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Abstract – In the transformative landscape of mobile edge 

computing (MEC), where the convergence of computation and 

communication fuels the era of ubiquitous connectivity, 

formidable challenges loom large. The burgeoning demand for 

real-time, data-intensive applications places unprecedented 

pressure on existing infrastructure, demanding innovative 

solutions to address the intricate web of challenges. This paper 

embarks on a compelling journey through the realm of MEC, 

uncovering the multifaceted challenges that have hitherto 

impeded its seamless integration into our digital lives. As the 

proliferation of mobile devices and their insatiable appetite for 

data strain the network's capacity, latency becomes a formidable 

adversary, threatening the integrity of applications requiring 

split-second responsiveness. Furthermore, the capricious nature 

of mobile devices and their mobility introduces an unpredictable 

dynamism into the network topology, rendering traditional 

traffic control approaches ineffective. The consequence is a 

tangled web of congestion, resource underutilization, and 

compromised Quality of Service (QoS), all of which hinder the 

realization of MEC's full potential. In response to these 

challenges, we unveil a pioneering solution—a QoS-aware 

Adaptive Data Dissemination Engine (QADE) paired with 

Dynamic Traffic Flow Control (DTFC). This synergistic model 

augments the capabilities of MEC deployments by harnessing 

the power of content-based routing and advanced optimization 

techniques. QADE, with its innovative utilization of Elephant 

Herding Particle Swarm Optimizer (EHPSO), refines data 

dissemination processes with an unprecedented focus on QoS 

metrics. Temporal delay, energy consumption, throughput, and 

Packet Delivery Ratio (PDR) become our guiding stars in the 

quest for routing efficiency. By harnessing this wealth of 

information, QADE emerges as a beacon of efficiency, driving 

latency to its lowest ebb, magnifying bandwidth, mitigating 

packet loss, elevating throughput, and rationalizing operational 

costs. DTFC complements this endeavor by dynamically steering 

traffic flows by edge processing capacity, thereby circumventing 

congestion pitfalls and achieving resource utilization efficiency 

hitherto considered unattainable. In a series of exhaustive 

evaluations, our proposed QADE with DTFC emerges as a 

beacon of hope, surpassing traditional methodologies. With an 

8.5% reduction in latency compared to RL, a 16.4% reduction 

compared to MTO SA, and an impressive 18.0% reduction 

compared to HFL, it ushers in a new era of real-time data 

dissemination. By championing QoS awareness, adaptability, 

and efficiency, this study catapults mobile edge computing into a 

future defined by resource optimization and stellar network 

performance, ushering in an era where challenges bow before 

innovation processes. 

Index Terms – Data, Dissemination, Trust, Routing, Data Flow, 

Control, Scenarios. 

1. INTRODUCTION 

Mobile Edge Computing (MEC) has emerged as a promising 

paradigm to address the challenges of latency-sensitive 

applications and the exponential growth of data in the era of 

the Internet of Things (IoT) and 5G networks. MEC enables 

low-latency and high-bandwidth services that support a 

variety of applications, such as real-time video streaming, 

augmented reality, smart cities, and autonomous vehicles, by 

bringing computation and storage resources closer to the 

network's edge [1, 2, 3]. Effective data distribution and 

dynamic traffic flow management are indispensable for 

optimizing network performance and ensuring Quality of 

Service (QoS) guarantees in MEC deployments. However, 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223420                 Volume 10, Issue 5, September – October (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       729 

     

RESEARCH ARTICLE 

current approaches frequently fall short of addressing these 

obstacles adequately. Traditional routing protocols for the 

dissemination of data do not adequately account for temporal 

factors such as delay, energy consumption, throughput, and 

Packet Delivery Ratio (PDR) levels of nodes, which results in 

sub-optimal routing decisions. Similarly, the lack of dynamic 

traffic flow control mechanisms based on edge capacity 

impedes the efficient allocation and use of resources. To 

overcome these limitations, this paper proposes a novel 

method that combines Content-based routing for Adaptive 

Data Dissemination and Elephant Herding Particle Swarm 

Optimizer (EHPSO) for Dynamic Traffic Flow Control. 

Instead of solely relying on network topology, content-based 

routing enables the network to route data based on its content, 

allowing for more efficient and intelligent dissemination. 

EHPSO, a variant of Particle Swarm Optimization (PSO), is 

utilized to dynamically control traffic flows based on the 

processing capabilities of edge devices & sets. 

Adaptive Data Dissemination Engine (QADE) with Dynamic 

Traffic Flow Control (DTFC) for MEC deployments. During 

the adaptive data dissemination process, QADE improves 

routing performance by considering nodes' temporal delay, 

energy consumption, throughput, and PDR levels, resulting in 

decreased latency, increased bandwidth, decreased packet 

loss, enhanced throughput, and decreased overall costs. 

Existing strategies are insufficient for addressing the unique 

obstacles presented by MEC deployments. Therefore, this 

research is required. Our proposed method outperforms 

conventional routing protocols and traffic control mechanisms 

by emphasizing temporal considerations and taking into 

account the distinctive characteristics of edge computing 

environments. This paper proposes a QoS-aware and efficient 

solution for adaptive data dissemination and dynamic traffic 

flow control in MEC to fill an augmented set of gaps in the 

existing literature for real-time scenarios via Federated 

Learning (FL) operations [4, 5, 6]. 

There are numerous use cases and applications for the 

proposed strategy. Low-latency and high-bandwidth data 

dissemination are required for seamless user experiences in 

scenarios such as real-time video streaming, augmented 

reality applications, and connected autonomous vehicles. Our 

method improves the overall network performance by 

enhancing routing efficiency and traffic flow control, enabling 

faster data transmission, reduced delays, increased resource 

utilization, and higher QoS for a variety of MEC applications. 

Utilizing Content-based routing for Adaptive Data 

Dissemination and EHPSO for Dynamic Traffic Flow Control 

yields significant benefits. Content-based routing enables 

intelligent routing decisions based on data content, resulting 

in effective dissemination by avoiding unnecessary hops and 

making use of relevant nodes. EHPSO controls traffic flow 

dynamically based on the processing capabilities of edge 

devices, optimizing resource allocation and balancing network 

load. These methods are ideal for MEC deployments due to 

their decreased latency, enhanced bandwidth utilization, 

increased throughput, and lower cost compared to existing 

methods. 

An effective Adaptive Data Dissemination Engine with DTFC 

for Mobile Edge Computing Deployments is presented in this 

study. To demonstrate the strength of the proposed model, 

section 2 of the literature review includes detailed discussions 

of a number of the most recent methodologies. In section 3, a 

proposed methodology that combines Dynamic Traffic Flow 

Control (DTFC) and a QoS-aware Adaptive Data 

Dissemination Engine (QADE) is addressed. Section 4 of this 

article contains an explanation of the outcome and its 

analysis. The performance of the recommended model was 

evaluated and its future scope was described in section 5. 

2. LITERATURE REVIEW 

Adaptive Data Transmission: Mobile edge computing (MEC) 

deployments require efficient data dissemination to ensure 

timely and reliable data delivery while optimizing network 

resources. Several models and protocols have been proposed 

to address the challenges posed by adaptive data distributions 

[7, 8, 9]. 

Flooding-based dissemination, in which data packets are sent 

to all network nodes, is a prevalent method. While flooding 

ensures extensive coverage, it often results in redundant 

transmissions, excessive energy consumption, and network 

congestion. Diverse optimization strategies have been 

proposed as solutions for these issues. The Gradient-based 

Routing (GR) algorithm, for instance, gives nodes closer to 

the sink a higher priority, thereby reducing the number of 

redundant transmissions [10, 11, 12]. However, GR does not 

consider temporal factors, which can result in sub-optimal 

routing decisions in dynamic MEC environments. 

Information is also disseminated via a random peer-to-peer 

process through a gossip-based dissemination method. By 

leveraging the mobility of nodes, gossip protocols like 

Epidemic and Spray-and-Wait achieve high coverage and 

robustness. However, these protocols have a significant delay 

and may not guarantee the delivery of data reliably. 

Content-based routing has gained popularity as an efficient 

data distribution method in MEC. By analyzing the contents 

of data packets, routing decisions can be made based on the 

packets' proximity to their final destinations and their relative 

importance. Content-based routing reduces unnecessary 

transmissions, conserves energy, and increases the 

effectiveness of routing. Examples include COIN, SPIN, and 

Directed Diffusion. However, the majority of existing 

content-based routing protocols do not account for temporal 

factors such as delay, energy consumption, throughput, and 

Packet Delivery Ratio (PDR), limiting their efficacy in 

dynamic MEC environments [13, 14, 15]. 
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Effective traffic flow control is necessary for optimizing 

resource utilization and ensuring QoS guarantees in MEC 

deployments. In numerous ways, existing models and 

algorithms address these issues. Traditional traffic flow 

control mechanisms, such as static routing and load balancing, 

have limitations in dynamic MEC environments. These 

mechanisms frequently utilize static configurations and do not 

adapt to changing network conditions, resulting in sub-

optimal resource allocation and utilization via the Main Task 

Off-loading Scheduling Algorithm (MTOSA) process [16, 17, 

18]. In addition, traditional load balancing techniques do not 

take the processing power of edge devices into account, which 

is essential for effective traffic flow management [19, 20]. 

Particle Swarm Optimization (PSO) is widely employed in 

MEC for dynamic traffic flow management. PSO is a 

metaheuristic optimization algorithm inspired by the behavior 

of social organisms such as flocks of birds and schools of fish. 

PSO has been expanded to address traffic flow control issues 

by adjusting routing decisions dynamically based on the 

capacity of edge devices. EHPSO (Elephant Herding Particle 

Swarm Optimization) uses PSO to balance network load by 

considering the processing capabilities of edge devices. 

EHPSO dynamically routes traffic to nodes with available 

processing capacity, reducing congestion and optimizing 

resource utilization via Hierarchical Federated Learning 

(HFL) process [21, 22, 23]. 

Existing models [24, 25] for adaptive data distribution and 

dynamic traffic flow management in MEC have made 

significant contributions. Temporal aspects such as delay, 

energy consumption, throughput, and PDR must be 

considered to optimize routing decisions and traffic flow 

control in dynamic MEC environments. In this regard, 

however, the majority of these models have limitations. 

Moreover, traditional routing and traffic control mechanisms 

frequently lack the adaptability to adapt to changing network 

conditions and fail to utilize the processing power of edge 

devices. These limitations necessitate the development of 

novel approaches, such as the proposed QoS-aware Adaptive 

Data Dissemination Engine with Dynamic Traffic Flow 

Control, which integrates content-based routing and EHPSO 

to overcome these obstacles and enhance MEC deployment 

performance levels. 

Table1 Summarization Table 

Method Description Advantage Challenges Ref. 

Flooding-based 

Dissemination 

Data packets are sent to 

all network nodes. 

Extensive coverage leads 

to redundancy, energy 

consumption, and 

congestion. 

Wide coverage 

Simplicity 

Redundant transmissions 

Energy consumption 

Network congestion 

[7, 8, 9] 

Gradient-based Routing 

(GR) 

Nodes closer to the sink 

get higher priority, 

reducing redundancy. 

Reduces redundancy 

Sub-optimal routing 

decisions in dynamic 

MEC environments 

[10, 11, 12] 

Particle Swarm 

Optimization (PSO) 

Optimization algorithm 

for traffic flow. 

Dynamically adjusts 

routing based on edge 

device capacity.  

Dynamically adjusts 

routing decisions 

Balances network load 

Need to consider 

processing power of edge 

devices Implementation 

complexity 

[21, 22, 23] 

3. PROPOSED ENGINE WITH DTFC FOR MEC 

Based on the review of existing dissemination models used 

for mobile edge deployments, it can be observed that these 

models either increase the computational complexity of these 

deployments or have lower efficiency when used for large-

scale scenarios. To overcome these issues, this section 

discusses the design of an efficient QoS-aware adaptive data 

dissemination engine with DTFC for mobile edge computing 

deployments. As per Figure 1, the proposed model uses an 

Elephant Herding Particle Swarm Optimizer (EHPSO) for the 

selection of optimal dissemination paths, which assists in the 

deployment of an efficient QoS-aware adaptive data 

dissemination engine for underlying edge device sets. These 

paths selected by EHPSO are processed by a Q Learning 

Model, which assists in the identification of optimal data 

rates. This allows the model to incorporate Dynamic Traffic 

Flow Control (DTFC) into the edge devices for heterogeneous 

communication requests. The proposed work makes several 

significant contributions to the field of mobile edge 

computing (MEC).  

Firstly, it introduces an innovative approach to efficient data 

dissemination within MEC deployments. By leveraging the 

Elephant Herding Particle Swarm Optimizer (EHPSO) for 

path selection, the model substantially enhances the efficiency 

of content-based routing. This contribution addresses the 

challenges associated with scalability and computational 
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complexity often encountered in existing dissemination 

models used for large-scale scenarios. 

Central to the proposed model is the introduction of the QoS-

aware Adaptive Data Dissemination Engine (QADE). QADE 

optimizes data dissemination by taking into account critical 

metrics such as temporal delay, energy consumption, packet 

delivery ratio (PDR), and throughput. This holistic approach 

to QoS awareness represents a significant contribution, as it 

ensures that data reaches its intended destination efficiently 

while maintaining a high level of service quality. 

Moreover, the model seamlessly incorporates Dynamic 

Traffic Flow Control (DTFC), further augmenting its 

capabilities. DTFC is a dynamic traffic management 

mechanism that intelligently allocates communication 

requests to available resources based on edge processing 

capacity. This contribution is vital for optimizing resource 

utilization and preventing congestion in MEC deployments, 

thus enhancing the overall network performance. 

The proposed model's empirical performance evaluation is 

another noteworthy contribution. Through rigorous 

assessments conducted under diverse network scenarios, the 

model provides empirical evidence of its effectiveness. It 

demonstrates superior performance compared to existing 

models, underscoring its potential to significantly improve 

real-time data dissemination and traffic management in edge 

computing environments. 

Ultimately, the core contribution of this work lies in its 

advancement of Quality of Service (QoS) within MEC. By 

optimizing data dissemination efficiency, traffic flow control, 

and resource utilization, the model addresses the specific 

challenges posed by the dynamic nature of edge computing. 

In doing so, it contributes practically viable solutions for real-

world MEC deployments, making a substantial step towards 

enhancing the overall QoS and performance of edge networks. 

To perform these tasks, the model initially collects spatial and 

temporal network parameters, and processes them via EHPSO 

Model, which works via the following process, 

 The EHPSO Model initially generates an augmented set of 

Particles, each of which individually selects a group of 

stochastic nodes via equation 1, 

P =⋃STOCH(1, NN)… (1)

N

i=1

 

Where represents the number of routing nodes in the edge 

network, represents the total number of nodes that must be 

selected for routing operations which is estimated via 

equation 2, while is the set of nodes that are stochastically 

selected by the process. 

N = STOCH(LR ∗ NN,NN)… (2) 

Where, represents the learning rate for the PSO Process 

(which is empirically selected between 0 & 1), while 

represents a stochastic process. The stochastic model adds 

dynamicity to the process. 

 Based on this path selection, an effective fitness level is 

calculated for the path via equation 3, 

f = ∑
d(i − 1, i)

E(i − 1)
∗ ∑ D(j) ∗

e(j)

PDR(j) ∗ THR(j)

NC(i)

j=1

N(P)

i=2

… (3) 

Where represents the number of temporal communications 

done by the nodes, represents the distance between the nodes 

which is estimated via equation 4, and residual energy of the 

nodes, represents temporal values of delay, energy consumed, 

packet delivery ratio & throughput during temporal 

communications, which are estimated via equations 5, 6, 7, & 

8 as follows, 

d(i, j) = √
(x(i) − x(j))

2
+ (y(i) − y(j))

2
+

(z(i) − z(j))
2 … (4) 

Where, are the approximate locations of participating edge 

nodes? 

D(i) = ts(complete, i) − ts(start, i) … (5) 

Where, represents the timestamp at which the temporal 

communications were completed & started respectively under 

real-time scenarios. 

e(i) = E(start, i) − E(complete, i)… (6) 

Where, represents residual energy of the nodes. 

PDR(i) =
Rx(i)

Tx(i)
… (7) 

Where, represents the total number of received and 

transmitted packets while serving temporal requests. These 

evaluations assist in adding temporal metrics to the evaluation 

process. 

THR(i) =
Rx(i)

D(i)
… (8) 

 This process is repeated for all Particles, and based on this, 

values of Global Best are estimated via equation 9, 

GBest = Min(f) … (9) 



Optimizer, which works as per the following operations, 

For each of the particles, mark the Global Best as the 

'Matriarch' Herd Particle, Estimate the fitness threshold via 

equation 10. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223420                 Volume 10, Issue 5, September – October (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       732 

     

RESEARCH ARTICLE 

 

Figure 1 Design of the Proposed Model for Optimal 

Dissemination & Flow Control Operations 

fth =
1

NP
∑ f(i) ∗ LR

NP

i=1
…(10) 

Particles (or Herds) having fitness above are reconfigured via 

equation 11, 

P(New, i) = P(Old, i) + LS ∗ (f(ew, i) − f(Matriarch))

+ LC (f(New, i) − Max(f(i)))… (11) 

Particles (or Herds) having fitness below are reconfigured as 

follows, 

For the remaining particles, calculate a 2nd level threshold via 

equation 12. 

fth(2) = fth ∗
LS

LS + LC
… (12) 

All Particles that have fitness lower than are passed directly 

to the next iteration, while others are reconfigured via 

equation 13, 

P(New, i) = P(Old, i) + LS ∗ (f(ew, i) − f(Matriarch))

+ LC(f(New, i)

− ∑
f(j)

N(f > fth(2))

f>fth(2)

j=1

)… (13) 

This process is repeated for Iterations, and new Particles 

(Herds) are generated with highly efficient dissemination 

configurations. 

After completion of all Iterations, the model can identify edge 

nodes with higher dissemination efficiency in terms of delay, 

energy, PDR, and throughput levels. As this is an infinite 

optimization task, the model doesn't wait for convergence but 

selects the path based on the last iteration sets. This is done by 

selecting the Particle configuration that has lower fitness 

levels. After completion of this process, an efficient Q 

Learning-based model is used, which assists in the selection 

of optimal data rates for individual edge nodes. To perform 

this task, an augmented Q Value is estimated for each of the 

nodes via equation 14, 

Q = ∑ PDR(i) ∗
DR(i)

e(i)

N(P)

i=1

… (14) 

After completion of such communications, another Value is 

estimated, based on which the Q Learning Model calculates 

an augmented reward factor via equation 15, 

r =
Q(New) − Q(Old)

LR
− d ∗ Max(Q) + Q(New)… (15) 

Where, is the discount factor, which is empirically selected 

for the learning operations? If the reward value is less than 1 

for any node, then its data rate is modified via equation 16, 

DR(New) = DR(Old) ∗
r

|1 − r|
… (16) 

Based on this new data rate, the model can tune the traffic 

flow between edge nodes. This process is repeated till the 

reward rates of all nodes are above, which indicates that all 

nodes are tuned for optimal traffic flow control for the given 

edge deployments. Based on this process, the model optimizes 

its internal data dissemination & traffic flow parameters, 

thereby improving the overall QoS of the edge devices for 

real-time scenarios. In this model, all hyperparameters were 

estimated empirically to obtain better performance under 
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different scenarios. The performance of this model was 

evaluated under different network scenarios, and compared 

with existing models in the next section of this text. 

3.1. Adaptability Analysis 

The model's ability to adapt data rates in response to changing 

network conditions using Q Learning is a critical aspect of its 

functionality, contributing to improved network performance 

and quality of service (QoS). Here, we'll elaborate on how this 

adaptation process works for better understanding: 

 Q Learning as a Dynamic Decision Maker: Q Learning is 

a reinforcement learning technique that enables the model 

to make dynamic decisions based on environmental 

feedback. In this context, the environment represents the 

mobile edge computing (MEC) network, and the 

decisions about traffic flow control and data rate 

adjustments. 

 State Representation: Q Learning operates by defining 

states, actions, rewards, and a Q-table. In the context of 

MEC, states can represent various network conditions, 

such as congestion levels, available bandwidth, latency, 

and the number of active users. These states collectively 

capture the current environment's characteristics. 

 Actions: Actions in the Q Learning framework 

correspond to the different data rate levels or traffic 

management strategies that the model can employ. For 

instance, actions can include reducing data rates, 

increasing data rates, rerouting traffic, or adjusting 

transmission power. 

 Rewards: Rewards are used to provide feedback to the Q 

Learning agent (the model) after each action. In the 

context of traffic flow control, rewards could be defined 

based on QoS metrics like latency, packet delivery ratio, 

and energy efficiency. The goal is to maximize rewards, 

indicating improved network performance. 

 Q-Table: The Q-table is a data structure that stores the 

expected cumulative rewards for each state-action pair. 

Initially, it's filled with arbitrary values. As the model 

interacts with the network environment and receives 

feedback (rewards), it updates these values through a 

learning process. 

 Exploration and Exploitation: Q Learning balances 

exploration (trying new actions to learn) and exploitation 

(choosing actions with the highest expected rewards). 

Initially, the model explores different actions to learn 

about the consequences of its choices. Over time, it leans 

toward exploiting actions that have proven to yield higher 

rewards for specific network conditions. 

 Adaptive Data Rate Control: As network conditions 

change, the Q Learning agent continuously evaluates the 

current state (representing network conditions) and 

selects an action (adjusting data rates) that it believes will 

maximize rewards (improve QoS). For example, if 

congestion is detected, the model may reduce data rates 

to alleviate congestion and minimize latency. 

 Learning and Optimization: Through iterative 

interactions with the environment, the Q Learning agent 

refines its knowledge about which actions are most 

effective for different states. Over time, it converges 

towards a policy that optimally adapts data rates to 

achieve desired QoS levels under varying network 

conditions. 

 Real-Time Adaptation: One of the strengths of Q 

Learning is its ability to adapt in real-time. As network 

conditions fluctuate due to changes in user behavior or 

network dynamics, the model can swiftly adjust data rates 

to maintain or enhance QoS, ensuring that applications 

receive the necessary resources while avoiding 

congestion or excessive delays. 

3.2. Additional Capabilities 

The model, incorporating Dynamic Traffic Flow Control 

(DTFC) to manage heterogeneous communication requests, 

effectively addresses the challenge of varying capabilities and 

resources among edge nodes in a mobile edge computing 

(MEC) environment. This adaptive approach ensures that the 

available resources are optimally utilized to meet the diverse 

communication requirements of different devices and 

applications. 

In the context of varying capabilities and resources among 

edge nodes: 

 Resource Awareness: The model demonstrates a keen 

awareness of the heterogeneity in edge node capabilities 

and resources. It considers factors such as processing 

power, available memory, and available bandwidth at each 

edge node within the MEC infrastructure. 

 Traffic Routing Optimization: When handling 

communication requests from heterogeneous devices and 

applications, the model employs intelligent traffic routing 

strategies. It evaluates the resource availability and 

processing capabilities of each edge node to make 

informed routing decisions. 

 Load Balancing: DTFC, as an integral part of the model, 

dynamically balances the workload across edge nodes. It 

intelligently distributes communication requests to nodes 

with adequate resources, preventing the overloading of any 

single node while ensuring efficient utilization of 

resources. 

 Quality of Service (QoS) Prioritization: To cater to the 

diverse QoS requirements of different communication 
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requests, the model prioritizes traffic based on the specific 

needs of each application or device. Critical or latency-

sensitive applications receive preferential treatment, with 

traffic flows optimized to meet their requirements. 

 Adaptive Data Rate Control: In situations where varying 

capabilities of edge nodes affect data transfer rates, the 

model employs adaptive data rate control mechanisms. It 

dynamically adjusts data rates to accommodate resource-

constrained nodes while maintaining acceptable QoS for 

data transmission. 

 Resilience to Node Failures: The model is designed with 

resilience in mind. In the event of edge node failures or 

resource fluctuations, DTFC and the overall system can 

reroute traffic to available nodes with minimal disruption 

to ongoing communication sessions. 

 Learning and Adaptation: Over time, the model learns 

from historical data and interactions within the MEC 

environment. It adapts its decision-making processes to 

better match the capabilities and resource fluctuations of 

edge nodes, ensuring continuous optimization. 

 Real-Time Monitoring: Real-time monitoring of edge node 

capabilities and resource usage is a fundamental aspect of 

the model. This monitoring allows the model to respond 

swiftly to changing conditions, optimizing communication 

routes and data flows accordingly. 

In summary, the model adeptly manages the challenges posed 

by varying capabilities and resources among edge nodes in 

heterogeneous communication environments. By 

incorporating DTFC as part of its decision-making process, 

the model ensures that communication requests are efficiently 

routed, resources are effectively utilized, and QoS 

requirements are met, irrespective of the diverse 

characteristics of edge nodes within the MEC infrastructure. 

This adaptability is crucial for achieving efficient and reliable 

communication in real-world MEC deployments. 

4. RESULT ANALYSIS AND COMPARISON 

The proposed model fuses EHPSO with Q Learning to 

improve the data dissemination and traffic flow of edge 

deployments. To validate the performance of this model, an 

augmented set of evaluation parameters was estimated, which 

include end-to-end communication delay, the energy needed 

during data dissemination, throughput during 

communications, and PDR needed during communications. 

This performance was evaluated on various edge datasets, 

which include, 

 IoT Analytics Benchmark: This benchmark dataset 

provides a collection of real-world IoT edge sensor 

datasets & samples. It includes data from various sensors 

measuring temperature, humidity, light intensity, and 

more. The dataset is available at: 

https://iotanalytics.unsw.edu.au/ 

 MAWI Dataset: The MAWI (Measurement and Analysis 

of Wide-area Internet) dataset contains network traffic 

traces captured from different locations around the world 

for different scenarios. It is used to simulate edge 

computing scenarios involving network traffic. The dataset 

is available at: https://mawi.wide.ad.jp/mawi/ 

 MobiPerf Dataset: MobiPerf is a dataset that captures 

network performance measurements from mobile devices. 

It includes information about network latency, bandwidth, 

and other network-related metrics. The dataset can be 

accessed at: http://www.mobiperf.com/dataset.html 

 Edge Data Center (EDC) Dataset: This dataset provides 

information about the characteristics and energy 

consumption of edge data centers. It includes data such as 

power usage, cooling requirements, and server 

configurations. The dataset is available at: 

https://web.eecs.umich.edu/~qstout/edc/ 

 Google Cluster Data: Google Cluster Data is a dataset that 

captures resource usage and performance metrics from 

Google's production clusters. While not specific to edge 

computing, it was useful for simulating large-scale 

computing scenarios, including edge computing systems. 

The dataset can be found at: 

https://github.com/google/cluster-data  

To validate the effectiveness of the proposed QoS-aware 

Adaptive Data Dissemination Engine (QADE) with Dynamic 

Traffic Flow Control (DTFC) in the context of mobile edge 

computing deployments, a comprehensive experimental 

framework was employed. The network topology was 

designed to emulate a realistic mobile edge computing 

environment, encompassing a grid of Mobile Edge Servers 

(MEC) strategically placed to mimic the distribution of edge 

computing resources. Heterogeneous mobile devices, 

including smartphones, tablets, and IoT devices, were 

introduced into the simulation area, forming wireless 

communication links with the MEC servers. Mobility models, 

such as Random Waypoint and Random Walk, were utilized 

to simulate the movement of mobile devices. 

To ensure the robustness and applicability of the study, 

diverse traffic models were integrated. Synthetic data traffic, 

representing real-world scenarios, was generated with varying 

traffic loads and application types, including video streaming, 

IoT data collection, and web browsing. The simulation 

settings encompassed a range of QoS metrics, including 

latency, energy consumption, throughput, and packet delivery 

ratio (PDR), which were measured and analyzed to gauge the 

performance of QADE with DTFC. Additionally, a cost 

analysis was conducted to assess the economic implications of 
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deploying the proposed solution compared to conventional 

methods. 

The experimental scenarios were designed with careful 

consideration of factors such as network load, mobility 

patterns, and traffic profiles to evaluate the system's 

performance under diverse conditions. Each scenario was 

executed multiple times to ensure statistical validity and 

mitigate the influence of randomness. Throughout the 

simulation duration, performance data, including latency, 

energy consumption, throughput, PDR, and cost-related 

metrics, were collected at regular intervals. 

Subsequently, the collected data underwent rigorous analysis 

to evaluate the efficacy of QADE with DTFC in enhancing 

QoS metrics as compared to traditional approaches. Statistical 

analysis techniques were applied to the results to derive 

meaningful conclusions. This experimental setup, as detailed 

in this paper, serves as a foundation for the reproducibility 

and validation of the proposed QoS-aware Adaptive Data 

Dissemination Engine with Dynamic Traffic Flow Control in 

the context of mobile edge computing deployments, ensuring 

the reliability and credibility of the research findings. 

D =
1

NET
∑ ts(complete, i) − ts(start, i)

NET

i=1

…(17) 

According to this evaluation and Figure 2, it can be seen that 

the proposed model required 8.5% less delay than RL [5], 

16.4% less delay than MTO SA [17], and 18.0% less delay 

than HFL [23], making it extremely useful for a wide range of 

real-time data dissemination scenarios. This is possible due to 

the inclusion of delay in EHPSO-based optimizations and Q 

Learning-based traffic flow control operations. The observed 

reduction in delay, as demonstrated in Figure 2 and supported 

by the experimental evaluation, underscores the scalability of 

the proposed QoS-aware Adaptive Data Dissemination 

Engine (QADE) with Dynamic Traffic Flow Control (DTFC). 

This scalability is a crucial attribute that makes the model 

highly versatile and applicable across a wide spectrum of real-

time data dissemination scenarios. 

The 8.5% reduction in delay compared to RL [5], the 16.4% 

reduction compared to MTO SA [17], and the substantial 

18.0% reduction compared to HFL [23] vividly showcase the 

model's efficiency in handling data dissemination tasks while 

maintaining low latency. These findings imply that as the 

scale and complexity of mobile edge computing deployments 

grow, the proposed QADE with DTFC remains adept at 

minimizing delays, which is a critical factor in real-time 

applications and services. 

The scalability of the model can be attributed to several 

factors. Firstly, the inclusion of delay as a parameter in 

EHPSO-based optimizations allows the model to adapt to 

varying network conditions and traffic loads. EHPSO's ability 

to dynamically optimize routing decisions based on real-time 

delay information enables the system to efficiently handle 

increased data traffic without significantly compromising 

latency. 

Secondly, the integration of Q Learning-based traffic flow 

control operations further enhances the scalability of the 

model. Q Learning is inherently designed to make intelligent 

decisions in dynamic and evolving environments. As the 

network expands and the number of connected devices and 

edge servers increases, Q Learning's adaptability ensures that 

traffic flows are managed optimally, maintaining low latency 

and high QoS even in large-scale deployments. 

 Figure 3 depicts the average PDR in the same manner.

 

 

Figure 2 The Delay Needed During Dissemination Operations 
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Figure 3 Average PDR Levels Obtained During Different Data Dissemination Operations 

According to this evaluation and Figure 3, it can be seen that 

the proposed model exhibited 2.9% better PDR than RL [5], 

2.5% better PDR than MTO SA [17], and 3.5% better PDR 

than HFL [23], making it highly applicable to a wide range of 

performance-specific real-time data dissemination scenarios. 

This is feasible as a result of the incorporation of PDR levels 

during EHPSO-based optimizations and Q Learning-based 

traffic flow control operations. Similarly, the average 

efficiency (ED) of dissemination was evaluated via equation 

18, 

ED = ∑
NCC(opt)

NET ∗ NCC

NET

i=1

…(18) 

Where, NCC(opt) is the optimal dissemination rate, and NCC 

is the actual dissemination rate via the proposed model under 

different scenarios. This efficiency can be observed in Figure 

4. 

Based on this evaluation and Figure 4, it can be seen that the 

proposed model improved the efficiency of dissemination by 

3.5% compared to RL [5], 4.5% compared to MTO SA [17], 

and 8.3% compared to HFL [23], making it extremely useful 

for cloud deployments that require higher levels of 

dissemination. This is possible because of the incorporation of 

Spatial and temporal Metrics and their incremental tuning 

during EHPSO-based optimizations, as well as the 

enforcement of a higher data rate during Q Learning-based 

traffic flow control operations. Similarly, the energy needed 

during these dissemination operations can be observed in 

Figure 5. 

 

 

Figure 4 The Average Efficiency of Data Dissemination for Different Models 
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Figure 5 The Energy Needed During the Dissemination Process 

Based on this evaluation and Figure 5, it can be seen that the 

proposed model was able to achieve 18.5% better energy 

efficiency for data dissemination than RL [5], 16.4% better 

energy efficiency for data dissemination than MTO SA [17], 

and 10.0% better energy efficiency for data dissemination 

than HFL [23], making it extremely useful for high QoS 

cloud-edge deployments that demand energy-aware 

operations. This is feasible as a result of the incorporation of 

energy levels alongside Temporal and Spatial parameters and 

their incremental tuning during Q Learning-based 

optimizations. Due to these enhancements, the proposed 

model is deployable for multiple data dissemination scenarios. 

4.1. Node & Resource Variability Characteristics of the 

Model 

Incorporating Dynamic Traffic Flow Control (DTFC) into the 

model provides an effective means to address the challenges 

posed by varying capabilities and resources among edge 

nodes when handling heterogeneous communication requests 

in a mobile edge computing (MEC) environment. Here is a 

discussion of how the model deals with these variations: 

 Resource Profiling: The model initiates by performing 

resource profiling for each edge node within the MEC 

infrastructure. This profiling involves gathering 

information about the computational capabilities, available 

memory, storage, and network bandwidth of each node. 

These parameters form the basis for intelligent decision-

making. 

 Dynamic Traffic Routing: DTFC plays a central role in 

dynamically routing communication requests to the most 

suitable edge nodes based on their resource profiles. When 

a request arrives, the model assesses the requirements of 

the application or device and matches them with the 

capabilities of available edge nodes. This ensures that 

communication is directed to nodes that can efficiently 

handle the task. 

 Load Balancing: To prevent resource imbalances and 

maximize resource utilization, the model employs load 

balancing techniques facilitated by DTFC. When one edge 

node experiences a surge in requests or reaches its 

resource capacity, DTFC redistributes incoming traffic to 

other nodes with available resources, thus avoiding 

overloading. 

 Quality of Service (QoS) Prioritization: The model 

recognizes that different communication requests may 

have varying QoS requirements. DTFC assigns priority 

levels to requests based on their QoS needs. For example, 

latency-sensitive applications receive high priority, 

ensuring that they are served promptly, while less time-

sensitive tasks are managed accordingly. 

 Adaptive Data Rate Control: When handling 

communication requests in resource-constrained scenarios, 

the model leverages DTFC to adjust data transfer rates 

dynamically. It can reduce data rates for applications 

running on nodes with limited bandwidth or processing 

power, ensuring that data transmission remains viable 

without compromising QoS. 

 Resilience and Failover: The model is designed to be 

resilient in the face of node failures or resource 

fluctuations. DTFC continually monitors the status of edge 

nodes, and if a node becomes unavailable or its resources 

diminish, DTFC reroutes traffic to alternative nodes to 

maintain service continuity. 

 Learning and Adaptation: Over time, the model learns 

from historical data and interactions within the MEC 

environment. It adapts its routing and traffic control 

decisions based on this learning to better match the 
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capabilities and resource fluctuations of edge nodes, 

thereby improving efficiency. 

 Real-Time Monitoring and Feedback: Real-time 

monitoring of edge node capabilities and resource usage 

remains an integral part of the model's operation. DTFC 

continuously collects feedback and updates its routing 

decisions based on the real-time state of the network, 

ensuring that communication is optimized as conditions 

change. 

In summary, by incorporating DTFC into the model, it 

effectively manages the intricacies of varying capabilities and 

resources among edge nodes in the context of heterogeneous 

communication requests. This adaptive approach ensures that 

communication requests are intelligently routed, resources are 

optimally utilized, and diverse QoS requirements are met, 

irrespective of the dynamic and diverse characteristics of edge 

nodes within the MEC infrastructure sets. 

4.2. Discussion on Node Mobility 

Node mobility, a defining characteristic of mobile edge 

computing (MEC) environments, significantly influences the 

performance of the proposed model. The model's response to 

node mobility is a critical aspect of its functionality and 

impacts its ability to provide reliable services and maintain 

quality of service (QoS) in dynamic network scenarios. 

 Latency and Packet Loss: As nodes move within the MEC 

environment, the physical distances and network paths 

between them change. This can lead to fluctuations in 

latency and, at times, packet loss. The model's 

performance is assessed based on its ability to manage and 

mitigate these effects. Lower latency and reduced packet 

loss are indicative of a model that effectively adapts to 

node mobility. 

 Traffic Rerouting: Node mobility necessitates continuous 

traffic rerouting. The model's effectiveness in dynamically 

reconfiguring communication paths as nodes move is a 

key metric. It should be capable of identifying optimal 

routes to minimize delays and efficiently allocate 

resources to maintain QoS. 

 Resource Utilization: Mobile devices bring their 

computational resources into different parts of the MEC 

network as they move. The model's ability to leverage 

these resources efficiently is crucial. It should recognize 

when devices with higher processing capabilities become 

available and allocate tasks accordingly to optimize 

resource utilization. 

 Adaptive Algorithms: Adaptive algorithms, such as 

reinforcement learning, play a pivotal role in the model's 

response to node mobility. These algorithms should 

continuously adapt routing decisions based on changing 

node positions and network conditions. The model's 

capacity to learn and adapt in real time is a determinant of 

its performance under mobile conditions. 

 Scalability: Node mobility often scales with the number of 

connected devices. The model's scalability is evaluated in 

terms of its ability to handle an increasing number of 

mobile nodes without sacrificing performance. It should 

gracefully accommodate larger networks with minimal 

impact on latency and throughput. 

 QoS Maintenance: Ensuring consistent QoS levels for 

applications despite node mobility is paramount. The 

model should prioritize traffic based on QoS requirements 

and adapt data rates, traffic flows, and resource allocation 

to guarantee that critical applications continue to function 

seamlessly. 

 Resilience to Node Failures: Node mobility may lead to 

nodes entering and exiting the network unpredictably. The 

model's resilience to node failures and its ability to redirect 

traffic when nodes become unavailable is a measure of its 

robustness. 

In essence, the model's performance under varying node 

mobility scenarios is evaluated by its ability to adapt, 

optimize, and maintain QoS despite the dynamic nature of the 

MEC environment. Metrics such as latency, packet loss, 

resource utilization, and the effectiveness of adaptive 

algorithms provide insights into how well the model copes 

with the challenges posed by mobile nodes. 

4.3. Potential Limitations 

The proposed model, while showcasing substantial promise 

and adaptability in the realm of mobile edge computing 

(MEC), is not exempt from certain limitations. It is crucial to 

recognize these potential constraints and scenarios where the 

model may not perform optimally. A comprehensive 

understanding of these limitations serves as a foundation for 

refining the model and enhancing its real-world applicability. 

 Dynamic Node Density: In highly dynamic MEC 

environments with rapidly changing node densities, the 

model may face challenges in efficiently reallocating 

resources and routing traffic. Sudden surges or reductions 

in the number of connected devices can strain the model's 

adaptability and impact its ability to maintain consistent 

QoS. 

 Network Overhead: The dynamic nature of the model's 

traffic control and routing decisions could introduce 

additional network overhead. Frequent updates and 

adjustments may result in increased signaling and control 

message exchange, potentially impacting the network's 

efficiency. 
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 Scalability: While the model exhibits scalability by design, 

it may encounter limitations in extremely large-scale MEC 

deployments. Managing a vast number of mobile devices 

and edge nodes might pose computational and 

communication challenges that require further 

optimization. 

 Resource Prediction: The model's ability to predict the 

future availability of resources on mobile devices, such as 

processing power or battery capacity, is contingent on the 

accuracy of resource prediction algorithms. In scenarios 

where predictions are inaccurate, resource allocation 

decisions may be suboptimal. 

 Security and Privacy: In environments with diverse 

devices and users, security and privacy concerns may 

arise. The model may need to address potential 

vulnerabilities related to unauthorized access or data 

breaches, particularly in scenarios with a high number of 

untrusted devices. 

 Interference and Signal Quality: Dynamic node 

movements can introduce signal interference and 

fluctuations in signal quality. The model may not always 

effectively manage these issues, potentially leading to 

suboptimal data transmission and increased packet loss. 

 Complex Mobility Patterns: In cases where node mobility 

follows intricate and unpredictable patterns, such as 

vehicular networks or swarm robotics, the model may 

struggle to anticipate and respond optimally. Complex 

mobility patterns may challenge the model's traffic routing 

and resource allocation strategies. 

 Resource Imbalances: Uneven distribution of resources 

among edge nodes can occur due to node mobility. The 

model's performance may suffer when attempting to 

balance resource utilization across nodes, particularly if 

certain nodes consistently experience resource scarcity. 

 Edge Node Failures: Despite resilience measures, edge 

node failures caused by mobility or other factors can 

disrupt the model's operation. Ensuring seamless failover 

and traffic redirection under such circumstances remains a 

challenge. 

 Heterogeneous Networks: In MEC scenarios involving 

diverse communication technologies (e.g., 5G, Wi-Fi, 

LPWAN), the model may not seamlessly handle the 

integration and prioritization of different network 

interfaces and technologies, leading to suboptimal 

resource utilization. 

Understanding these limitations is essential for refining the 

proposed model's capabilities and tailoring it to specific MEC 

deployment scenarios. Mitigating these challenges may 

require advancements in resource prediction algorithms, 

improved security measures, and more sophisticated adaptive 

strategies. By addressing these potential limitations, the 

model can continue to evolve and provide valuable solutions 

for dynamic and heterogeneous MEC environments. 

4.4. Trade-offs 

Elaborating on the trade-offs between efficient data 

dissemination and energy consumption in edge devices 

provides valuable insights into the behavior of the proposed 

model in mobile edge computing (MEC) scenes: 

4.4.1. Efficient Data Dissemination 

 Low Latency: Efficient data dissemination aims to 

minimize latency, ensuring that data reaches its destination 

quickly. This is crucial for real-time applications, such as 

augmented reality and autonomous vehicles, where delays 

can lead to performance degradation or even safety issues. 

 High Throughput: Efficient data dissemination maximizes 

data throughput, enabling rapid transmission of large 

volumes of data. This is beneficial for applications like 

video streaming and data analytics, which rely on high 

data rates for optimal performance. 

 High Packet Delivery Ratio (PDR): Effective data 

dissemination seeks to achieve a high PDR by ensuring 

that the majority of data packets reach their intended 

recipients. A high PDR is essential for applications 

requiring reliable data delivery, such as telemedicine or 

industrial automation. 

4.4.2. Energy Consumption in Edge Devices 

 Minimized Energy Usage: Edge devices, often powered by 

batteries, have limited energy resources. Minimizing 

energy consumption is critical to extending the operational 

lifespan of these devices and reducing the frequency of 

recharging or battery replacement. 

 Extended Device Lifetime: Lower energy consumption 

contributes to extending the lifetime of edge devices, 

reducing maintenance costs, and enhancing the overall 

sustainability of MEC deployments. 

 Reduced Environmental Impact: Lower energy usage is 

environmentally responsible, as it reduces the carbon 

footprint associated with charging or replacing batteries in 

edge devices. 

Now, let's delve into the trade-offs and how the proposed 

model navigates them: 

 Balancing Latency vs. Energy Consumption: The model 

faces a trade-off between achieving low latency, which is 

essential for real-time applications and minimizing energy 

consumption in edge devices. It needs to make routing 

decisions that balance the need for rapid data 

dissemination with the imperative of conserving energy. 
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This entails selecting communication paths that minimize 

transmission distance and reduce the number of hops, 

thereby reducing energy expenditure. 

 Throughput vs. Energy Efficiency: Efficient data 

dissemination often entails maximizing throughput, but 

this can be energy-intensive, especially for wireless 

transmissions. The model must optimize data rates to 

achieve the required throughput while considering the 

energy budget of edge devices. It may employ adaptive 

data rate control to dynamically adjust data rates based on 

device capabilities and energy constraints. 

 PDR vs. Energy Preservation: To ensure a high PDR, the 

model may employ techniques like forward error 

correction (FEC) or retransmissions, which can increase 

energy consumption. Striking the right balance involves 

selecting an appropriate level of redundancy or 

retransmission frequency to meet reliability requirements 

while minimizing energy usage. 

 Adaptive Strategies: The model's behavior may involve 

adaptive strategies that respond to changing network 

conditions. For instance, it could prioritize low-latency 

communication paths and higher data rates when energy 

resources are sufficient but switch to energy-saving modes 

when devices are operating on low battery levels. 

 Resource Prediction: Accurate prediction of device energy 

levels and capabilities is crucial. The model may 

incorporate machine learning algorithms to predict 

resource availability and dynamically adjust its data 

dissemination strategies accordingly. 

In essence, the proposed model navigates the trade-offs 

between efficient data dissemination and energy consumption 

by employing adaptive strategies that consider the specific 

requirements of the MEC environment and the capabilities of 

edge devices. It strives to optimize the use of energy resources 

while meeting the demands of low latency, high throughput, 

and reliability, all of which are essential for diverse MEC 

applications. 

4.5. Scalability & Adaptability Analysis 

The model exhibits a remarkable capacity for adaptation in 

the face of changing traffic loads and evolving network 

topology, showcasing its resilience and effectiveness in 

dynamic mobile edge computing (MEC) scenarios. Here are 

detailed insights into how the model navigates these dynamic 

challenges: 

4.6. Adapting to Changing Traffic Loads 

In dynamic MEC environments, traffic loads can vary 

dramatically as mobile devices connect, disconnect, or switch 

between applications. The model's resilience is evident 

through several key mechanisms: 

 Traffic Prioritization: The model employs intelligent 

traffic prioritization strategies. It identifies and allocates 

resources based on the priority of communication requests. 

Real-time or latency-sensitive applications receive 

preferential treatment, ensuring that critical tasks are 

addressed promptly, even during periods of heavy traffic. 

 Load Balancing: Recognizing that uneven traffic 

distribution can strain network resources, the model 

dynamically redistributes traffic. It ensures that no single 

edge node or communication path becomes overloaded 

while leveraging available resources efficiently. Load 

balancing mechanisms adapt to the evolving load, 

maintaining optimal performance. 

 Resource Allocation: The model continuously monitors 

the availability of resources on both edge nodes and 

mobile devices. It allocates resources judiciously, 

optimizing data rates and transmission power to match the 

prevailing traffic load. In scenarios of increased demand, it 

intelligently scales resources to meet the requirements of 

data-intensive applications. 

4.7. Adapting to Changing Network Topology 

The network topology in MEC is highly dynamic, with nodes 

entering and exiting the network, forming ad-hoc connections, 

and adjusting their positions. The model's adaptability in such 

scenarios is evident through the following strategies: 

 Real-time Routing Updates: The model constantly 

evaluates the network topology and responds with real-

time routing updates. It identifies the most efficient paths 

and communication routes based on the current positions 

of edge nodes and mobile devices, ensuring minimal 

latency and efficient resource utilization. 

 Resilience to Node Movements: Recognizing that node 

mobility can disrupt established communication paths, the 

model remains resilient. It effectively reroutes traffic as 

nodes move, maintaining seamless connections and QoS, 

particularly in applications where user devices are in 

constant motion. 

 Adaptive Algorithms: Embedded adaptive algorithms, 

such as reinforcement learning, enable the model to adapt 

to evolving network topologies. These algorithms 

continuously learn from network changes, optimizing 

traffic routing and resource allocation decisions. 

 Predictive Analytics: The model may incorporate 

predictive analytics to anticipate changes in network 

topology. By forecasting node movements and 

connectivity patterns, it can proactively adjust its 

strategies, mitigating the impact of sudden topology shifts. 

In summary, the proposed model's resilience in dynamic 

scenarios stems from its adaptability and intelligent decision-
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making. It navigates changing traffic loads and evolving 

network topologies by prioritizing traffic, balancing loads, 

allocating resources judiciously, and responding to real-time 

routing updates. By employing adaptive algorithms and 

predictive analytics, it anticipates and adapts to dynamic 

conditions, maintaining high performance and QoS standards 

in the ever-changing landscape of the mobile edge computing 

process. 

4.8. Effective Path Selection with EHPSO 

One of the fundamental strengths of the proposed model lies 

in its utilization of the Elephant Herding Particle Swarm 

Optimizer (EHPSO) for path selection. EHPSO generates an 

augmented set of particles representing potential 

communication routes in the edge network. This approach 

introduces an element of stochasticity and adaptability into 

path selection. By considering a broader range of routing 

possibilities, EHPSO can identify more efficient 

dissemination paths. This stochastic exploration of routes is a 

critical factor in achieving better results. 

 Holistic QoS-Awareness with QADE: The proposed 

model incorporates a QoS-aware Adaptive Data 

Dissemination Engine (QADE) as a central component. 

What sets QADE apart is its holistic approach to QoS-

awareness. It considers a comprehensive set of key 

metrics, including temporal delay, energy consumption, 

packet delivery ratio (PDR), and throughput. By weighing 

these metrics when making routing decisions, QADE 

ensures that data is disseminated with a keen focus on 

maintaining high-quality service. This comprehensive 

consideration of QoS metrics enhances the model's ability 

to optimize data dissemination and, consequently, 

contributes significantly to its superior results. 

 Dynamic Traffic Flow Control (DTFC): The inclusion of 

Dynamic Traffic Flow Control (DTFC) is another pivotal 

factor contributing to the model's success. DTFC 

intelligently manages traffic flows by considering the 

processing capacity of edge devices. It ensures that 

communication requests are routed to nodes that can 

efficiently handle them, preventing congestion and 

resource underutilization. DTFC's dynamic nature allows 

the model to adapt rapidly to changing network conditions 

and load variations. This adaptive traffic management 

plays a crucial role in achieving better results, particularly 

in scenarios with heterogeneous communication requests. 

 Empirical Validation: The model's credibility is further 

solidified by its empirical validation under diverse 

network scenarios. Through rigorous evaluations, the 

proposed model demonstrates its real-world effectiveness. 

It provides empirical evidence of its superior performance 

compared to existing models. This empirical validation 

lends credibility to the model's claims and showcases its 

practical applicability, making it more likely to achieve 

better results in real-world MEC deployments. 

 Resource Optimization and Learning: The proposed model 

incorporates learning mechanisms, such as Q Learning, to 

optimize data rates and resource allocation. By 

continuously adapting and learning from network 

conditions, the model can make informed decisions that 

enhance performance. The dynamic adjustment of data 

rates and routing decisions based on learning contributes 

to its ability to achieve better results over time. 

In summary, the success of the proposed model can be 

attributed to its effective path selection with EHPSO, its 

holistic QoS awareness through QADE, the implementation 

of dynamic traffic flow control (DTFC), rigorous empirical 

validation, and its incorporation of learning mechanisms. 

These factors collectively enable the model to optimize data 

dissemination, traffic management, and resource allocation, 

resulting in superior results compared to existing approaches 

in the dynamic context of the mobile edge computing process. 

5. CONCLUSION AND FUTURE SCOPE 

In this paper, we proposed an effective Dynamic Traffic Flow 

Control (DTFC)-equipped Adaptive Data Dissemination 

Engine for Mobile Edge Computing (MEC) deployments. We 

thoroughly assessed and analyzed existing approaches, 

including RL [5], MTO SA [17], and HFL [23], to show that 

our proposed model outperformed them in terms of delay, 

Packet Delivery Ratio (PDR), dissemination efficiency, and 

energy efficiency. Representation of the results of our 

evaluation makes it abundantly clear that our suggested 

model, which showed improvements of 8.5%, 16.4%, and 

18.0%, significantly reduced the amount of time required 

compared to RL, MTO SA, and HFL. This decrease in delay 

is attributed to the use of Q Learning-based traffic flow 

control operations as well as the integration of delay 

considerations into Enhanced Hybrid Particle Swarm 

Optimization (EHPSO)-based optimizations. Our suggested 

model also had higher PDR levels than RL, MTO SA, and 

HFL, with improvements of 2.9%, 2.5%, and 3.5%, 

respectively. PDR levels are taken into account during 

EHPSO-based optimizations and Q Learning-based traffic 

flow control operations, which enables this improvement in 

PDR. 

The proposed model outperformed RL, MTO SA, and HFL in 

terms of dissemination efficiency by 3.5%, 4.5%, and 8.3%, 

respectively. The inclusion of Spatial and Temporal Metrics 

and their incremental tuning during EHPSO-based 

optimizations, as well as the imposition of a higher data rate 

during Q Learning-based traffic flow control operations, are 

the causes of this increase in efficiency. 

Additionally, we assessed the energy efficiency of our 

suggested model and found that it performed significantly 
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better than RL, MTO SA, and HFL, with improvements of 

18.5%, 16.4%, and 10.0%, respectively. Energy levels are 

taken into account along with Temporal and Spatial 

parameters and their incremental tuning during Q Learning-

based optimizations to achieve this improvement in energy 

efficiency. The QoS-aware Adaptive Data Dissemination 

Engine with DTFC for MEC deployments that we have 

suggested offers a complete remedy for real-time data 

dissemination scenarios [24,25]. Our model outperforms 

existing approaches in terms of delay reduction, improved 

PDR, higher dissemination efficiency, and increased energy 

efficiency. This is due to the integration of delay 

considerations, PDR levels, dissemination efficiency 

improvements, and energy-aware operations. The results of 

this study demonstrate how our suggested model can be used 

for a variety of cloud-edge deployments that call for extensive 

dissemination and energy-conscious operations. Our model 

makes a significant contribution to the field of mobile edge 

computing and real-time data distribution by addressing these 

important performance factors. As MEC environments 

change, future research can build on our work by 

investigating additional optimizations and extensions to 

improve the performance and applicability of our suggested 

model [26,27]. 

To validate the performance of this model, an augmented set 

of evaluation parameters was estimated, which include end-

to-end communication delay, energy needed during data 

dissemination, throughput during communications, and PDR 

needed during communications. These data samples were 

combined to form 2 million requests and were input to a 

Cloudsim-based simulation engine with 4500 standard 

configuration VMs. Out of these requests, 1 million were used 

for validation purposes, while 500k each were used for 

training &amp; testing the model under different scenarios. 

5.1. Future Scope 

Although the QoS-aware Adaptive Data Dissemination 

Engine with Dynamic Traffic Flow Control (DTFC) for 

Mobile Edge Computing (MEC) deployments we've proposed 

represents a significant improvement in real-time data 

dissemination, there are still several areas that could use more 

research and development. 

Investigating the scalability and adaptability of our suggested 

model is one possible area of future study. It becomes 

increasingly important to support an increasing number of 

edge devices and users as MEC environments develop and 

grow. The practicality and efficacy of our model would be 

improved by investigating methods for managing large-scale 

deployments and dynamically adapting the system to 

changing network conditions and workload demands. The 

incorporation of sophisticated machine learning algorithms 

and techniques is another future research area. Even though 

our model uses Enhanced Hybrid Particle Swarm 

Optimization (EHPSO) and Q Learning, there may be ways to 

use more sophisticated optimization algorithms, like deep 

reinforcement learning or evolutionary algorithms, to improve 

the effectiveness of data dissemination. The adaptability and 

effectiveness of our model could also be increased by 

investigating the incorporation of additional machine learning 

models, such as neural networks, for better prediction and 

decision-making capabilities. Furthermore, it would be 

advantageous to look into how mobility affects data 

dissemination given the dynamic nature of MEC 

environments. Especially in situations where devices are 

constantly moving, incorporating mobility-aware mechanisms 

and taking into account the movement patterns of edge 

devices and users could help optimize data dissemination 

strategies. The consideration of security and privacy concerns 

is another crucial area for further investigation [28,29]. As 

sensitive data is processed and disseminated during MEC 

deployments, it is crucial to implement strong security 

controls and privacy protections. Our proposed model would 

be more appropriate for real-world applications if we 

investigate methods for safe and privacy-aware data 

dissemination. 

Since operating systems now have a significant amount of 

control over running voltage and energy management as 

opposed to hardware and firmware, the trade-off between 

dissemination and power efficiency has been thoroughly 

explored and analyzed. CloudSim tool is being used for the 

implementation of, a technique for automatically identifying 

energy-efficient configurations. By combining application 

profiles and system-level data. 

To demonstrate that our suggested model beat previous 

approaches in terms of delay, Packet Delivery Ratio (PDR), 

dissemination efficiency, and energy efficiency, we carefully 

evaluated and examined existing approaches, including RL 

[5], MTO SA [17], and HFL [23]. Our suggested model, 

which exhibited improvements of 8.5%, 16.4%, and 18.0%, 

greatly reduced the amount of time needed compared to RL, 

MTO SA, and HFL, as shown by the results of our evaluation. 

The application of Q Learning-based traffic flow management 

operations and the inclusion of delay concerns into Enhanced 

Hybrid Particle Swarm Optimization (EHPSO)-based 

optimizations are credited with this reduction in delay. When 

Resource allocation and traffic flow control are considered at 

the same time for better performance then due to the 

complexity of the model proposed technique might not give 

better results.  

Last but not least, we would gain more understanding of the 

efficacy and viability of our proposed model by validating it 

in actual MEC deployments and carrying out extensive 

performance evaluations in various scenarios. It would be 

possible to demonstrate the generalizability and superiority of 

our model by conducting extensive experiments and 
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contrasting the outcomes with those obtained from other 

methods. To further improve and broaden the applicability of 

our proposed QoS-aware Adaptive Data Dissemination 

Engine with DTFC for MEC deployments, future research 

should concentrate on scalability, integration of advanced 

machine learning techniques, mobility awareness, security, 

and privacy considerations, and real-world validation [30]. By 

addressing these issues, we can advance the field of mobile 

edge computing and help make real-time data dissemination 

in dynamic environments with limited resources more 

effective and dependable for different scenarios. 
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