of a trusted third party.

Following are the steps of the protocol and more details about

this protocol are given in[22].

1. A B: IDa, [Na, IDb]SKa

2. B S: IDa, [Na, IDb]SKa, [Nb, IDa]SKb

3. S B: [IDb, Kab, Na]SKa, [IDa, Kab, Na, Nb]SKb

4. B A: [IDb, Kab, Na]SKa, [Nb,Na]Kab

5. A B: [Nb]Kab

4. SECURITY VERIFICATION

The proposed model has been verified using the formal

verification tool called Scyther. Scyther is an automatic

verification tool and widely used and accepted for the

verification of security protocols [26], against various types of

attacks[27]. Scyther tool has many advantages like: the

verification of protocols with unbounded number of sessions,

it supports multi-protocol analysis[28] and provides a

property to generate claims automatically. Scyther takes as

input a role-based description of a security protocol and the

security goals are specified using claim events. The language

used to write security protocols in Scyther is Security

Protocol Description Language (SPDL)[28-30]. Here, the

secret key establishment protocol was implemented in Scyther

and verified with auto-verification property. Table 2 shows

the verification results of this protocol.

Table 2 Verfication Results of Secret Key Establishment

Protocol

From the verification results shown in Table 2 above, we can

observe that the protocol fulfill all security claims. This

means the protocol completely fulfill the security goals and

hence no potential attacks can be performed.

5. PERFORMANCE EVALUATION

In order to demonstrate that the proposed key management

model is more efficient, this section presents the simulation

environment and the evaluation results of the proposed model.

5.1. Simulation Environment

The simulation has been performed using Sockets in C#

language 2012 on Windows 7 64-bits, Core i5-2520M CPU

and 4GB RAM. In this simulation, we consider a network that

consists of a client, service server and KMC. In our

implementation, we have used the libraries provided in .NET

framework, where RSA algorithm has been selected as the

public-key encryption algorithm with 2048-bits key to protect

the secret keys between a user and the KMC, AES of 256-bits

for symmetric encryption to distribute the session key

between any two users with the help from the KMC and to

encrypt the original data exchanged on the network, and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 418

RESEARCH ARTICLE

SHA-256 for hash function to generate the required

symmetric keys.

5.2. Results and Discussion

Here, we evaluate the performance of the designed model and

compare it with the two enhanced versions of the widely used

Kerberos system[19, 20] in terms of the execution time and

key storage.

5.2.1 Execution Time Evaluation and Comparison

As we mentioned in Section 3 above, the proposed model in

this paper includes three stages: the first stage does not

include any cryptographic process and is a one-time

operation, so this stage will not be included in this evaluation.

The second stage includes two cryptographic operations:

public-key encryption/decryption and hash function. Table 3

shows the execution time of the cryptographic operations

performed in this stage.

Operation The Execution Time

(in MS)

RSA-2048 encryption 3

RSA-2048 decryption 57

SHA-256 4

Table 3 Execution Time of the Secret Key Establisment

From the Table 3, we can find that the RSA consumes the

more time. This is because of the many computations with

very large numbers involved in performing RSA, especially

decryption is performing with computing of a large number to

a huge power. However, the performance of this stage does

not affect the system performance in general since this stage

is used only occasionally to update the secret key between a

user (client/server) and the KMC and this secret key is valid

for a long period of time.

The last stage aims to establish the encryption key (the

session key) between the communicating parties with the help

of the KMC. When a user needs to communicate with the

service server, she/he needs a session key. This session key is

usually valid for a short period of time. Because of this, this

stage occurs frequently and consequently this stage affects the

system performance. So we have taken into account the

execution time consumed by accomplishing this stage to

compare the proposed protocol with the other protocols.

The selected protocols were implemented according to [19,

20] and the proposed protocol according to the session key

distribution protocol described in subsection 3.3.3. For each

protocol, the time consumed by performing session key

distribution 50 times has been calculated at each entity

(Client, Server and KDC), and the simulation results are

depicted in Figures. 5-7.

Figure 5 Execution Time of the Proposed Protocol

Figure 6 Execution Time of the Protocol in [19]

Figure 7 Execution Time of the Protocol in [20]

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 419

RESEARCH ARTICLE

In addition, we have calculated the average of the execution

time consuming for all executions of each protocol up to 50

times. Figure 8 shows the comparison of average execution

time for all protocols. The results shown in these figures

demonstrate that the execution time consumed by the

proposed model is shortest, while the execution time

consumed by the others is longest. As we can find that the

protocol proposed in[20] is the most execution time

consuming protocol due to it requires additional encryption

operations for the initial authentication between a user and the

KDC.

Figure 8 Average Execution Time Comparison

5.2.2. Key Storage Evaluation and Comparison

The storage requirement takes two forms: storage at the users

and storage at the KDC. In the proposed model, there are

several advantages in using the key hierarchy plan. One of

these advantages is to reduce the number of key-encrypting

keys which have to be stored securely. However, in our

model, each user has two secret keys (key-encrypting keys):

the private key and the secret key. In order to reduce the

number of secret keys stored at the user, the user may encrypt

his/her secret key using his/her public key. Thus, each user

only needs to store one key securely. The same scenario goes

for Key Managing Center.

The main advantage of the proposed key management model

is that, the Key Managing Center (KMC) does not have to

store the secret keys of all users involved in the network.

Instead of storing N secret keys at the KMC for all users, the

KMC stores a unique stuff data related to each user. This stuff

data is not secure information and the user's secret key is

generated based on this stuff data as described in Section 3.

The comparison between the proposed model and the two

enhanced versions of the widely used Kerberos system in

term of number of keys stored at the KDC is shown in Figure

9. In this comparison it is easy to note that the KDC in the

proposed model only needs to store one key securely, unlike

the other models in which the KDC stores N secret keys as in

the protocol proposed in [19] and stores 2N secret keys as in

the protocol proposed in [20].

Figure 9 Performance Comparison of Key Storage

6. CONCLUSION

In this paper, we have focused on the problem of reducing the

number of secret keys stored at the KDC and have proposed a

method to reduce the number of secret keys stored at the KDC

to only one key. Furthermore, we have combined the

proposed method with our previous work and have built an

efficient key management model. The main advantage of this

model is that, the Key Managing Center (KMC) does not have

to store N secret keys (key encryption keys) in its database.

Instead of that, it stores a unique stuff data related to each user

involved. This stuff data is not secure information. Therefore,

the KMC only needs to store one key securely called the

manager secret key and use it to generate the secret keys for

users involved. In addition, each user involved in the network

only needs to store one key securely. This will extremely

reduce the key storage space and make our model suitable for

a large-scale network. The performance of our model has

been evaluated and the protocols used in this model have been

verified by a formal verification tool called Scyther, the

evaluation and verification results showed that the model is

efficient and secure.

REFERENCES

[1] D. P. Sumalatha and D. C. K. Priya, "A Prototype Implementation for

Public Key Infrastructure Based on Transport Layer Security,"

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 420

RESEARCH ARTICLE

International Journal of Emerging Trends & Technology in Computer

Science (IJETTCS), vol. 6, pp. 83-88, September - October 2017.
[2] R. Abobeah, M. Ezz, and H. Harb, "Public-key cryptography techniques

evaluation," International Journal of Computer Networks and

Applications, vol. 2, pp. 64-75, 2015.
[3] S. Sharma, "Cryptography: An art of writing a secret code,"

International Journal of Computer Science & Technology, vol. 8, pp.

26-30, 2017.
[4] K. H. K. Alibraheemi, "Robust Biometrics-Based Authentication

Scheme for Cryptographic Keys Distribution," International Journal of

Applied Engineering Research, vol. 13, pp. 1415-1420, 2018.
[5] W. Stallings, Cryptography and Network Security: Principles and

Practice: Pearson Prentice Hall, 2017.

[6] Jincy Sebastian and S. Jose, "Implementation of Two-Server Password-
Based Authentication," International Journal of Innovative Research in

Computer and Communication Engineering, vol. 3, pp. 11608-11614,

2015.

[7] M. Khalifa, "Enhanced Kerberos Authentication For Distributed

Environment Using Two Phases Security," An international journal of

advanced computer technology, vol. 6, pp. 2323-2329, 2017.
[8] S. Arora and M. Hussain, "Secure session key sharing using symmetric

key cryptography," in 2018 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2018, pp. 850-

855.

[9] S. Budiyanto, G. B. Santosa, and F. R. I. Mariati, "Upgrading the S-NCI
Key Establishment Protocol Scheme to be Secure and Applicable," in

IOP Conference Series: Materials Science and Engineering, 2018, p.

012002.
[10] M. Narendra and S. S. Raja, "A Study of Using Authenticated Key

Exchange Protocols to Boost The Efficiency of Parallel Network File

System," Journal of Critical Reviews, vol. 7, pp. 1883-1890, 2020.
[11] M. D. Nath and S. Karforma, "Object-Oriented Modelling Of Kerberos

Based Authentication Process In E-Banking Transaction," International

Journal of Computer Sciences and Engineering, vol. 6, pp. 1-5, 2018.
[12] Z. Tbatou, A. Asimi, Y. Asimi, Y. Sadqi, and A. Guezzaz, "A New

Mutuel Kerberos Authentication Protocol for Distributed Systems," Int.

J. Netw. Secur., vol. 19, pp. 889-898, 2017.
[13] L. Wu, J. Fan, Y. Xie, and J. Wang, "An improved authentication and

key agreement scheme for session initial protocol," KSII Transactions

on Internet and Information Systems (TIIS), vol. 11, pp. 4025-4042,
2017.

[14] K. Bakare, S. Junaidu, and M. Ahmed, "Improved Secure Biometric

Authentication Protocol," International Journal of Applied Information
Systems, vol. 12, pp. 49-56, 2020.

[15] T. A. Khaleel, "Analysis and Implementation of Kerberos Protocol in

Hybrid Cloud Computing Environments," Engineering and Technology
Journal, vol. 39, pp. 41-52, 2021.

[16] Z. Tbatou, A. Asimi, C. E. Balmany, and Y. Asimi, "A Novel

Architecture of a Strong and Mutual Authentication Protocol for
Distributed Systems," Engineering Letters, vol. 28, 2020.

[17] P. Bhadle, S. Gugale, S. Trar, H. Kaur, and S. Salve, "Kerberos

Authentication System using Public key Encryption," International
Journal of Computer Science and Information Technologies, vol. 5, pp.

1930-1933, 2014.

[18] J. Sun and Z. Gao, "Improved mobile application security mechanism
based on Kerberos," in Proceedings of 2019 4th international workshop

on materials engineering and computer sciences, 2019, pp. 108-112.

[19] J. G. Dastidar, "An Authentication Protocol based on Kerberos," Journal
of Engineering Research and Application, vol. 7, pp. 70-74, 2017.

[20] A. Jesudoss and N. Subramaniam, "Enhanced Kerberos authentication

for distributed environment," Journal of Theoretical and Applied
Information Technology (JTAIT), vol. 69, pp. 368-374, 2014.

[21] H. Saputra and Z. Zhao, "Long term key management architecture for

SCADA systems," in 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT), 2018, pp. 314-319.

[22] A. Yasser, Alahmadi and N. Saleh, Alassali, "An Improved Key

Distribution Protocol Using Symmetric Key Cryptography,"

International Journal of Computer Sciences and Engineering (IJCSE),

vol. 8, pp. 21-26, 2020.
[23] G. Dua, N. Gautam, D. Sharma, and A. Arora, "Replay attack

prevention in Kerberos authentication protocol using triple password,"

International Journal of Computer Networks & Communications
(IJCNC), vol. 2, pp. 59-70, 2013.

[24] P. Shalini and M. Kushwaha, "Mutual Authentication and Secure Key

Distribution in Distributed Computing Environment," International
Journal of Advanced Research in Engineering and Technology

(IJARET), vol. 11, pp. 378-390, 2020.

[25] V. Lozupone, "Analyze encryption and public key infrastructure (PKI),"
International Journal of Information Management, vol. 38, pp. 42-44,

2018.

[26] R. Amin, P. Lohani, M. Ekka, S. Chourasia, and S. Vollala, "An
enhanced anonymity resilience security protocol for vehicular ad-hoc

network with Scyther simulation," Computers & Electrical Engineering,

vol. 82, p. 106554, 2020.

[27] M. Safkhani, N. Bagheri, and M. Shariat, "On the security of rotation

operation based ultra-lightweight authentication protocols for RFID

systems," Future Internet, vol. 10, pp. 1-15, 2018.
[28] M. H. Alzuwaini and A. A. Yassin, "An Efficient Mechanism to Prevent

the Phishing Attacks," Iraqi Journal for Electrical & Electronic
Engineering, vol. 17, 2021.

[29] S. Bojjagani, D. D. Brabin, and P. V. Rao, "PhishPreventer: a secure

authentication protocol for prevention of phishing attacks in mobile
environment with formal verification," Procedia Computer Science, vol.

171, pp. 1110-1119, 2020.

[30] E. Munivel and A. Kannammal, "New authentication scheme to secure
against the phishing attack in the mobile cloud computing," Security

and Communication Networks, vol. 2019, pp. 1-11, 2019.

Authors

Yasser Ali Alahmadi, pursed B.Sc. CS from

Sana'a University, Yemen. He is currently

pursuing Master of Computer Science,

Department of Computer Science, Sheba Region

University, Yemen. His interest research area:

Information Security and C# Programming.

Dr. Mokhtar Alsorori, pursed B.Sc. CS from Al-
Neelain University, Sudan in 2003, M.Sc. IT from

Mysore University, India in 2007 and Ph.D. in

Computer Science from Kakatiya University,
India in 2020. He is currently working as Assistant

Professor in Department of Information Systems,

Sheba Region University, Yemen. His interest
research area: Cyber Security and Digital Image

Watermarking.

Dr. Saleh Noman Abdullah Alassali, pursed

B.Sc. CE from KSU University, Saudi Arabia in

1988, M.Sc. CS from Pune University, India in

2000 and Ph.D. in Information Security from
SRTM University, India in 2005. He is currently

working as Associated Professor in each of

Department of Computer Sciences, Sheba Region
University, Science and Technology University,

Yemen. He has published more than 8 research

papers in reputed international journals. His main
research work focuses on Cryptography Algorithms and Random Number

Generators.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209707 Volume 8, Issue 4, July – August (2021)

ISSN: 2395-0455 ©EverScience Publications 421

RESEARCH ARTICLE

How to cite this article:

Yasser Ali Alahmadi, Mokhtar Alsorori, Saleh Noman Alassali, “Reduce the Memory Used in Key Management for Security

Systems”, International Journal of Computer Networks and Applications (IJCNA), 8(4), PP: 412-421, 2021, DOI:

10.22247/ijcna/2021/209707.

