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Abstract – In recent years, Android has been the main mobile 

operating system. The proliferation of apps powered not only by 

Android magnetized app developers, but also by malware 

developers with criminal intent to design and distribute 

malicious apps that can influence the ordinary activity of 

Android phones and tablets, steal private information and 

credentials, or even worse, lock the phone and ask for ransom. 

This study was carried out with a view of bring out clearly the 

review of previous researches carried regarding static analysis 

and pinpoint out what to be done in future. A systematic 

literature review which involves studying 56 research papers 

published in regard to static analysis. This review elaborate 

permissions misuse, reverse engineering and concept of static 

analysis in general. The outcomes of the review revealed that 

static analysis is widely used since it is not performed at run-time 

hence malicious applications cannot access to the device during 

analysis unlike dynamic analysis. During the review no single 

work done to the satisfaction curbing the existing and future 

evolving malwares. This study will help academicians to gain 

insight concerning static analysis without extensively perusing 

several articles to understand static malware analysis based on 

deep learning. 

Index Terms – Static Analysis, Reverse Engineering, 

Permissions, Manifest File, APK File, Malicious Applications. 

1. INTRODUCTION 

With the rapid emergence of android as the principal 

operating system has led to the rise of malware applications 

built by hackers with a view of extracting both personal and 

sensitive user’s data on the android device for malicious 

purposes [1], [2]. Static analysis has been a prime method 

used since the extraction of manifest file information is done 

before the installation of the application unlike both dynamic 

and hybrid analysis [3].  

The main aim of this study is to review previous work done 

on static malware of android apps. The subsequent sections 

depict the research done, citing the advantages and 

shortcomings. According to [4], discussed permission misuse 

by android apps using a static analysis tool of identification 

stating that it is possible to obtain all the manifest file 

permission. Despite the study, the paper did not mentioned or 

show the dataset used during the analysis and the procedure of 

getting readable contents of a minfest.xml file. Similarly, [5]  

studied system permission to show whether the application is 

over privilege but loopholes exists in the write-up since the 

author mentioned repacking of application files without 

executing on the device but there is no dataset and analysis 

performed based on static feature extraction. 

According to [6], the authors proposed heuristic model  and 

compared adagio, Drebin,  ISCX and Mamadroid on a dataset 

and found their proposed model outpeforms the others. The 

only ad-hoc facing their framework is the proper selection of 

malware models to preserve great detection rate and apposite 

runtime performance as the method discovery analysis 

considerably depends on the malevolent applications used for 

model excavation. Likewise, [4], based the research on the 

SharedUserID by comparing the certificates of two 

applications if both have same features then the apps are 

likely to share same permissions using an android security 

tool. This was done in order to deduce whether one 

application misuse the permission of another application if 

granted access by the user. Althought the author did not 

provide the data used to test how the algorithm of  proof of 
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concept was implemented using a security tool as dipicted in 

the work done by Karthick and Binu [7]. 

Conversely, [8] deliberated on malware for smart phones in 

overall. Though, the paper deliberates various categories of 

features very concisely and the authors did not cover all kinds 

of obtainable features. Accordingly, [9] explores numerous 

types of smart devices available for malicious applications, 

their effect on apps and related discovery approaches with a 

99.8 percent accuracy detection rate. Nonetheless, they did 

not indicate what features they used in detection, bearing in 

mind that features have substantial influence on detection. In 

[10] the authors  review diverse analysis procedures in smart 

devices illegal programs detection. The paper outline the 

examples of detection approaches along with their 

explanation.  

The paper doesn’t embrace what datasets used and valuation 

measures. Additionally, it does not illustrate all the latest 

works extensively. According to Peng et al,.[11], they 

scrutinize advancement of mobile malware, damages they 

cost and their proliferation model. Different operating systems 

are accounted for in the paper making it difficult to carefully 

review all available types. Conversely, we emphasize static 

malware detection for Android Apps Permit to mitigate how 

best the method is compared to dynamic, hybrid or metadata 

malware detection and prevention methods where the 

application is run on the user device without the user's 

knowledge of what is actually happening on the background. 

The remainder of this paper is organized as follows. Section 2 

offers background information on android and static analysis 

needed for paper repository by discussing definitions of static 

program analysis, model permission and techniques of 

analysis. Section 3 presents a summary of related work using 

static analysis presentations based on permissions from 

android apps. Section 4 addresses the description of android 

apps in reverse engineering. Section 5 outlines the debates 

and the paper is concluded. 

2. BACKGROUND INFORMATION ON ANDROID AND 

STATIC ANALYSIS 

In order to gain understanding of the purpose of this study, we 

review and give the reader the required preliminary 

information on android and static analysis. We explain the 

concept of static program analysis, permissions and analysis 

technique.  

2.1. Concepts of Static Program Analysis 

Static code analysis is also called static program analysis, 

which means that the application under test cannot be 

conducted dynamically and that it can detect bugs in an early 

stage before it is implemented [12]. The opposite of static 

code analysis is dynamic code analysis. In the latter, the 

program is executed and developers look for run-time errors 

as stated by [13]. 

According to Ghahrai [14], after coding and before 

performing unit tests, static analysis is performed. Static 

testing can be performed by a machine to "pass" the source 

code automatically and to detect non-compliance rules. A 

compiler that finds lexical, syntactic and even semantinal 

errors is the classic example. 

Static software analysis usually includes an automated 

method that uses inputs the source code or object code of a 

program, analyses this code without it being executed, and 

produces results by analyzing its code structure, sequences of 

statements, and how variable values are interpreted via the 

divergent function calls. Static analysis ' primary benefit is 

that it can disclose mistakes (or vulnerabilities) that do not 

appear (or are not exploited) until long after the software is 

published to the public. There are different 

benefits/advantages of static analysis as follows; helps 

recognize prospective software quality problems before the 

software enters manufacturing during the development stage 

[15]. It identifies code regions that need to be re-factored / 

simplified [15].By concluding it for software to work and 

developers to comprehend their software, static code analysis 

is not only helpful but also essential. It simplifies the search 

process for bugs and mistakes by pointing to them correctly 

and helps to define problems. 

2.2. Permissions 

The resolution of a permission is to safeguard the privacy of 

an android user [16]. Not all permissions are dangerous some 

are useful to the developer to design security of an android 

device. Mobile apps must appeal for permission to access 

user’s sensitive data for instance short messages and phone 

contacts, as well as particular system features for instance 

internet and camera. Reliant on the feature, the system might 

allow the permission spontaneously or might occassion the 

user to accept the request. A fundamental design of the 

android security design is that no mobile app, by default, has 

permission to accomplish any operations that would 

unfavorably impact other applications or the user. Android 

apps must adopt the least privilege to minimize damages [17]. 

Table 1 below depicts other previous studies in regard to 

android permission which are normally misused. 

Android. 

Permission  

Usage  Exploitation 

<READ/WRITE_ 

EXTERNAL_ 

STORAGE> 

Permit to 

read or 

write 

device’s 

external 

storage 

Malicious app 

can read sensitive 

data of the user 

and write its 

malicious code 

on the device 

external storage. 
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<CALL_PHONE> Permits an 

app to 

induce a 

phone call 

without 

going via 

the 

interface of 

the user 

dialer for 

the user to 

authorize 

the call 

being 

engaged. 

Aid the user to 

record the voice 

of the user and 

use it for 

malicious 

purpose  

<RECEIVE_SMS> Permits an 

app to 

observe the 

inbound 

SMS 

messages, 

to record or 

implement 

processing 

on them. 

Aid the malware 

to read, write and 

receive user’s 

sensitive 

information to 

the malicious app 

developer. 

<SET_PROCESS_LIMIT> Permits an 

app to fix 

the 

determined 

number of 

app’s 

processes 

that can be 

running but 

not 

required. 

Overwhelming 

the device 

memory thus 

rendering to 

slowness in its 

normal operation  

<ACCESS_ WIFI_ 

STATE> 

Permits the 

app to 

access data 

about Wi-

Fi network 

connected 

Can aid the 

malware in 

hacking the Wi-

Fi network and 

transmitting user 

information by 

utilizing this 

info. 

<READ_ PHONE_ 

STATE> 

Offers 

access to 

personal 

information 

of phone 

like 

IMSI/IMEI 

Aids the 

developer of the 

malicious app to 

keep track of 

user’s device and 

can include 

user’s device in 

device 

identifier, 

Voice Mail 

Box, Phone 

Number, 

SIM ID 

etc. 

malevolent 

activities using 

information 

gathered. 

Table 1 List of Dangerous Android Permission [18] 

2.3. Analysis Technique 

Control-flow analysis: Determining the order of execution of 

program statements or instructions. The control sequences are 

usually displayed as a control-flow graph (CFG). The CFG 

specifies all feasible routes of execution [19].  

Important control flow constructs: 

Method calls: program analysis to define the function calls 

receiver – e.g., virtual functions, function pointers: abstract 

interpretation, type structures and restriction. 

Basic block: Maximum sequence of successive statements 

with one entry point, one exit point and no inner branches. 

Loops: An iteration block of codes till a specified state is 

achieved. 

Data-flow analysis: Is a monitoring technique for how 

variables and values change through the flow of the program. 

It is a method for collecting data on the feasible set of values 

calculated at different points in a computer program. The 

control flow chart (CFG) of a program is used to determine 

those components of a program that could be propagated by a 

specific value allocated to a variable [20]. Compilers often 

use the data collected when optimizing a program for 

instance: 

𝑥 = 𝑐 + 𝑑; 

𝑥 =  10 ∗  7; 

It is easy for an optimizer to recognize that: a "useless" 

assignment is the first assignment tox, since the calculated 

value for x is never used (and thus the first statement can be 

removed from the program).  At compile time, the expression 

10 ∗  7 can be calculated, simplifying the second assignment 

statement to 𝑥 =  70; 

Points-to analysis: involves computing a static abstraction of 

all the data to which a pointer expression (or just a variable) 

may point during runtime of the program [21]. 

3. SUMMARY OF RELATED WORK BASED ON 

PERMISSIONS OF ANDROID APPS USING STATIC 

ANALYSIS 

Nearly 80 percent of the papers were based on static analysis 

as illustrated by the study. There is a lot of job done in static 
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analysis as described Table 2, and more needs to be explored 

to get greater precision with a minimum amount of 

characteristics, as fewer characteristics decrease regression 

and classification training and testing time and provide 

quicker reaction  [22]. 

There are different reviews which talked about static malware 

detection and their challenges. A framework for automatically 

analyzing permission use in Android apps was suggested and 

created. Permlyzer can analyze the use of permissions in 

Android apps accurately and thoroughly [23].Defines a 

strategy that uses system call log data to create a dataset [24]. 

This paper tackles the issue of android malware intrusion. Use 

Rotation Forest in this article to tackle the issue of android 

malware intrusion [25] .Table 2 provides a summary of the 

previous work based on static analysis. 

Ref Mechanis

m 

Malware 

Detection 

Rate/ 

Accuracy 

Strengths  Weakness 

[26] Stowaway Not 

Stated 

The 

authors 

tested 950 

applicatio

ns and 

used 

stowaway 

tool to 

detect 

over-

privilege 

android 

apps. 

Despite 

using 

Stowaway

, the tool 

is 

incapable 

of 

handling 

some 

multifacet

ed 

reflective 

calls. 

[27] Stowaway/ 

StackOverf

low 

Not stated This 

paper 

illustrated 

that the 

authors 

tested 

10,000 

apps and 

offered 

statistical 

models 

for 

envisagin

g 

permissio

n abuse 

and call 

for 

permissio

In this 

paper, 

Stowaway 

has been 

used 

together 

with 

Stack-

Over-

flow. But 

according 

to [26], is 

incapable 

of 

handling 

some 

complex 

reflective 

calls 

n 

document

ation. 

They 

instituted 

that the 

popularity 

of a 

permissio

n is 

sturdily 

related 

with its 

abuse, 

while 

other 

aspects 

such as 

effect and 

intrusion 

had little 

effect. 

[28] Web-based 

app  

Not stated The paper 

analyses 

500000 

apps for 

mobile 

device 

and the 

privileges 

they 

request 

using an 

algorithm 

of 

machine 

learning  

in order to 

rate the 

risk of an 

app for 

developer

s and user 

to adopt. 

The 

authors 

only 

mentione

d that the 

apps were 

extracted 

and 

permissio

n 

analyzed 

but no 

tool 

mentione

d or 

software 

that helps 

the 

developer

s or users 

to extract 

the APK 

file of an 

android 

app. 

[29] FAMOUS 99% This 

paper 

proposes 

a 

predictive 

The 

authors 

tested 

applicatio

ns and 
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forensic 

approach 

to detect 

suspicious 

android 

applicatio

ns based 

on a 

trained 

model 

called 

Forensic 

Analysis 

of mobile 

devices 

using 

scoring 

(FAMOU

S) which 

is 

intelligent 

to scan all 

the apps 

installed 

in the 

attached 

device 

and offer 

a 

descriptiv

e report. 

11,371 

apps 

tested. 

showed 

some 

suspicious 

APK file 

but they 

did not 

mentione

d the 

dataset. 

They did 

not 

mentione

d how 

many 

apps were 

tested to 

the 

devices 

attached 

to 

FAMOUS

. The 

procedure 

of testing 

apps 

using 

FAMOUS 

was not 

shown 

hence 

difficult 

for the 

developer

s or users 

to attest 

the tool. 

[30] Permission 

Manageme

nt App 

Not stated In this 

scheme, 

end-users 

can avert 

malware 

behavior 

from 

retrieving 

sensitive 

data and 

invoking 

sensitive 

API in 

real time. 

The 

explanatio

n 

The 

method 

incurs 

extra 

performan

ce cost. 

Their 

proposed 

scheme 

was not 

tested on 

a real 

mobile 

device 

hence 

their 

results 

upsurges 

the 

flexibility 

of 

managing 

permissio

n and 

advances 

the 

security 

and 

consistenc

y of data 

in mobile 

devices. 

The 

authors 

analyzed 

2,200 

apps. 

can be 

biased in 

the real 

world. 

[31] APK 

Auditor 

88% The 

authors 

tested 

8,762 

apps and 

classified 

them as 

malicious 

or benign 

successful

ly.  

The 

method 

employs 

the APK 

client, 

Database 

signatures 

and the 

central 

server. 

The 

disadvant

age to this 

method is 

that extra 

cost is 

incurred 

in setting 

up the 

tool for 

analysis. 

[32] RefinedDr

oid 

Not stated In this 

paper the 

authors 

tested 727 

apps to 

attest for 

fine-

grained 

permissio

n model 

which are 

The tool 

deployed 

in this 

research 

is that it 

modifies 

the APK 

file of 

applicatio

n during 

feature 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2019/187292                 Volume 6, Issue 5, September – October (2019)                            

  

 

 

ISSN: 2395-0455                                                  ©EverScience Publications   85 

    

REVIEW ARTICLE 

appropriat

e for 

many 

standard 

apps. This 

tool 

allows the 

user to 

lower the 

privilege 

level of 

permissio

n. 

extraction

. This 

may lead 

to 

exaggerat

ed 

outcomes. 

[33] APK 

Analyzer 

Not stated The 

authors 

supplied 

the 

dataset of 

576,174  

android 

apps 

while 

conductin

g the 

experimen

t for free 

android 

app and 

found 

there 

method to 

be better 

than those 

used by 

[34] 

which 

contains 

possible 

flaws that 

cause 

imperfecti

ons. 

The 

authors 

did not 

test paid 

applicatio

ns to 

determine 

effectiven

ess of 

their 

methodol

ogy. 

[35] Java-based 

custom 

built APK 

analyzer 

90% In this 

paper the 

authors 

develop 

and 

examine 

proactive 

Machine 

Learning 

approache

The 

authors 

used a 

small 

sample 

size of 

malware 

apps in 

there 

experime

s based on 

Bayesian 

classificat

ion 

intended 

to 

uncover 

unidentifi

ed 

Android 

malware. 

The 

authors 

tested 

2000 

permissio

n-based 

framewor

k.  

nt which 

might not 

be 

compared 

to authors 

using 

large 

samples 

in the 

experime

nt to 

depict 

model 

performan

ce. 

[36] DroidRay Not stated The 

authors 

tested 

24,259 

apps to 

show 

malware 

based on 

geographi

cal 

spread. 

The 

model 

helps to 

curb new 

form in 

which 

malware 

spreads 

out. 

Their 

model is 

not good 

enough 

since it 

did not 

mention 

the 

malware 

detection 

rate as 

compared 

to 

previous 

studies. 

[37] Weka tool Not 

Stated 

The 

authors 

used the 

machine 

based 

learning 

tool to test 

200 apps 

to extract 

permissio

ns in 

order to 

examine 

The 

authors 

tested a 

small 

sample 

size and 

they 

authors 

did not 

classify 

the 

malwares 

whether 
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whether 

they are 

malwares. 

they are 

infosteal, 

Trojan 

among 

others. 

[38] SherlockD

roid, 

(Alligator) 

98.04% The 

authors 

tested 

102,156 

apps 

using 

Alligator 

which is 

able to 

uncover 

unknown 

malware. 

The 

authors 

failed to 

explore 

new 

clusters 

and 

learning 

scripts. 

The 

authors 

abscond 

introducin

g weights 

on 

properties 

so that 

algorithm

s such as 

deviation 

do not 

deliberate 

each 

property 

with alike 

status 

[39] Apposcopy Not stated The 

authors 

evaluated 

their tool 

on a mass 

of 

available 

Android 

applicatio

ns and 

attest that 

it can 

efficiently 

and 

reliably to 

determine 

malware 

that fit to 

definite 

families. 

In this 

scheme it 

is difficult 

to design 

any 

signature 

oriented 

scheme 

like 

Apposcop

y since it 

can be 

defeated 

by 

obfuscatio

n scheme 

such as 

real 

coding. 

The 

authors 

tested 

11,215 

apps and 

found 16 

of them to 

be 

malwares.   

[40] Woodpeck

er 

Not 

Stated 

The 

author 

used their 

tool 

employin

g inter-

procedura

l data 

flow 

analysis 

scheme to 

exhaustiv

ely 

uncover 

possible 

capability 

disclosure

s where 

an 

unreliable 

app can 

acquire 

unlawful 

access to 

subtle 

data or 

restricted 

actions. 

The 

authors 

did not 

provide 

the 

dataset to 

assist in 

future 

studies. 

They only 

stated 

they 

tested 13 

permissio

ns in 

which 11 

were 

leaked 

[41] DroidAPI

Miner 

99% In this 

paper, the 

authors 

purpose to 

alleviate 

malware 

installatio

n via 

providing 

vigorous 

and 

frivolous 

classifiers

. The 

authors   

The 

authors in 

their 

experime

nt realized 

a big false 

positives 

and 

negatives 

of 2.2% 

but they 

did not 

attest 

where the 

problem 
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extensivel

y carry 

out an 

analysis 

to excerpt 

pertinent 

features 

regarding 

malware 

behavior 

netted at 

API level 

and 

appraised 

different 

classifiers 

by the 

produced 

feature set 

during the 

testing of 

3987 

apps. 

occurred 

during 

their 

analysis. 

 

[42] DNADroid Not stated  The tool 

adopted 

by authors 

in this 

study 

showed a 

very low 

false 

positive 

rate and 

confirmed 

that all 

141 apps 

identified 

by 

DNADroi

d are 

indeed 

replicas 

through 

visual or 

behavioral 

confirmati

on. 

The 

authors 

did not 

mentione

d the 

malware 

detection 

rate in 

their 

study. 

[43] DroidCha

meleon 

Not stated The 

authors 

found out 

that all the 

anti-

The 

authors 

failed to 

strength 

their 

malware 

products 

are 

susceptibl

e to 

common 

alterations

. 

studies 

but 

depicting 

the 

detection 

rate to 

show best 

their 

model is 

as 

compared 

to other 

existing 

literature. 

[44] CHEX Not stated The 

scholars 

presented 

a method 

to 

spontaneo

usly 

discern 

entry 

points in 

mobile 

app, as 

well as 

the new 

analysis 

model and 

attest that 

app 

splitting is 

effective 

and 

perfect 

way to 

model 

execution

s of 

manifold 

entry 

points and 

expedite 

universal 

data-flow 

scrutiny. 

The 

authors 

tested 

5486 real-

world 

This study 

did not 

put into 

considerat

ion the 

rate at 

which the 

malicious 

apps were 

discovere

d to 

support 

their 

study. 
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apps. 

[45] AndroSimi

lar 

94.4% The 

authors 

were able 

to 

discover 

malicious 

apps 

vigorousl

y using 

signature 

statistics 

in feature 

selection 

by 

deploying 

relationshi

p digest 

hashing 

scheme. 

In their 

approach 

the 

authors 

did not 

consider 

memory 

constrain  

in 

developin

g a robust 

family 

signature 

to identify 

variants 

with 

family 

illustrativ

e 

signatures 

[46] DroidBarri

er 

 The 

authors 

achieved 

high 

reassuranc

e by 

designing 

an 

verificatio

n model 

that uses 

protected 

applicatio

n 

IDs, 

preserved 

and 

secured 

by system 

runtime, 

to validate 

processes 

and put 

together 

their 

identity to 

genuine 

apps 

installed 

on the 

In their 

work the 

authors 

not focus 

on 

validating 

inter-

process 

communi

cations 

and 

authorizin

g 

admission 

to apps’ 

assets. 

android. 

Table 2 Strength and Weaknesses of selected related work 

based on permissions of android apps using static analysis 

4. REVERSE ENGINEERING OVERVIEW OF ANDROID 

APPLICATIONS 

According to [47], Reverse engineering is the analysis of a 

subject system for classifying system components and their 

interrelationships, and for providing a specific or higher 

degree of perception image of a process. Reverse engineering 

is just the process of examining the code-to-code but not 

changing or replicating the source codes [22].To perform 

inverse engineering .apk file needs to be decompiled which 

offers Dex and Android manifest file in an indecipherable 

format [48]. 

A number of arsenals are accessible for reverse engineering 

such as JD-GUI, DEX2JAR [49], APKTOOL [50], 

AXMLPRINTER2.JAR [51], ANDROGAURD[52]  and 

CLASSYSHARK [53].  Figure 1 depicts APK file conversion 

steps to obtain the original source code of the manifest file, 

resources and the java codes. 

 

Figure 1 Reverse Engineering of APK File 

In reverse engineering the APK file is extension is change 

from .apk to .zip and its contents extracted to obtain meta-inf, 

res, classes.dex, resources.arsc and the AndroidManifest.xml 

[54]. The contents are then extracted to a specified folder for 

analysis in the subsequent processes. The apktool.jar and the 

apktool.bat are utilized in a command prompt to obtain the 

manifest file and the java codes used as well as other 

resources as shown in Figure 1 which has been modified from 

the Pooja Singh et al. reference [55]. This process will enable 
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the user to study and analyze the permission model required 

by the application in order to install it unlike the dynamic 

analysis where the android application accessed the user’s 

device for the user to know the permission [56]. 

5. DISCUSSION 

In this paper, a review of about 48 articles were studied 

regarding to  static analysis in Android malware detection 

based on manifest file which contain permissions a user must 

accept before installing the application. Most of the android 

applications are created by hackers in order to steal private 

information of a user on the device. Previous researched 

studied in this work reveals the android manifest.xml file 

contain information that an application intend to do. For 

instance several manifest files contain the READ_CONTACT 

which reads and store all the personal contact of a user. These 

contacts will be used by the hackers for their ill intentions. In 

the internet several applications have been developed with 

productive names to perform a certain tasks but the android 

app does some different tasks like stealing photos and images 

from the user’s phone. In this view it is important to analyze 

the APK android file before allowing it to access to the user 

device. Static analysis is the best feature as compared to 

dynamic, hybrid and metadata where the APK conversion is 

done before installing the file to the user’s device. APK file 

cannot be studied without decompiling it to get the original 

source code. Since the manifest file contain the permission 

like WRITE_EXTERNAL_STORAGE, this permission will 

allow malware such as adware and other dangerous ones to be 

installed onto the user device and this will use the phone read 

access memory thus making the phone slow. Some of these 

adware are able to send and several SMS if the SEND_SMS 

and RECEIVE_SMS permissions are enabled. In this study, 

static analysis is recommended as its plusses outperforms the 

other APK analysis features. 

6. CONCLUSION 

In this work, the use of static malware detection in android 

malware apps was thoroughly reviewed. A comparison of 

current job has been provided with regard to certain criteria.  

The review identified knowledge gaps in the current job, 

highlighting significant problems and opening problems that 

will guide future study initiatives. Analysis of static Android 

malware dominates the current job. Future work may consider 

reviewing other methods such as dynamic studies or the use 

of methods of hybrid assessment or deployment of metadata. 

Except in a few cases, sharing research datasets and tools 

among researchers lingered unaddressed. Hardening deep 

learning models against various assaults on adversaries and 

detecting, describing and measuring concept drift are essential 

in future job on malware detection for Android. In addition, 

scientists need to bear in mind the restriction of deep learning 

techniques such as absence of transparency and its non-

autonomous model for building more effective models. 

Finally, the findings of this job can help encourage Android 

malware detection studies based on techniques of deep 

learning. 
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