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Abstract – Vehicular Ad Hoc Networks (VANETs) have gained 

prominence in vehicular communication due to their potential to 

enhance road safety, traffic efficiency, and infotainment services. 

However, the evolution of Stochastic VANETs (SVANETs) has 

introduced a layer of uncertainty, where vehicular interactions 

are influenced by dynamic factors such as varying traffic 

conditions, changing communication environments, and 

unpredictable link qualities. Routing within SVANETs presents 

distinct challenges stemming from the stochastic nature of the 

environment. Traditional routing protocols struggle to maintain 

reliable connections amidst fluctuating link conditions, leading to 

increased latency, dropped packets, and inefficient route 

utilization. The novel “Decisiveness PSO-Based Gaussian 

AOMDV (DPSO-GAOMDV) Routing Protocol” is introduced to 

address these challenges. This innovative protocol combines the 

predictive power of Gaussian-Anticipatory On-Demand Distance 

Vector (GAOMDV) routing with the dynamic adaptability of 

Particle Swarm Optimization (PSO). GAOMDV’s ability to 

anticipate link stability using Gaussian distribution is integrated 

with DPSO’s agility in optimizing routing decisions. The 

simulation phase of the study evaluates the DPSO-GAOMDV 

protocol under various stochastic vehicular scenarios. The 

protocol’s performance is thoroughly analyzed by emulating 

real-world traffic conditions and communication dynamics. The 

simulation results underscore the protocol’s efficacy in reducing 

route maintenance overhead, improved packet delivery ratios, 

and enhanced network stability. The predictive insights and 

dynamic optimization mechanisms showcase its potential to 

drive innovative, resilient and efficient routing strategies in the 

face of stochastic vehicular conditions. 

Index Terms – Ad Hoc Network, Bio-Inspired Optimization, 

Routing, Stochastic, VANET, Vehicle. 

1. INTRODUCTION 

Ad Hoc networks introduce a new dimension to connectivity, 

operating beyond the bounds of conventional setups. These 

networks establish real-time connections, enabling devices to 

communicate without rigid infrastructure. Ad Hoc networks 

exemplify adaptability and swift data exchange from 

emergency response scenarios to spontaneous gatherings. 

1.1. VANET 

Vehicular Ad Hoc Networks (VANETs) stand at the forefront 

of modern communication technologies, presenting a 

paradigm shift in transportation systems. These networks 

establish a novel means for vehicles to communicate 

seamlessly with each other and with roadside infrastructure, 

amplifying road safety, traffic management, and overall 

driving experiences[1]. Tailored as a specialized subset of 

Mobile Ad Hoc Networks (MANETs), VANETs are uniquely 

designed to address the dynamic challenges intrinsic to the 

vehicular environment. 

Within VANETs, vehicles are outfitted with wireless 

communication devices such as Wi-Fi or Dedicated Short-

Range Communication (DSRC) tools, cultivating an 

interwoven network on the road[2]. This interconnectedness 

spawns many applications to heighten road safety and traffic 

efficiency. Paramount among these is the real-time 

distribution of vital safety information - encompassing alerts 

about accidents, road impediments, and abrupt shifts in traffic 

conditions. Drivers can make enlightened choices by 
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disseminating these alerts to nearby vehicles, mitigating 

collision risks and averting traffic bottlenecks[3]. 

VANETs facilitate the actualization of intelligent traffic 

management systems. Through communication between 

vehicles and traffic infrastructure, such as traffic signals, 

traffic flow optimization, congestion reduction, and fuel 

efficiency augmentation are possible[4]. This bi-directional 

exchange underpins the implementation of adaptive traffic 

signal timing, where signals autonomously adapt based on 

prevailing traffic dynamics, culminating in fluid traffic 

patterns and minimized travel durations[5]. 

1.2. SVANET 

Stochastic Vehicular Ad Hoc Networks (SVANETs) represent 

an innovative evolution of traditional VANETs, introducing a 

probabilistic dimension to how vehicles communicate and 

interact on the road. In SVANETs, the focus shifts from 

deterministic models to embracing uncertainty and 

randomness inherent in real-world vehicular 

environments[6].SVANETs leverage stochastic processes to 

capture the unpredictable nature of vehicular behaviors, traffic 

patterns, and environmental conditions. Unlike conventional 

VANETs, where communication and decision-making are 

often based on fixed rules or predictions, SVANETs 

incorporate variability and randomness, making them better 

suited to handling traffic scenarios’ complex and ever-

changing nature[7]. 

These networks enable vehicles to make decisions based on 

probabilities and statistical information. This approach can 

lead to more adaptive and context-aware actions. For instance, 

a vehicle could calculate the probability of encountering 

congestion on different routes and choose the one with the 

lowest expected delay. Likewise, SVANETs can facilitate 

cooperative maneuvers, such as merging, where vehicles 

assess the likelihood of other vehicles’ responses before 

executing a lane change[8].SVANETs have applications in 

predicting traffic flow and congestion. By analyzing historical 

data and employing stochastic modeling techniques, these 

networks can generate probabilistic forecasts for traffic 

conditions, aiding in proactive traffic management strategies. 

This predictive capability can lead to optimized traffic flow 

and reduced congestion, benefiting individual drivers and 

overall transportation efficiency[9], [10]. 

Table 1 VANET and SVANET Difference 

Aspect VANET SVANET 

Communication Follows predefined protocols Incorporates stochastic processes 

Decision-Making Rule-based decisions Probabilistic decision-making 

Traffic Prediction Deterministic models Uses stochastic modeling for predictions 

Adaptability Less adaptable to variability Adapts to uncertain and random conditions 

Realism Reflects fixed scenarios Models real-world variability and randomness 

Traffic Management Standard strategies Optimizes based on probabilistic information 

Research Focus Communication efficiency Stochastic modeling and adaptive algorithms 

Challenges Handling topology changes Dealing with uncertainty and conflicting data 

1.3. Difference between VANET and SVANET 

VANET and SVANET are networks designed to improve 

vehicular communication and enhance transportation systems. 

While they share similarities in their objectives, SVANET 

introduces a significant twist by incorporating stochastic 

elements to better adapt to the unpredictable nature of real-

world traffic environments[11], [12]. Table 1 provides the 

difference between VANET and SVANET. 

1.4. Routing in SVANET 

Routing in SVANETs represents a critical aspect of managing 

vehicle communication in dynamic and uncertain traffic 
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environments. Unlike traditional vehicular networks, 

SVANETs integrate stochastic elements to accommodate the 

unpredictable nature of vehicular movements, traffic patterns, 

and communication conditions[13]. This introduces 

challenges and opportunities that require innovative routing 

approaches to ensure efficient data exchange and reliable 

connectivity[14]–[16]. In SVANETs, the primary goal of 

routing remains the same: to determine the optimal paths for 

data transmission between source and destination vehicles. 

The vehicular behavior’s dynamic and stochastic nature 

demands routing strategies that can adapt in real-time to 

varying conditions, such as changes in traffic density, road 

conditions, and communication quality. Due to the inherent 

uncertainty, traditional routing protocols designed for stable 

networks might not perform optimally in SVANETs[17]. 

1.4.1. Challenges in Routing in SVANET 

Routing in SVANETs presents notable challenges due to the 

dynamic and uncertain nature of vehicular environments: 

 Uncertain Communication: Fluctuating signal strengths 

and mobility affect communication quality, necessitating 

robust routing strategies. 

 Probabilistic Metrics: Selecting appropriate probabilistic 

metrics that capture both stochastic elements and network 

requirements is vital. 

 Cooperative Decisions: Enabling cooperative routing 

while addressing trust, privacy, and data reliability issues 

is crucial. 

 Resource Constraints: Creating routing algorithms that 

conserve vehicle resources while maintaining performance 

is a concern. 

 Real-Time Adaptation: Quick adaptation to changing 

conditions while minimizing disruptions is necessary. 

1.5. Problem Statement 

In SVANETs, efficiently navigating through varying traffic 

conditions and congestion is a substantial challenge. The 

unpredictable nature of vehicular movements and changing 

road conditions can lead to suboptimal route choices and 

increased travel times. Developing routing strategies that 

intelligently incorporate real-time traffic information and 

probabilistic modeling is essential to address this issue.  

The problem involves designing routing protocols that 

dynamically adapt to emerging traffic patterns, utilizing 

historical data and predictive models to make informed 

decisions. Integrating traffic and congestion awareness into 

SVANET routing can significantly improve overall network 

efficiency, reduce congestion-related delays, and enhance the 

driving experience. 

 

1.6. Motivation 

The motivation to address traffic awareness and congestion 

challenges in SVANETs arises from the pressing need to 

enhance traffic flow efficiency and reduce congestion-related 

delays. As urban roads become increasingly congested and 

traffic patterns unpredictable, traditional routing approaches 

often fail to optimize routes for real-time conditions. By 

devising routing strategies incorporating real-time traffic data 

and probabilistic models, we can unlock the potential to 

significantly improve vehicular navigation and overall 

network performance. The motivation stems from the vision 

of transforming SVANETs into more competent and 

responsive transportation systems, where vehicles 

intelligently adapt to traffic fluctuations, thereby minimizing 

travel times and contributing to more sustainable urban 

mobility.  

1.7. Objective 

The primary objective of this research is to develop novel 

routing mechanisms that enhance traffic awareness and 

congestion management within Stochastic Vehicular Ad Hoc 

Networks (SVANETs). This objective seeks to bridge the gap 

between traditional routing approaches and the dynamic 

nature of vehicular environments. By leveraging real-time 

traffic data and probabilistic modeling, we aim to design 

routing protocols that intelligently adapt to changing traffic 

patterns, optimizing efficient routes and minimizing 

congestion-related delays. The overarching goal is to create a 

responsive and adaptable SVANET infrastructure that 

empowers vehicles to make informed routing decisions, 

contributing to smoother traffic flow, reduced travel times, 

and improved overall road safety. 

1.8. Organization of the Paper 

In Section 1, the introduction provides an overview of the 

research, beginning with a description of VANET and 

SVANET. The section then delves into the differences 

between these two networks types and explores the challenges 

associated with routing in SVANET. Section 2 presents a 

comprehensive literature review, offering an in-depth analysis 

of prior research in the field. Section 3 introduces the 

Decisiveness PSO-Based Gaussian AOMDV (DPSO-

GAOMDV) Routing Protocol. This section highlights their 

differences, this covers key components such as Gaussian 

AOMDV, Particle Swarm Optimization (PSO), and 

Decisiveness Particle Swarm Optimization (DPSO). 

Additionally, it discusses the fusion of DPSO and GAOMDV 

to present a unified routing protocol. Section 4 details the 

simulation settings, providing information on the environment 

and metrics used in the evaluation process. Section 5 presents 

the results of the simulations and engages in a comprehensive 

discussion of DPSO-GAOMDV’s performance compared to 

other protocols. Finally, Section 6 provides a concise 
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conclusion summarizing the key findings, emphasizing the 

significance of DPSO-GAOMDV in SVANET routing and 

suggesting potential avenues for future research and protocol 

improvement. 

2. LITERATURE REVIEW 

“Trust-Based Geographic Routing (TRGV)” [18] is 

introduced as an advanced routing protocol designed for 

VANETs. This protocol leverages trust as a critical factor in 

route selection decisions. TGRV optimizes geographic 

routing paths by considering the trustworthiness of 

neighboring vehicles, ensuring reliable and secure data 

transmission. This approach enhances communication 

efficiency while mitigating the risks of malicious or 

compromised nodes. “Cauchy Density-Based Clustering 

(CDAC)” [19] is proposed as a clustering algorithm designed 

for VANETs in 3D road environments. This algorithm, named 

3D Cauchy Density-Based Algorithm for Clustering (CDAC), 

optimizes cluster formation by leveraging the Cauchy density 

function. By considering the spatial distribution of vehicles in 

three-dimensional road environments, CDAC forms clusters 

that accurately represent local vehicle concentrations. “Energy 

efficient clustering” [20] takes a dual-pronged approach to 

enhance energy conservation and routing efficiency. The 

protocol dynamically organizes vehicles into clusters, 

leveraging heuristic optimization techniques and effectively 

managing communication and resource allocation. By 

considering real-time data and vehicular movement patterns, 

HEC-HO Routing optimizes the formation and maintenance 

of clusters to minimize energy consumption while ensuring 

effective communication.  

“Particle Swarm Optimized OLSR with Enhanced Routing 

(PSO-OLSRER)” [21] revolutionizes VANET routing by 

integrating multi-objective particle swarm optimization into 

the OLSR protocol. PSO-OLSRER harnesses the power of 

real-time vehicle data and environmental insights to enhance 

routing decisions. By leveraging multi-objective optimization, 

the protocol tailors its parameters to minimize delays and 

maximize throughput while considering the dynamic nature of 

vehicular networks. “Adaptive Opportunistic Routing” [22] 

involves an intricate process of selecting the most suitable 

paths for message propagation. This process heavily relies on 

adaptively prioritizing candidate forwarding sets. The routing 

algorithm optimizes message delivery in dynamic vehicular 

environments by efficiently managing these sets. The 

approach leverages real-time information regarding vehicle 

movements, connectivity, and potential relay nodes to 

dynamically adjust forwarding priorities. “TS-CAGR: 

Geocast Routing” [23] introduces a novel geo-cast routing 

protocol named Traffic Sensitive Connectivity-Aware 

Geocast Routing (TS-CAGR) designed for the Internet of 

Vehicles (IoV). This protocol optimizes communication by 

considering both traffic conditions and connectivity aspects. 

TS-CAGR intelligently selects and routes messages to 

vehicles within a specific geographic area, ensuring efficient 

data dissemination while minimizing network congestion.  

“Obstacle Anticipation-Integrated Routing (OAIR)” [24] 

redefines VANET routing through the pioneering “Obstacle 

Prediction-Based Routing Protocol (OPBRP).” OAIR 

revolutionizes conventional routing strategies by seamlessly 

incorporating predictive obstacle mechanisms. Real-time 

input from vehicular sensors and environmental cues 

empowers OAIR to foresee upcoming obstacles such as traffic 

congestion, accidents, and roadblocks. “InfoWave System” 

[25] is proposed to efficiently model and analyze a traffic 

warning message dissemination system in VANETs. This 

innovative system capitalizes on the dynamic nature of 

VANETs by employing a decentralized approach, utilizing 

vehicle-to-vehicle communication to relay crucial traffic 

warning messages. “IoT-Powered GridEdge Solution” [26] is 

proposed to seamlessly integrate IoT and edge cloud 

computing to enable intelligent microgrid energy management 

in VANETs empowered by machine learning. This innovative 

approach leverages IoT sensors to gather real-time data from 

distributed energy resources within the microgrid.  

“AuthML-QoS Route Enhancer” [27] is proposed for a novel 

approach that combines bi-linear mapping and machine 

learning techniques to develop an authentication routing 

protocol to elevate the quality of service within VANETs. 

This innovative protocol employs bi-linear mapping for 

secure authentication, ensuring the validity of communication 

nodes. “Fog-ROCL: Optimal VANET Fog Deployment” [28] 

is proposed for an advanced approach that introduces Fog-

ROCL, a system focused on optimal configuration and 

localization of Fog-based Roadside Units (RSUs) within 

VANETs. By employing a fog computing paradigm, Fog-

ROCL strategically determines the ideal placement and 

configuration of RSUs to enhance network coverage, reduce 

latency, and ensure efficient data processing at the network 

edge. “CloudGuardKeyCheck: Real-time VANET Security” 

[29] is proposed for an innovative mechanism that introduces 

CloudGuardKeyCheck, designed to enhance cloud storage 

and security in VANETs. By integrating real-time cloud 

monitoring metrics, this system establishes an efficient 

essential validation process that ensures the integrity of data 

transmission and storage. “SSDN-Enhanced VANET 

Handover: Seamless Mobility” [30] is proposed for a 

sophisticated handover scheme that leverages Software-

Defined Vehicular Networking (SSDN) to optimize 

handovers within VANETs. By integrating the Media 

Independent Handover (MIH) framework, this system enables 

efficient transitions between different network access 

technologies while maintaining seamless connectivity.  

“Ant Colony Optimization-based Self-Healing Routing 

Protocol (ACO-SH)”[31] introduces an innovative approach 
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to enhancing the resilience of communication in dynamic 

networks. By harnessing the power of Ant Colony 

Optimization (ACO), this protocol ensures reliable data 

routing even in the face of disruptions. The protocol’s self-

healing capabilities allow it to detect and circumvent faulty 

routes, adapting in real-time to network changes. The protocol 

optimizes route selection, mitigates downtime, and enhances 

overall network robustness by emulating the behavior of ant 

colonies that find optimal paths. “Hybrid Genetic Firefly 

Algorithm-Based Routing Protocol (HGFA)”[32] is an 

advanced approach aiming to enhance the efficiency of data 

routing within VANETs. This innovative protocol combines 

the strengths of Genetic Algorithms (GA) and Firefly 

Algorithms (FA) to optimize route selection. The protocol 

adapts to dynamic network conditions and varying vehicular 

environments by iteratively evaluating and refining potential 

routes. The Genetic Algorithm phase focuses on selecting 

promising routes through crossover and mutation, while the 

Firefly Algorithm phase optimizes the selected routes by 

mimicking firefly behavior. 

2.1. Research Gap 

There is a significant research gap in developing routing 

protocols tailored to these networks’ stochastic and dynamic 

nature. SVANETs introduce unique challenges due to their 

inherent unpredictability and randomness in vehicular 

communication patterns. A critical research need lies in 

creating robust and adaptive routing protocols specifically 

designed to navigate the stochastic characteristics of 

SVANETs. These protocols should prioritize reliable data 

transmission and adaptability to dynamic changes in network 

conditions, including vehicular mobility patterns, varying 

densities, intermittent connectivity, and the stochastic 

behavior of vehicles. Additionally, addressing uncertainty in 

SVANETs is paramount, necessitating innovative solutions to 

optimize communication efficiency, enhance security, and 

efficiently allocate network resources in these unpredictable 

factors. Furthermore, research should explore novel 

techniques for optimizing energy consumption and 

minimizing latency, all while considering the stochastic 

nature of the network environment. The research gap in 

SVANETs calls for holistic and adaptive routing solutions to 

address vehicular communication’s inherent stochasticity and 

dynamism in these networks. 

3. DECISIVENESS PSO-BASED GAUSSIAN AOMDV 

(DPSO-GAOMDV) ROUTING PROTOCOL 

3.1. Gaussian AOMDV 

Gaussian AOMDV (GAOMDV) is an enhanced version of the 

Ad Hoc On-Demand Distance Vector (AOMDV) routing 

protocol, designed to improve the efficiency and adaptability 

of routing in mobile ad hoc networks. GAOMDV integrates 

Gaussian principles to optimize route selection based on a 

combination of performance metrics. The protocol focuses on 

latency, packet loss, and throughput to quantify route 

efficiency. Algorithm 1 provides the working of Gaussian 

AOMDV. 

3.1.1. Efficiency Quantification for Routes 

Gaussian AOMDV (GAOMDV) is the proposed enhancement 

of the Ad Hoc On-Demand Distance Vector (AOMDV) 

routing protocol using Gaussian principles. The initial step 

involves quantifying the efficiency of each discovered route 

𝑅𝑖. This process comprehensively considers key performance 

metrics such as latency (𝐿𝑖), packet loss (𝑃𝑖), and throughput 

(𝑇𝑖).Efficiency for each route is computed using Eq.(1). 

𝐸𝑖 = 𝑓(𝐿𝑖 , 𝑃𝑖 , 𝑇𝑖) (1) 

The outcome of Eq.(1) is a quantitative representation of a 

route’s effectiveness, and it is formed by amalgamating the 

significant performance metrics. 

3.1.2. Gaussian-Like Probability Allocation 

Central to the enhancement strategy is the innovative notion 

of allocating probabilities to routes by harnessing a Gaussian-

like distribution. This approach utilizes the calculated 

efficiencies to establish a distribution centred around the 

average efficiency �̅�. Subsequently, each route’s probability  

(𝑃𝑖) is determined through a dedicated function 𝑔 , 

contextualizing the route’s efficiency concerning the 

calculated average. The probability allocation process can be 

mathematically defined as Eq.(2). 

𝑃𝑖 = 𝑔(𝐸𝑖 , �̅�) (2) 

The probability allocation ensures that routes with higher 

efficiencies receive elevated probabilities, creating a dynamic 

framework for route selection. 

3.1.3. Dynamic Path Selection 

Integrating Gaussian principles into the enhancement involves 

introducing a dynamic path selection mechanism. Upon the 

necessity to transmit a data packet, the protocol strategically 

identifies the route𝑅𝑗  with the highest assigned probability 

(𝑃𝑗)  for data forwarding. This selection process can be 

represented mathematically as Eq.(3). 

𝑅𝑗 = arg𝑚𝑎𝑥𝑅𝑖𝑃𝑖  (3) 

By favoring the path with the highest probability, the protocol 

effectively prioritizes routes, demonstrating superior 

efficiencies. 

3.1.4. Adaptive Probability Updates 

A fundamental aspect of the Gaussian-based enhancement is 

its responsiveness to real-time network conditions. As data 
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packets traverse the network, the protocol continually updates 

efficiencies and recalculates probabilities based on current 

observations. This adaptability guarantees that probabilities 

remain synchronized with the evolving efficiency landscape, 

expressed in Eq.(4). 

𝑃𝑖(𝑡) = 𝑔(𝐸𝑖(𝑡), �̅�(𝑡)) (4) 

This dynamic adjustment mechanism enhances the protocol’s 

capability to make informed and optimized route selections, 

aligning with the network’s ever-changing dynamics. 

3.1.5. Enhanced Network Resilience 

The enhanced routing mechanism augments network 

resilience by imbuing the AOMDV protocol with Gaussian-

inspired principles. Routes with sustained historical 

efficiencies receive heightened probabilities, leading to a 

distribution of traffic that circumvents potential congestion 

points and optimizes overall data flow. 

3.1.6. Minimized Packet Loss and Latency 

The probabilistic path selection strategy in Gaussian-based 

AOMDV significantly reduces packet loss and latency. 

Efficient routes are favored, minimizing the chances of data 

loss and reducing delays in data delivery, which is particularly 

critical in dynamic ad hoc scenarios. 

Input: 

 Discovered routes 𝑅𝑖  with performance metrics: Latency 

(𝐿𝑖), Packet loss (𝑃𝑖), throughput (𝑇𝑖) 

 Current time 𝑡 

Output: 

 Selected route for data forwarding 𝑅𝑗 

Procedure: 

Step 1: Efficiency Quantification for Routes 

 For each route 𝑅𝑖, calculate efficiency 𝐸𝑖 using the given 

metrics: 𝐸𝑖 = 𝑓(𝐿𝑖 , 𝑃𝑖 , 𝑇𝑖) 

Step 2: Gaussian-Like Probability Allocation 

 Calculate the average efficiency �̅� across all routes. 

 For each route 𝑅𝑖, compute probability 𝑃𝑖  using a function 

𝑔 based on 𝐸𝑖 and �̅�:𝑃𝑖 = 𝑔(𝐸𝑖 , �̅�) 

Step 3: Dynamic Path Selection 

 When there’s a need to transmit a data packet: 

 Select the route 𝑅𝑗 with the highest assigned probability 𝑃𝑗 

for data forwarding. 

Step 4: Adaptive Probability Updates 

 Continuously update route efficiencies based on real-time 

observations. 

 Recalculate probabilities for each route using the updated 

efficiencies and the current average efficiency. 

Step 5: Enhanced Network Resilience 

 Favor routes with sustained historical efficiencies by 

assigning higher probabilities. 

Step 6: Minimized Packet Loss and Latency 

 Prioritize routes with elevated probabilities to reduce 

packet loss and latency during data forwarding. 

Algorithm 1 Gaussian AOMDV 

3.2. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) operates as a bio-inspired 

optimization method, drawing inspiration from the collective 

behavior of birds foraging for the best food source. A 

dynamic algorithm can efficiently tackle complex 

optimization problems across diverse domains. In PSO, a 

group of “particles” simulates the avian swarm, with each 

particle representing a potential solution. This abstraction 

allows the particles to traverse the solution space like birds 

exploring their environment. The process involves continuous 

refinement: particles adjust their solutions based on their 

successes (personal best) and the collective achievements of 

the swarm (global best). This cooperative exchange of 

information helps particles effectively navigate the complex 

landscape of possibilities, dynamically converging toward 

optimal solutions. PSO’s ability to replicate nature’s 

collaborative exploration makes it a versatile tool for solving 

intricate optimization challenges. 

At its core, PSO encapsulates the synergy between individual 

and group learning. With every iteration, particles adapt their 

trajectories influenced by their own past experiences and the 

accomplishments of their companions. This enables the 

algorithm to progressively fine-tune solutions while exploring 

new improvement avenues. The balance between exploitation 

and exploration mirrors the strategies employed by birds 

seeking sustenance in their habitats. By mimicking this 

process, PSO has demonstrated its prowess in addressing 

complex optimization problems in various fields, spanning 

engineering, economics, machine learning, and beyond. This 

innate ability to harness the essence of collective intelligence 

found in nature renders PSO a valuable and effective 

optimization approach. Algorithm 2 provides a structured and 

precise representation of the PSO process. 

Step 1: Initialization: Commence by initializing a collection 

of particles, analogous to birds, with random 

solutions and velocities. 
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Step 2: Evaluation: Assess the fitness of the solution 

proposed by each particle within the given problem 

domain. 

Step 3: Personal Best Tracking: Update each particle’s best 

solution based on its appraised fitness. This 

represents the most favorable solution the particle 

has discovered thus far. 

Step 4: Global Best Tracking: Determine the optimal 

solution among all particles, termed the global best. 

This signifies the optimal solution unearthed by any 

particle in the entire swarm. 

Step 5: Velocity Adjustment: Adapt the velocity of each 

particle contingent on its prevailing velocity, 

personal best, and global best. This guides particles 

toward enhanced solutions. 

Step 6: Solution Updating: Revise each particle’s position 

(solution) predicated on its present position and the 

recalibrated velocity. 

Step 7: Collaborative Search: Particles communicate 

indirectly by observing the accomplishments of their 

counterparts. They modify their trajectories to 

investigate regions where fellow particles have 

ascertained superior solutions. 

Step 8: Iterative Process: Recur through steps 2 to 7 for a 

predetermined number of iterations or until a 

satisfactory solution is achieved. 

Step 9: Convergence: As particles iterate, they gradually 

concentrate on sectors yielding superior outcomes, 

progressively converging towards the optimal 

solution. 

Algorithm 2 PSO 

3.2.1. Issues in PSO 

This research has identified the top five issues in PSO, 

summarized below: 

 Premature Convergence: PSO can converge too early to a 

suboptimal solution, missing the best overall solution. 

 Diversity Loss: The swarm might lose diversity, limiting 

solution space exploration. 

 Parameter Sensitivity: PSO’s performance heavily 

depends on parameter tuning, which can be challenging. 

 Scalability Concerns: PSO struggles with high-

dimensional and complex problems. 

 Variable Convergence Speed: Convergence can be fast in 

some cases but slow in others, influenced by factors like 

swarm size and parameters. 

This research attempts to overcome the issues in PSO by 

making significant modifications described in Section 3.3. 

3.3. Decisiveness Particle Swarm Optimization (DPSO) 

DPSO is a meta-heuristic algorithm to obtain the optimal CH 

of the cluster 𝑈𝑠  in the shortest amount of time. Let 𝐸𝑠 =

{𝑚1
𝑠, 𝑚2

𝑠 , 𝑚3
𝑠 , … . . 𝑚𝐷𝑠

𝑠 } be the searching space of cluster 𝑈𝑠 , 

where 𝑤 = 1,2,3, … . , 𝐷𝑠 and 𝑚𝑤
𝑠  represent the position of the 

SN 𝑒𝑤𝜔𝑈𝑠 . To find the SN 𝑒𝑤𝜔𝑈𝑠  with the best position 

𝑚𝑤
𝑠 𝜔𝐸𝑠 , which offers the minimal value of the fitness 

function 𝐺(𝑠, 𝑤), is the goal.  

3.3.1. Particle Representation and Initialization 

To find the best optimal solution in a search space of 𝑌 

dimensions, 𝐸, the PSO method is utilized, with a maximum 

and minimum search radius of 𝑅𝑀𝑎𝑥  and 𝑅𝑀𝑖𝑛 respectively. 

DPSO refers to each swarm member as a 𝑑𝑠 , 𝑠𝜔[1,2,3, … , 𝑇] 
particle, where 𝑇 > 1  is the swarm size. The particle 𝑑𝑠  is 

entirely defined by its present position in the vector 𝑃𝑠,𝑦
𝑎 𝜔𝐸, 

its current velocity 𝑅𝑠,𝑦
𝑎 , and its best position 𝑀𝑠,𝑦

𝑎 𝜔𝐸, where 

𝑦  is the dimension of the vectors, at each iteration 𝑎 =
1,2,3, …  These scalars are represented as Eq.(5) to Eq.(7) 

𝑃𝑠,𝑦
𝑎 = (𝑝𝑠,1

𝑎 , 𝑝𝑠,2
𝑎 , … . . 𝑝𝑠,𝑦

𝑎 )
𝐹
, (5) 

𝑅𝑠,𝑦
𝑎 = (𝑟𝑠,1

𝑎 , 𝑟𝑠,2
𝑎 , … . . 𝑟𝑠,𝑦

𝑎 )
𝐹

 (6) 

𝑀𝑠,𝑦
𝑎 = (𝑚𝑠,1

𝑎 , 𝑚𝑠,2
𝑎 , … . . 𝑚𝑠,𝑦

𝑎 )
𝐹
 (7) 

For instance, if 𝑦 = 2 , then 𝑃𝑠,2
𝑎 = (𝑝𝑠1

𝑎 , 𝑝𝑠2
𝑎 ),  , and 𝑅𝑠,2

𝑎 =
(𝑟𝑠1
𝑎 , 𝑟𝑠2

𝑎 ),  and 𝑀𝑠,2
𝑎 = (𝑚𝑠1

𝑎 , 𝑚𝑠2
𝑎 ).  The particle 𝑑𝑠  moves 

because the vector changes its position 𝑅𝑠,𝑦
𝑎 , which is a 

position shift that can be changed. The vector 𝑀𝑠,𝑦
𝑎  describes 

the most advantageous personalized position that the particle 

𝑑𝑠  has ever been in 𝐸  up to iteration 𝑎  (i.e., the position 

corresponding to the best fitness value).  

3.3.2. Fitness Function and Best Position Updates 

The efficiency of particle 𝑑𝑠 at point 𝑃𝑠,𝑦
𝑎  is measured using a 

fitness function 𝑔 that is relevant to the problem to be solved, 

where 𝑔: 𝐵𝑦 → 𝐵 . The function of fitness 𝑔  takes as a 

parameter 𝑃𝑠,𝑦
𝑎  and returns a significant value that can be 

compared to the value of 𝑔(𝑃𝑠,𝑦
𝑎−1). The issue of identifying 

the significant (i.e., minimal) value with the best fitness value 

is expressed as Eq.(8). 

𝑃𝑠,𝑦
𝑎 = {

𝑃𝑠
𝑎−1𝑔(𝑃𝑠,𝑦

𝑎 ) > 𝑔(𝑃𝑠,𝑦
𝑎−1)

𝑃𝑠,𝑦
𝑎  𝑔(𝑃𝑠,𝑦

𝑎 ) ≤ 𝑔(𝑃𝑠,𝑦
𝑎−1)

 (8) 
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Eq.(9) is expressed to identify the maximal best fitness value. 

𝑃𝑠,𝑦
𝑎 = {

𝑃𝑠
𝑎−1𝑔(𝑃𝑠,𝑦

𝑎 ) < 𝑔(𝑃𝑠,𝑦
𝑎−1)

𝑃𝑠,𝑦
𝑎  𝑔(𝑃𝑠,𝑦

𝑎 ) ≥ 𝑔(𝑃𝑠,𝑦
𝑎−1)

 (9) 

3.3.3. Global Best Position Update 

The local optimal position, denoted by the vector 𝑆𝑠,𝑦
𝑎 , is 

derived from the particle’s 𝑑𝑠 implicit information exchange 

with a subset of the swarm located nearby. The vector 𝑆𝑠,𝑦
𝑎 is 

referred to as a global best position vector 𝑗𝑦
𝑎, and is given as 

Eq.(10) if the particle 𝑑𝑠considers all of the people in it as its 

topological neighbors. 

𝑗𝑦
𝑎 =

{
𝑎𝑟𝑔 [𝑚𝑎𝑥 (𝑔(𝑀1,𝑦

𝑎 ), 𝑔(𝑀2,𝑦
𝑎 ),… . . 𝑔(𝑀𝑇,𝑦

𝑎 ))] ,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

𝑎𝑟𝑔 [𝑚𝑖𝑛 (𝑔(𝑀1,𝑦
𝑎 ), 𝑔(𝑀2,𝑦

𝑎 ),… . . 𝑔(𝑀𝑇,𝑦
𝑎 ))] ,𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

       (10) 

3.3.4. Setup and Maintenance Phases 

Two key phases are involved in implementing the PSO 

algorithm: (i) Setup and (ii) Maintenance. In the setup phase, 

𝐸 is filled with a random distribution of particles. The particle 

𝑑𝑠 is used to symbolize a potential answer to the given 

problem. In the maintenance phase, this research utilizes the 

particle’s location to determine the value of 𝑀𝑠,𝑦
𝑎 . Based on 

Eq.(10), the optimal swarm position is defined as the 

particle’s location with the highest fitness value or 𝑗𝑦
𝑎. 

The operational stage is carried out in a series of iterations 

using Eq.(11) and Eq.(12). Each particle’s location and 

velocity 𝑑𝑠 are modified during each iteration, that is 𝑎 + 1. 

𝑃𝑠,𝑦
𝑎 = 𝑃𝑠,𝑦

𝑎−1 + 𝑟𝑠,𝑦
𝑎  (11) 

And 

𝑅𝑠,𝑦
𝑎 = 𝜛𝑅𝑠,𝑦

𝑎−1 + 𝛿1𝜑1⨀(𝑀𝑠,𝑦
𝑎 − 𝑃𝑠,𝑦

𝑎 )

+ 𝛿2𝜑2⨀(𝑗𝑦
𝑎 − 𝑃𝑠,𝑦

𝑎 ) 
(12) 

Where 𝜛 is the inertial mass or the constriction coefficient 

that determines how much the prior velocity affects the 

present velocity. The value denotes the particle’s cognitive 

weighting factor 𝛿1, whereas the constant denotes the social 

weighting factor of a swarm 𝛿2. In addition, both 𝜑1 and 𝜑2  

in the range [0,1] have evenly distributed random vectors. 

Hadamard product comprises two matrices of the same size, 

denoted by the symbol ⨀ . Thanks to the first phrase in 

Eq.(12), parties seek a larger region and expand their 

horizons. 

The data of the particle 𝑑𝑠  is included in the second term 

(𝑀𝑠,𝑦
𝑎 − 𝑃𝑠,𝑦

𝑎 ), and it is referred to as a cognitive term. Since 

the third term (𝑗𝑦
𝑎 − 𝑃𝑠,𝑦

𝑎 )  depends on input from other 

particles (i.e., knowledge gained through the collaboration of 

the particles), it is labeled as a “social term.” There is an 

effect on a particle’s velocity from the second and third terms. 

A maximum iteration count, denoted by 𝑀𝑎𝑥.  

3.3.5. Adjustment Phase 

The adjustment phase involves four types of DPSO updates: 

Particle Velocity Update, Global Best Velocity Update, 

Present Phase Velocity Update, and Final Velocity Update. 

(i). Particle Velocity Update 

In this stage, the DPSO initiates by updating the velocities of 

individual particles within the swarm. Each particle’s velocity 

is adjusted based on its current velocity, the cognitive 

component (personal best), the social component (global 

best), and the present phase. The inertia weight used in this 

stage is recalculated to influence the balance between 

exploration and exploitation.  

This recalculated inertia weight governs the particle’s 

responsiveness to its own experience and the experiences of 

others. By recalibrating the inertia weight, the algorithm aims 

to ensure a controlled search space exploration while 

maintaining a bias towards exploiting promising solutions. 

(ii). Global Best Velocity Update 

After the initial velocity update, the DPSO progresses to stage 

two, which focuses on updating the velocities of particles 

based on the global best solution found within the swarm. 

Similar to the first stage, the inertia weight is recalculated to 

adjust the balance between exploration and exploitation, 

considering the influence of the global best. This stage 

reinforces the convergence of particles towards the most 

promising solution found by any particle in the swarm. 

(iii). Present Phase Velocity Update 

Moving on to stage three, the DPSO refines the particles’ 

velocities based on the optimization process’s current phase. 

Again, the inertia weight is recalculated, emphasizing the 

present phase’s influence. This phase-dependent recalibration 

allows the algorithm to adapt its exploration and exploitation 

strategies according to the optimization progression, fine-

tuning the search trajectory as it moves toward convergence. 

(iv). Final Velocity Update 

The fourth and final stage involves updating the velocities of 

particles while integrating the recalculated inertia weight. 

This stage considers the cumulative influence of the particle’s 

experience, the global best, and the current phase.  

This final velocity update optimizes the trade-off between 

exploration and exploitation while aligning with the 

optimization progress by utilizing the inertia weight adjusted 

throughout the algorithm’s stages. 
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3.3.6. Iterative Updates 

The time required to perform the DPSO algorithm is 

expressed as Eq.(13) and Eq.(14). 

𝑅𝑠,𝑦
𝑎 = 𝜛𝑅𝑠,𝑦

𝑎−1 + 𝛿1𝜑1⨀(𝑀𝑠,𝑦
𝑎−1 − 𝑃𝑠,𝑦

𝑎−1)

+ 𝛿2𝜑2⨀(𝑗𝑦
𝑎−1 − 𝑃𝑠,𝑦

𝑎−1) 
(13) 

And 

𝑃𝑠,𝑦
𝑎 = {

𝑅𝑠,𝑦
𝑎     𝑖𝑓 𝑏 < 0.5

𝑃𝑠,𝑦
𝑎−1 + 𝑅𝑠,𝑦

𝑎     𝑖𝑓 𝑏 ≥ 0.5
 (14) 

Where 𝑏 respresents the random value between 0 and 1, i.e., 

𝑟𝑎𝑛𝑑[0,1]. 

The total number of times the particle 𝑑𝑠 falls into its local 

minimum is indicated as 𝑍𝑠
𝑎 . In the beginning, when 𝑎 = 0, 

all particles have a value of 0 for 𝑍𝑠
𝑎. The changes specified in 

Eq.(15) are incorporated to 𝑍𝑠
𝑎 for 𝑎 ≥ 1. 

𝑍𝑠
𝑎 = {

𝑍𝑠
𝑎−1 + 1    𝑖𝑓 𝑔(𝑃𝑠,𝑦

𝑎 ) > 𝑔(𝑃𝑠,𝑦
𝑎−1)

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (15) 

3.3.7. Reactive Adjustment and Particle Adaptation 

The particle 𝑑𝑠 will reach its local minimum at iteration 𝑎 and 

continue to stay with the same value till 𝑡 iterations. If 𝑍𝑠
𝑎 =

𝑡 , then the 𝐴𝑃  gets enabled, and the following steps are 

carried out for all 𝑑𝑠: 

The 𝐴𝑃 component is shifted to the particle 𝑑𝑠 as expressed in 

Eq.(16). 

𝑃𝑠,𝑦
𝑎 = 𝑃𝑠,𝑦

𝑎−1⊙ 𝑟𝑎𝑛𝑑(𝑅𝑀𝑖𝑛 , 𝑅𝑀𝑎𝑥) (16) 

The 𝐴𝑃 determines the magnitude of the particle 𝑑𝑠  and the 

velocity vector |𝑅𝑠,𝑦
𝑎 | . The set of velocities for individual 

particles has their local minima and a set of velocity vector 

magnitudes denoted by 𝐸. To determine 𝑁, the 𝐴𝑃 uses the 

data from set 𝐸, iteration 𝑎, and stage 𝑒𝑤. Eq.(17) is applied 

to calculate the value of N. 

𝑁 =

{
 
 
 

 
 
 

𝑚𝑎𝑥(𝐸)−min(𝐸)

max(𝐸)
,    𝑎 < 𝛽1, |𝐸| > 0                            

𝑚𝑎𝑥(𝐸)−𝑎𝑣𝑔(𝐸)

max(𝐸)
,    𝛽1 ≤ 𝑎 < 𝛽2, |𝐸| > 0                  

0.1 + (0.8 × (1 −
𝑎

𝑀𝑎𝑥𝐼𝑡
)),     𝛽2 ≤ 𝑎 < 𝛽3, |𝐸| > 0

(𝑀𝑎𝑥𝐼𝑇−𝑎)

𝑀𝑎𝑥𝐼𝑇
,       𝛽2 ≤ 𝑎 < 𝛽3, |𝐸| > 0                         

0.8647,                 |𝐸| = 0                                                     

  (17) 

The particle with the best possible global location at iteration 

𝑎 has a velocity of 𝑅𝑦
𝑎 . With the help of magnitude values 

|𝑅𝑦
𝑎−1|  and |𝑅𝑦

𝑎|  and a random number generator 𝑙 =

𝑟𝑎𝑛𝑑(0,1), the 𝐴𝑃 revises the inertia weight value 𝜛 and the 

same is expressed in Eq.(18). 

𝜛𝑎 =

{
 
 

 
 −𝑁 ×

|𝑅𝑦
𝑎|

|𝑅𝑦
𝑎−1|

,   𝑙 ≤ 0.5

𝑁 ×
|𝑅𝑦

𝑎|

|𝑅𝑦
𝑎−1|

,   𝑙 > 0.5

 (18) 

Algorithm 3 provides the overall working of DPSO. 

Input: 

 𝐸𝑠: Search space for a cluster 𝑈𝑠. 

 𝑦: Dimension of particle vectors. 

 𝑅𝑀𝑎𝑥: Maximum search radius for velocities. 

 𝑅𝑀𝑖𝑛: Minimum search radius for velocities. 

 𝑇: Swarm size. 

 𝑀𝑎𝑥𝐼𝑡: Maximum number of iterations. 

 β1,β2,β3: Threshold values for adaptive adjustment. 

 𝑡: Threshold for enabling Adjustment Phase (AP) mode. 

 Fitness function 𝑔(𝑃𝑠,𝑦
𝑎 ). 

Output: 

 Optimized positions of particles within the search space. 

Procedure: 

Step 1: Initialization 

 Initialize particles with random positions within the 

search space. 

 Set the initial velocities of particles to zero. 

 Initialize the best positions of particles with their initial 

positions. 

Step 2: Algorithm Execution (for each iteration a): 

Repeat Step 3 to 

Step 3: Update each particle’s velocity using cognitive and 

social components: 

 Calculate the cognitive component based on the 

difference between the particle’s current and best 

positions. 

 Calculate the social component based on the difference 

between the particle’s current and global best positions. 

 Update the particle’s velocity using inertia weight, 

cognitive, and social components. 
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Step 4: Update each particle’s position using its velocity 

Step 5: Update 𝑍𝑠
𝑎 for each particle 

 If the fitness of the current position is better than the 

fitness of the previous position, increment 𝑍𝑠
𝑎. 

Step 6: If 𝑍𝑠
𝑎reaches the threshold t, activate AP mode 

 Randomly adjust the particle’s position within the search 

space. 

 Calculate a value 𝑁 based on thresholds β1,β2,β3, and the 

number of particles with better fitness. 

 Update the inertia weight 𝜛𝑎 based on 𝑁 

Step 7: Evaluate the fitness of each particle’s new position 

and update the global best position. 

Step 8: Termination 

 Repeat the algorithm for a total of 𝑀𝑎𝑥𝐼𝑡 iterations. 

Algorithm 3 DPSO 

3.4. Difference 

The significant differences between PSO and DPSO are 

provided in Table 2. 

Table 2 Difference between PSO and DPSO 

Parameter PSO DPSO 

Inertia Weight Fixed weight throughout. Adapts inertia weight based on N. 

Global Best Update Fitness-based global best update. Updates global best position based on 

fitness improvements. 

Adaptive Mechanism Lacks adaptive adjustments. Integrates adaptive exploration-

exploitation strategy based on 𝑍𝑠
𝑎and 𝑡. 

Combatting Convergence Susceptible to early convergence. Designed to mitigate early convergence 

through adaptability. 

Speed Update Relying on personal and social 

experiences. 

Integrating personal, social, and adaptive 

experiences. 

Exploration Range Fixed radius values Dynamic radius values 

Performance Evaluation Comparing current and previous 

states. 

Evaluating fitness values for progress. 

Global Best Update Updating based on improved 

individuals. 

Incorporating better fitness for global 

updates. 

3.5. Fusion of DPSO and GAOMDV 

Fusing the Gaussian-AOMDV routing protocol can lead to a 

more robust and efficient routing algorithm for wireless ad 

hoc networks. This fusion leverages the strengths of both 

approaches to enhance network performance, adapt to 

dynamic changes, and optimize route selection. The 

pseudocode of DPSO-GAOMDV is provided in Algorithm 4. 

Step 1: Initial Route Discovery 

 GAOMDV: Nodes initiate route discovery based on 

Gaussian predictions of link stability. Routes are 

established using the most stable links. 

 DPSO: Particles can be used to explore initial routes with 

the consideration of predicted link stability as a fitness 

metric. 

Step 2: Link Stability Prediction 

 GAOMDV: Continuously predicts link quality using 

Gaussian distribution. 

 DPSO: Utilizes DPSO’s adaptive mechanism to adjust 

particle behavior based on the predicted link stability. 

Step 3: Adaptive Routing 

 GAOMDV: Routes adapt to predicted link failures. 

 DPSO: Adaptive behavior helps particles explore 

alternative routes in response to changing link stability 

predictions. 

Step 4: Path Optimization 

 GAOMDV: Focuses on stable links, reducing route 

maintenance. 
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 DPSO: Optimizes routes based on dynamic factors, 

including predicted link stability and network parameters. 

Step 5: Route Maintenance 

 GAOMDV: Minimizes route updates due to proactive link 

stability prediction. 

 DPSO: Further reduces route updates by intelligently 

adapting particle movements. 

Step 6: Robustness Enhancement 

 Combined Approach: The fusion enhances overall 

network robustness by proactively adapting routes to 

predicted and real-time changes. 

Algorithm 4 DPSO-GAOMDV 

4. SIMULATION SETTING 

Table 3 Simulation Setting 

Parameter Values 

Channel WirelessChannel 

Data type Varying Bit Rate (VBR) 

MAC protocol IEEE 802.11p 

Network interface WirelessPhy 

Number of nodes 6 to 60 

Packet size 1000 bytes 

Propagation model Two Ray Ground 

Simulation Object Urban area, Highway scenario 

Simulation area 12 km × 6 km 

Simulation time 300 seconds 

Transport protocol TCP 

Transmission power 20 dBm (100 mW) 

Transmission range 300 meters 

Vehicles speed Average: 25 m/s, Max: 35 m/s 

NS-3, the Network Simulator 3, is a pioneering platform that 

propels network simulation into the future. Tailored for 

researchers, engineers, and educators, NS-3 empowers them 

to unravel the complexities of communication networks. Its 

precise emulation of diverse network topologies, including 

wireless and vehicular scenarios, makes it an indispensable 

tool. NS-3’s modular structure allows customization, enabling 

the creation of novel protocols and models. It serves as an 

extensive laboratory for performance evaluation and refining 

networking solutions. Bolstered by a vibrant community, NS-

3 offers a wealth of resources and collaboration, fostering 

knowledge exchange. NS-3 is not just a simulator; it’s a 

catalyst for innovation, pushing the boundaries of network 

understanding and technology evolution. The setting for 

evaluating this research work against the state-of-the-art 

routing protocols is provided in Table 3. 

5. RESULTS AND DISCUSSION 

5.1. Packet Delivery and Drop Ratio 

Packet Delivery Ratio is a performance metric that measures 

the percentage of packets successfully delivered from the 

source to the destination out of the total packets generated. A 

higher PDR indicates better performance as it signifies a 

higher proportion of packets successfully reaching their 

intended destination. It is given by the Eq.(19): 

𝑃𝑎𝑐𝑘𝑒𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑖𝑜

=  
𝑁𝑜. 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡
𝑋100 (19) 

 

Packet Drop Ratio is a performance metric that measures the 

percentage of packets that were dropped or lost during 

transmission. A lower Packet Drop Ratio is desirable as fewer 

packets are lost or discarded during transmission. It is given 

by the Eq.(20). 

𝑃𝑎𝑐𝑘𝑒𝑡 𝐷𝑟𝑜𝑝 𝑅𝑎𝑡𝑖𝑜

=  
𝑁𝑜. 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡
𝑋100    (20) 

 

 

Figure 1 Packet Delivery and Drop Ratio 
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The results presented in Figure 1 show the Packet Delivery 

Ratio and Packet Drop Ratio for three different routing 

protocols: ACO-SH, HGFA, and DPSO-GAOMDV. Each 

protocol’s unique characteristics or mechanisms contribute to 

their respective results. Table 4a and Table 4b indicates the 

appropriate values of Figure 1. 

Table 4a Packet Delivery Ratio 

Nodes ACO-SH HGFA DPSO-GAOMDV 

6 47.08 50.45 73.82 

12 45.06 47.81 73.14 

18 42.75 45.02 72.19 

24 42.07 44.39 69.56 

30 40.39 43.56 67.75 

36 35.18 41.64 66.84 

42 30.83 39.66 65.22 

48 29.28 37.01 64.03 

54 27.26 35.15 61.86 

60 24.43 33.35 59.74 

Average 36.43 41.80 67.42 

Table 4b Packet Drop Ratio 

Nodes ACO-SH HGFA 
DPSO-

GAOMDV 

6 52.92 49.55 26.18 

12 54.94 52.19 26.86 

18 57.25 54.98 27.81 

24 57.93 55.61 30.44 

30 59.61 56.44 32.25 

36 64.82 58.36 33.16 

42 69.17 60.34 34.78 

48 70.72 62.99 35.97 

54 72.74 64.85 38.14 

60 75.57 66.65 40.26 

Average 63.57 58.20 32.58 

ACO-SH appears to have the lowest Packet Delivery Ratio 

among the three protocols. This could be due to the nature of 

ant colony optimization, where the behavior of artificial ants 

might not optimally adapt to dynamic network changes. Self-

healing mechanisms in this protocol might focus more on 

recovery than optimizing the overall packet delivery process, 

leading to a comparatively lower PDR. The higher Packet 

Drop Ratio suggests that packet loss due to suboptimal path 

choices or insufficient self-healing adjustments might be more 

prevalent. HGFA shows a better Packet Delivery Ratio 

compared to ACO-SH. Using hybrid genetic and firefly 

algorithms could contribute to more efficient path selection 

and optimization, improving packet delivery. The genetic 

algorithm’s evolutionary mechanisms and the firefly 

algorithm’s attraction-based characteristics might collectively 

enhance the routing decisions. The Packet Drop Ratio is 

moderate, indicating that the hybrid approach effectively 

reduces packet loss. 

DPSO-GAOMDV exhibits the highest Packet Delivery Ratio 

among the three protocols. This can be attributed to the 

integration of PSO and Gaussian AOMDV routing. PSO’s 

cooperative search and optimization abilities might enable the 

protocol to find efficient paths more effectively. The Gaussian 

AOMDV’s multipath approach could enhance reliability. The 

lower Packet Drop Ratio suggests that this protocol’s 

combination of optimization and multipath routing leads to 

fewer dropped packets. The differences in Packet Delivery 

Ratio and Packet Drop Ratio among the protocols can be 

linked to the unique characteristics of each protocol. Factors 

such as optimization algorithms, adaptability to network 

changes, and multipath routing strategies play pivotal roles in 

determining the protocols’ effectiveness in delivering packets 

successfully while minimizing packet loss. 

5.2. Throughput 

Throughput is a performance metric that measures the rate at 

which data is successfully transmitted from source to 

destination over a network. It represents the amount of data 

transmitted in a given time interval. Throughput is typically 

measured in kilobits per second (Kbps). Higher throughput 

values indicate that the network can transmit data more 

efficiently and faster, resulting in better performance. 

Mathematically, throughput can be defined as Eq.(21). 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

=  
𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑎𝑡𝑎 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
 × 100 

(21) 

Figure 2 illustrates the throughput results for three routing 

protocols: ACO-SH, HGFA, and DPSO-GAOMDV. The 

unique characteristics and mechanisms of each protocol 

contribute to their respective throughput results provided in 

Table 5. 
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Figure 2 Throughput 

ACO-SH exhibits the lowest throughput values among the 

three protocols. This can be attributed to the inherent 

characteristics of the ant colony optimization algorithm and 

the self-healing mechanism. While ant colony optimization 

effectively finds paths, it might introduce additional overhead 

due to the pheromone-based communication and exploration 

process. Moreover, though beneficial for network resilience, 

the self-healing aspect can lead to longer route discovery 

times and increased latency.  

These factors collectively result in lower throughput, as the 

focus on robustness and recovery comes at the expense of raw 

data transmission speed. The moderate throughput values 

observed with HGFA are influenced by its hybrid approach 

that integrates genetic and firefly algorithms. The genetic 

algorithm’s evolutionary mechanisms enable the protocol to 

converge towards optimized paths over time.  

The firefly algorithm’s attraction-based nature aids in 

effective path exploration. However, while these algorithms 

enhance path selection, they may not thoroughly prioritize 

data transmission speed. The moderate throughput values can 

be attributed to a trade-off between optimization and 

transmission efficiency. 

DPSO-GAOMDV demonstrates the highest throughput values 

among the three protocols. This can be attributed to the 

incorporation of PSO and Gaussian AOMDV routing. PSO’s 

cooperative optimization capabilities facilitate the discovery 

of efficient paths for data transmission. The Gaussian 

AOMDV’s multipath approach enhances reliability and 

allows for concurrent data transmission. The protocol’s focus 

on optimization and efficient path diversification contributes 

to the higher throughput values. The emphasis on optimizing 

paths for speed while maintaining reliability results in 

superior data transmission rates. 

Table 5 Throughput 

Nodes ACO-SH HGFA 
DPSO-

GAOMDV 

6 31.46 44.23 71.47 

12 31.97 44.77 73.62 

18 32.64 46.32 75.98 

24 33.76 46.62 76.26 

30 34.43 48.06 80.65 

36 35.13 48.87 80.97 

42 39.16 50.64 81.12 

48 39.96 50.74 82.15 

54 40.31 51.77 84.69 

60 40.92 52.47 87.35 

Average 35.974 48.449 79.425 

The differences in throughput results among the routing 

protocols directly reflect their unique characteristics and 

mechanisms. The balance between optimization, self-healing, 

and path diversification is pivotal in determining data 

transmission efficiency. While some protocols prioritize 

robustness and recovery, others balance optimization and 

transmission speed. The protocol with the optimal balance 

achieves higher throughput values, signifying its capacity to 

transmit data more efficiently and rapidly. 

5.3. Delay 

Delay is a critical performance metric in networking that 

measures the time data packets travel from the source to the 

destination through a network. It indicates the time delay 

experienced by data as it traverses various network 

components, such as routers, switches, and links. Delay is 

typically measured in milliseconds (ms) and encompasses 

various components, including processing, queuing, 

transmission, and propagation delays. A lower delay value 

indicates faster data transmission and a more responsive 

network, crucial for real-time applications like voice and 

video communication. Mathematically, the total delay 

experienced by a packet can be defined as the sum of these 

individual components, and Eq.(22) represents the same. 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑙𝑎𝑦 =  𝑃𝑟𝑜𝐷 +  𝑄𝑢𝑒𝐷 +  𝑇𝑟𝑎𝐷𝑒𝑙𝑎𝑦 
+  𝑃𝑟𝑜𝑝𝐷 

(22) 

Where 𝑃𝑟𝑜𝐷  indicates Processing Delay, 𝑄𝑢𝑒𝐷  indicates 

Queuing Delay, 𝑇𝑟𝑎𝐷𝑒𝑙𝑎𝑦 indicates Transmission Delay, and 

𝑃𝑟𝑜𝑝𝐷 indicates Propagation Delay. 
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The delay values for ACO-SH are the highest among the three 

protocols. This can be attributed to the inherent characteristics 

of ant colony optimization and the self-healing mechanism. 

The iterative nature of ant colony optimization may introduce 

processing and queuing delays as the protocol explores 

various paths before making a decision. While enhancing 

network resilience, the self-healing mechanism can lead to 

longer route discovery times and increased queuing delays. 

These factors contribute to the higher delay values, as the 

protocol emphasizes network robustness more than 

minimizing data transmission time. HGFA demonstrates 

moderate delay values. The hybrid approach involving genetic 

and firefly algorithms aims to balance optimization and 

minimize delays. While these algorithms contribute to 

efficient path selection, they may introduce some processing 

and queuing delays during optimization. The protocol’s 

ability to find reasonably optimized paths while considering 

transmission efficiency results in moderate delay values. 

 

Figure 3 Delay 

DPSO-GAOMDV exhibits the lowest delay values among the 

three protocols. This is due to PSO integration and Gaussian 

AOMDV routing. PSO’s optimization capabilities enable the 

protocol to identify paths with lower delays. Additionally, the 

multipath nature of Gaussian AOMDV helps reduce 

propagation delays by utilizing multiple paths concurrently. 

The protocol’s focus on optimization and efficient path 

diversification leads to the lowest overall delays. 

The delay results reflect the interplay between each protocol’s 

optimization mechanisms, path selection strategies, and their 

prioritization of network resilience versus data transmission 

efficiency. While some protocols lean toward robustness and 

recovery, others balance optimization and delay reduction. 

The protocol achieving the optimal balance achieves the 

lowest delay values, signifying faster data transmission and a 

more responsive network. Table 6 provides the result values 

of Figure 3. 

Table 6 Delay 

Nodes ACO-SH HGFA 
DPSO-

GAOMDV 

6 12837 10285 7644 

12 12872 10348 7670 

18 12894 10666 7723 

24 12931 10723 8949 

30 13149 10874 9166 

36 13364 10934 9512 

42 13472 11057 9549 

48 13588 11461 9590 

54 13635 11730 9593 

60 13922 12774 10233 

Average 13266.4 11085.2 8962.9 

5.4. Energy Consumption 

Energy Consumption is a crucial performance metric in 

networking that quantifies the energy consumed by network 

devices and components during data transmission and 

communication. It reflects the efficiency of a network in 

utilizing energy resources for its operations. Energy 

consumption is particularly significant in wireless and mobile 

networks where limited battery capacities often constrain 

devices. Reducing energy consumption is essential to extend 

the operational lifetime of network devices and minimize the 

need for frequent battery replacements or recharging. 

Mathematically, energy consumption can be defined in 

Eq.(23). 

Energy Consumption 
=  Power Consumption ×  Time  

(23) 

Where 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  represents the rate at which 

energy is consumed by a device, 𝑇𝑖𝑚𝑒 denotesthe duration of 

data transmission or communication. Figure 4 presents the 

energy consumption results for three routing protocols: ACO-

SH, HGFA, and DPSO-GAOMDV. Each protocol’s unique 

characteristics and mechanisms contribute to their respective 

energy consumption results, as expressed in Table 7. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223430                 Volume 10, Issue 5, September – October (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       864 

     

RESEARCH ARTICLE 

 

Figure 4 Energy Consumption 

ACO-SH demonstrates the highest energy consumption 

values among the three protocols. This can be attributed to ant 

colony optimization and the self-healing mechanism. Ant 

colony optimization involves iterative exploration and path 

selection, which may lead to higher power consumption due 

to repeated computation. The self-healing aspect might also 

contribute to energy inefficiency by prolonging route 

discovery and maintenance processes, consuming more 

energy over time. HGFA exhibits moderate energy 

consumption values. The hybrid approach involving genetic 

and firefly algorithms balances optimization and energy 

efficiency. While these algorithms introduce some 

computational overhead, the protocol’s focus on finding 

reasonably optimized paths helps manage power 

consumption. The protocol aims to optimize paths while 

mindful of energy constraints, leading to moderate energy 

consumption values. 

DPSO-GAOMDV demonstrates the lowest energy 

consumption values among the three protocols. Integrating 

PSO and Gaussian AOMDV routing contributes to optimized 

path selection and reduced power consumption. PSO’s 

optimization capabilities enable the protocol to find energy-

efficient paths. The multipath nature of Gaussian AOMDV 

can distribute energy usage across multiple paths, minimizing 

the strain on individual links and devices. The protocol’s 

optimization focuses and path diversification result in lower 

overall energy consumption. 

The differences in energy consumption among the protocols 

directly result from their unique characteristics and 

mechanisms. The trade-off between optimization, self-

healing, and energy efficiency influences power consumption 

during data transmission. While some protocols prioritize 

robustness and recovery, others emphasize optimization and 

energy-efficient routing. The protocol that strikes the right 

balance achieves the lowest energy consumption values, 

indicating efficient utilization of energy resources. 

Table 7 Energy Consumption 

Nodes ACO-SH HGFA 
DPSO-

GAOMDV 

6 70.855 52.738 39.504 

12 71.964 54.29 39.97 

18 74.249 56.707 40.56 

24 77.561 57.329 41.443 

30 78.621 57.861 43.369 

36 80.817 65.25 48.045 

42 82.981 65.855 49.229 

48 84.152 68.085 49.511 

54 85.102 70.31 51.113 

60 86.975 72.505 51.8 

Average 79.328 62.093 45.454 

5.5. Network Lifetime 

Network Lifetime is a crucial performance metric in wireless 

and mobile networks that estimates the duration for which the 

network can operate effectively without needing to replace or 

recharge network nodes’ energy sources (typically batteries).  

It reflects the sustainability of a network in terms of energy 

consumption and efficiency. Maximizing network lifetime is 

essential to ensure continuous and reliable network operation, 

mainly when nodes have limited energy resources. A longer 

network lifetime indicates efficient energy utilization and a 

more sustainable network. Mathematically, network lifetime 

can be defined in Eq.(24): 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =

 
𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑈𝑛𝑖𝑡 𝑇𝑖𝑚𝑒
  ×  100  (24)     

 

Where 𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦  indicates the total energy 

available in the network, and 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑈𝑛𝑖𝑡 𝑇𝑖𝑚𝑒  represent 

the average rate at which energy is consumed by the network. 

Figure 5 presents the network lifetime results for three routing 

protocols: ACO-SH, HGFA, and DPSO-GAOMDV. Each 

protocol’s unique characteristics and mechanisms contribute 

to their respective network lifetime results, which are 

provided in Table 8. 
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Figure 5 Network Lifetime 

ACO-SH demonstrates the shortest network lifetime among 

the three protocols. This can be attributed to the 

characteristics of ant colony optimization and the self-healing 

mechanism. Ant colony optimization involves iterative 

exploration of paths, leading to repeated computations that 

consume energy. Moreover, while enhancing network 

resilience, the self-healing mechanism may prolong route 

discovery and maintenance, contributing to higher energy 

consumption.  

These factors collectively result in a shorter network lifetime, 

as the protocol prioritizes network robustness and recovery 

over energy conservation. HGFA presents a moderate 

network lifetime. The hybrid approach balances optimization 

and energy efficiency by integrating genetic and firefly 

algorithms. While these algorithms introduce some 

computational overhead, the protocol focuses on identifying 

reasonably optimized paths that effectively manage energy 

consumption. The protocol’s optimization goal is influenced 

by energy constraints, leading to a compromise between 

network longevity and optimized path selection, resulting in a 

moderate network lifetime. 

DPSO-GAOMDV exhibits the most extended network 

lifetime among the three protocols. Integrating PSO and 

Gaussian AOMDV routing contributes to optimized path 

selection and efficient energy consumption. PSO’s 

optimization capabilities enable the protocol to discover 

energy-efficient paths. The multipath nature of Gaussian 

AOMDV balances energy usage across multiple paths, 

preventing undue energy depletion. The protocol’s 

optimization focus and energy-efficient routing strategies 

culminate in the most extended network lifetime. 

Table 8 Network Lifetime 

Nodes ACO-SH HGFA 
DPSO-

GAOMDV 

6 18.71 44.43 60.17 

12 17.86 43.59 59.64 

18 15.04 40.14 58.14 

24 12.61 38.46 57.29 

30 11.53 31.39 56.26 

36 10.63 25.04 55.99 

42 8.33 23.62 49.61 

48 7.68 23.04 48.59 

54 6.12 21.76 47.38 

60 4.41 21.69 44.55 

Average 11.291 31.316 53.761 

The network lifetime results result from the intricate interplay 

between the protocols’ unique characteristics and 

mechanisms. The equilibrium between optimization, self-

healing, and energy efficiency significantly influences energy 

consumption and, consequently, the network’s operational 

duration. While some protocols emphasize robustness and 

recovery, others centre around energy-efficient routing and 

path optimization. The protocol that adeptly balances these 

factors achieves the most extended network lifetime, 

indicating an optimal utilization of energy resources and a 

sustainable network operation over an extended period. 

6. CONCLUSION 

The emergence of Stochastic VANETs (SVANETs) has 

ushered in a new era of challenges and complexities in 

vehicular communication. The uncertainties brought about by 

dynamic traffic patterns, varying communication landscapes, 

and unpredictable link qualities have necessitated innovative 

routing solutions. The “Decisiveness PSO-Based Gaussian 

AOMDV (DPSO-GAOMDV) Routing Protocol” is a potential 

routing protocol in this domain. By fusing the predictive 

capabilities of Gaussian-Anticipatory On-Demand Distance 

Vector (GAOMDV) routing with the dynamic adaptability of 

Particle Swarm Optimization (PSO), the DPSO-GAOMDV 

protocol offers a robust approach to addressing the intricate 

challenges of SVANET routing. As demonstrated through 

extensive simulations under realistic stochastic vehicular 

scenarios, its performance showcases its ability to optimize 

routing decisions while reducing maintenance overhead and 

improving network stability. The DPSO-GAOMDV 

protocol’s potential to navigate the uncertainties of SVANETs 

and provide efficient and resilient routing solutions 
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underscores its relevance in enhancing vehicular 

communication, safety, and overall network performance in 

dynamically evolving environments. 
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