
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 310

RESEARCH ARTICLE

Amended Hybrid Scheduling for Cloud Computing

with Real-Time Reliability Forecasting

Ramya Boopathi

Department of Computer Science, Vellalar College for Women, Erode, Tamil Nadu, India.

ramyaboopathiphd1988@gmail.com

E.S. Samundeeswari

Department of Computer Science, Vellalar College for Women, Erode, Tamil Nadu, India.

samundeeswari@vcw.ac.in

Received: 04 April 2023 / Revised: 11 May 2023 / Accepted: 16 May 2023 / Published: 30 June 2023

Abstract – Cloud computing has emerged as the feasible

paradigm to satisfy the computing requirements of high-

performance applications by an ideal distribution of tasks to

resources. But, it is problematic when attaining multiple

scheduling objectives such as throughput, makespan, and

resource use. To resolve this problem, many Task Scheduling

Algorithms (TSAs) are recently developed using single or multi-

objective metaheuristic strategies. Amongst, the TS based on a

Multi-objective Grey Wolf Optimizer (TSMGWO) handles

multiple objectives to discover ideal tasks and assign resources to

the tasks. However, it only maximizes the resource use and

throughput when reducing the makespan, whereas it is also

crucial to optimize other parameters like the utilization of the

memory, and bandwidth. Hence, this article proposes a hybrid

TSA depending on the linear matching method and backfilling,

which uses the memory and bandwidth requirements for

effective TS. Initially, a Long Short-Term Memory (LSTM)

network is adopted as a meta-learner to predict the task runtime

reliability. Then, the tasks are divided into predictable and

unpredictable queues. The tasks with higher expected runtime

are scheduled by a plan-based scheduling approach based on the

Tuna Swarm Optimization (TSO). The remaining tasks are

backfilled by the VIKOR technique. To reduce resource use, a

particular fraction of CPU cores is kept for backfilling, which is

modified dynamically depending on the Resource Use Ratio

(RUR) of predictable tasks among freshly submitted tasks.

Finally, a general simulation reveals that the proposed algorithm

outperforms the earlier metaheuristic, plan-based, and

backfilling TSAs.

Index Terms – Cloud Computing, Task Scheduling, TSMGWO,

Meta-Learning, LSTM, Plan-Based Scheduling, Tuna Swarm

Optimization, Backfilling, VIKOR.

1. INTRODUCTION

In recent years, cloud computing has become increasingly

significant in several industries. As a principle of on-demand

cloud services over web-based systems, it is operated to meet

user demands for resource access or to allow members to

acquire cloud facilities when needed [1]. Based on the

application and design strategies required by the members, it

may also handle a wide range of services [2]. It is a mix of

parallel and distributed computing that makes use of shared

resources like software and hardware, which are paid for as

they are used [3].

One of the operational paradigms used to operate servers, data

centers, and VMs is called Infrastructure-as-a-Service (IaaS).

IaaS is a type of cloud facility, which offers a host or CPU in

the cloud to process and store data. It gives users access to

servers locally because the cloud resources are hosted on VMs

[4]. It relies on the demands of the member, named Service

Level Agreements (SLAs), and Quality-of-Service (QoS). The

expense is based on the contract between the member and the

Cloud Service Providers (CSPs) [5]. Additionally, it

facilitates CSPs to deliver data centers with high-efficiency

computing resources, which helps users to access cloud

applications.

The VM utilizes the cloud resources such as the memory, or

CPU. The VM resources are needed by the demanded

resource for functioning [6]. So, the cloud system has an

imbalanced resource allocation, and a few VMs cannot get the

resources they need since several VMs have preemptive and

non-preemptive relations to resources [7]. The VM must be

fast to react while the task is delivered to be executed in the

cloud to minimize waiting time. But, tasks must be allocated

among each VM simultaneously to maintain equilibrium and

guarantee effective utilization of the available resources. So,

TS is essential to allocate tasks across available resources [8].

If several tasks are allocated to a single VM or several VMs,

the allocated tasks can execute simultaneously to fulfill the

requirements. So, it is important to verify the allocation to

guarantee that not each task is placed onto one VM, since this

might make other VMs unavailable or imbalanced in the

system. To prevent this, a schedule should consider additional

factors like makespan, cost, and resource use [9]. It ensures

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 311

RESEARCH ARTICLE

maximum resource use by delivering satisfactory performance

under various task constraints such as execution deadlines.

Several researchers have modeled TS problems as bin packing

problems or metaheuristic problems, which are solved using a

First Come First Serve (FCFS), Max-Min, and so on [10-11].

On the other hand, such methods have the drawbacks of

deceiving in local minima because of the multimodal behavior

of TS. Currently, metaheuristic algorithms have attained

significant attention to find the close-ideal result to the TS

challenge within a minimum duration [12]. Numerous

metaheuristic algorithms have solved TS problems using

single or multiple objectives to discover close-ideal results

and offer trade-offs to CSPs. Amongst, the TSMGWO [13]

can reduce the cost and enhance the resource utilization of

VMs by finding near-optimal solutions when handling

conflicting objectives. Nonetheless, this algorithm only tries

to optimize system throughput, resource usage, and balancing

workloads across VMs, whereas additional parameters like

the use of the memory, and bandwidth are needed to improve

the TS performance.

Therefore, in this paper, a hybrid TSA is proposed by using

two main scheduling strategies called linear matching method

and backfilling. The key goal is to consider the utilization of

the memory and bandwidth with less computation time for

effective TS. The major contributions of this paper include:

1. First, the LSTM is applied as a meta-learner to predict the

network-produced task runtime reliability during task

submission, which helps to categorize the tasks into

predictable and unpredictable tasks.

2. Then, the plan-based scheduling approach based on Tuna

Swarm optimization is adopted for tasks with a maximum

projected runtime and backfills the residual tasks on top of

the deliberate tasks.

3. To achieve backfilling, a VIKOR (VIseKriterijumska

Optimizacija I Kompromisno Resenje) technique is

adopted. When resource distribution is applied to reduce

resource use, a particular fraction of CPU cores is set aside

for backfilling of fewer predictable tasks. This fraction is

modified dynamically depending on the RUR of

predictable tasks among freshly submitted tasks. Thus, this

algorithm can discover the optimal available resources

during TS for improving makespan, system throughput,

resource use, and minimizing execution time.

The remaining article is prepared as follows: Section II

discusses different TSAs that emerged in previous years.

Section III explains the presented TSA and Section IV

portrays its efficiency. Section V abridges the whole work.

2. LITERATURE SURVEY

A Hybrid Moth Search Algorithm and Differential Evolution

(HMSADE) [14] has been presented to plan the jobs in cloud

systems. But, it considers only the execution time as the

objective function, whereas it needs other parameters like

memory usage, bandwidth, etc., to increase the efficiency of

TS with less time complexity. A Laxity-based Priority (LBP)

[15] has been suggested to allocate tasks using a suitable

significance that enhances the sensitivity of job delay. Also,

Ant Colony Optimization (ACO) has been employed to lessen

aggregate energy utilization. Nonetheless, it didn’t schedule

the independent tasks.

Chen et al. [16] developed a multi-objective Improved Whale

Optimization Algorithm (IWOA) to distribute the cloud jobs.

Nevertheless, the tradeoff between exploration and

exploitation was less efficient due to the poor convergence

and it did not handle independent tasks. Jia et al. [17]

presented an Improved Whale Optimization (IWC) scheme to

enhance TS efficiency by finding the optimal whale

individuals using the inertial weight mechanism. Also, add

and delete functions were used after all iterations to monitor

and choose the best individuals. But, the impact on the

memory load value was not clear, which needs to enhance

memory usage.

Wang & Zuo [18] designed a cloud workflow scheduling

method called HPSO by hybridizing Particle Swarm

Optimization (PSO) and idle timeslot-aware rules for

decreasing the execution cost of a workflow request under a

deadline limit. A novel particle encoding was used to define

the VM category needed by all tasks and the scheduling

sequence of tasks. To decode a particle into a scheduling

solution, an idle timeslot-aware decoding process was

applied. Also, a repair scheme was adopted to handle the

task’s invalid priorities. But, the network bandwidth among

VM instances was assumed to be equal.

Dubey & Sharma [19] developed a new hybrid TSA called

Chemical Reaction-PSO (CR-PSO) to allocate multiple

independent tasks on the available VMs. The CR optimization

and PSO were hybridized by uniting the features for the

optimal schedule sequence where tasks can be processed

according to the demand and deadline concurrently. But, it

did not consider the dependent tasks and it needs additional

parameters like bandwidth for improving efficiency.

Ajmal et al. [20] developed Hybrid Ant Genetic Algorithm

(HAGA) for TS effectively. A new strategy was used to add

and evaporate VM pheromones to identify the load on the

VM. The GA mutation process was redesigned to identify

loaded VMs and schedule tasks to balance loads among VMs.

But, it needs other parameters like resource usage, energy

consumption, etc., to increase further efficiency.

Calzarossa et al. [21] analyzed a multi-objective restricted

optimization issue to recognize the best scheduling strategies

for systematic tasks to be employed in unreliable cloud

scenarios. The main aim was to reduce the estimated task

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 312

RESEARCH ARTICLE

execution period and monetary expense under probabilistic

restraints on deadline and budget. This issue was resolved by

the combined Monte Carlo method and Genetic Algorithm

(MCGA), the cloud clients were permitted to select the

strategy of the Pareto optimum group ensuring their demands

and interests. But, the optimum results were not achieved

under severe deadlines and costs, because the variability

raises.

Kumar et al. [22] modeled the TS problem as a non-linear

restricted optimization dilemma and solved using the

Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS) to reduce makespan and power usage. But,

it did not consider the cost and deadline restraints for TS.

Oudaa et al. [23] presented a novel framework depending on

the Quantile Regression Deep Q-Network (QR-DQN) to

create a suitable strategy and the best long-term solutions to

assign resources and schedule tasks to corresponding VMs.

But, if the number of tasks was increased, then more tasks

were discarded because of running out of resources or time.

Sharma & Garg [24] presented the Load-Balancing Ant

Colony Optimization (LBACO), which combines the Genetic

Algorithm (GA) and ACO for QoS-based TS in cloud

computing. In contrast, advanced optimization schemes must

be deployed to further boost competence while considering

multiple objectives. Mahmoud et al. [25] suggested a multi-

objective TS using a Decision Tree (TS-DT) algorithm to

schedule and execute the applications’ tasks. But, it did not

consider memory, bandwidth, etc., to determine the objective

function for effective TS.

Kruekaew & Kimpan [26] designed an independent Multi-

objective TS Optimization depending on the Artificial Bee

Colony (ABC) scheme with a Q-learning (MOABCQ). The

objective of this algorithm was to enhance TS and resource

usage, throughput, and achieve load-balancing among VMs.

On the other hand, it cannot ensure that this algorithm was

optimal so that the network performance was not enhanced in

each test corpus.

Table 1 summarizes earlier researchers in terms of algorithms

used, merits, and demerits compared to the proposed

algorithm.

Table 1 Comparison of Earlier TSA in Cloud Computing

Ref. No. Algorithms used Merits Demerits

[13] TSMGWO Reduce the cost and improve resource

utilization.

It did not consider other crucial factors

like memory and bandwidth for TS.

[14] HMSADE It can schedule the tasks to the VM when

consuming a minimum makespan.

It considered only one objective

function such as the execution time.

[15] LBP-ACO It can ensure reasonable scheduling length and

reduce the failure rate of TS with varied

deadlines.

It didn’t schedule the independent

tasks.

[16] Multi-objective

IWOA

It can enhance efficiency based on system load

and resource usage.

The tradeoff between exploration and

exploitation was less efficient due to

the poor convergence and it did not

handle independent tasks.

[17] IWC It achieved better TS period, and scheduling

cost.

The impact on the memory load value

was not clear, which needs to enhance

memory usage.

[18] HPSO It achieved better efficiency in terms of

execution cost and the success rate in reaching

the deadline.

The network bandwidth among VM

instances was assumed to be equal.

[19] CR-PSO It was more economical. It achieved less

execution period, and cost.

It did not consider the dependent tasks

and it needs additional parameters like

bandwidth for improving efficiency.

[20] HAGA It can discover a feasible schedule to reduce

the execution time of tasks.

The optimum results were not

achieved under severe deadlines and

costs, because the variability raises.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 313

RESEARCH ARTICLE

[21] MCGA It was based on the deadline and budget

constraints.

No feasible solutions to the

constrained optimization problem

were not achieved for the larger

variability factor of VM performance.

[22] TOPSIS It was robust in terms of makespan and

reliability metrics.

It did not consider the cost and

deadline restraints for TS.

[23] QR-DQN It was cost-effective by guaranteeing QoS

efficiency.

If the number of tasks was increased,

then more tasks were discarded

because of running out of resources or

time.

[24] LBACO It can decrease the execution period and cost. It did not perform well for multi-

objective optimization.

[25] TS-DT It can decrease makespan and enhance

resource usage.

It increases energy utilization. It needs

to consider memory, bandwidth,

energy usage, etc., to determine the

objective function for effective TS.

[26] MOABCQ It can reduce makespan, cost, degree of

imbalance, and increase throughput.

It cannot ensure that this algorithm

was optimal so that the network

performance was not enhanced in each

test corpus.

Proposed LSTM-TSO-

VIKOR

It can schedule both predictable and

unpredictable tasks efficiently by considering

multiple objectives, including makespan,

resource usage, execution time, throughput,

memory, and bandwidth.

Still, it did not consider energy

utilization as the objective function.

3. PROPOSED METHODOLOGY

In this section, the proposed hybrid TSA is explained briefly.

An overview of the TSA in cloud computing is portrayed in

Figure 1. Many independent task requests are forwarded

through a graphical user interface to the cloud broker in a task

list. The CSP verifies whether the appropriate number of

cloud resources are available to complete the requirements for

task execution or not. If the required number of cloud

resources is available, then the requested tasks are scheduled

to the resources based on the scheduling algorithm.

Otherwise, the CSP denied the requested tasks to the cloud

user and waits for the availability of the resources.

Figure 1 Overview of Task Scheduling in Cloud Computing

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 314

RESEARCH ARTICLE

3.1. Problem Definition

Initially, the task 𝑗 is assumed with a specified submission

period and resource necessity. During the submission, these

are submitted by the consumer, where 𝑛 separate tasks, and 𝑗
contains different characteristics: submission period 𝑟𝑗,

resource requirement 𝑑𝑗, actual running period 𝑝𝑗, and

requested running period �̂�𝑗. The problem considered is to

implement a group of simultaneous tasks with inflexible

resource necessities on the cloud with 𝑚 resource units. The

tasks are submitted over an interval. The resource necessity 𝑑𝑗

of 𝑗 is equal to the consumer-demanded resource

acknowledged at the period of submission. The real runtime is

named a posteriori while the task finishes. The challenge is

how to schedule tasks to realize enhanced efficiency, with no

proper runtime values during the submission period.

To combat this problem, a hybrid scheduling system is

proposed, which utilizes a linear matching method and

backfilling for tasks with random runtime. During the task

submission, the LSTM network is employed to predict the

reliability of task runtime. After that, tasks are categorized

into predictable and unpredictable queues using the learned

LSTM network. Moreover, the tasks with higher expected

runtime are scheduled by the TSO as plan-based scheduling,

and the tasks in the unpredictable queue are scheduled on the

residual accessible resources by the VIKOR-based

backfilling. The predictable and unpredictable tasks are

described as follows:

 Predictable tasks: These are tasks with great expectation

reliability and are represented by the predicted runtime

reliability of 60% or higher.

 Unpredictable tasks: These are tasks with little expectation

reliability and are represented by the predicted runtime

reliability of less than 60%.

3.2. Formation of Objective (Fitness) Functions

The proposed model considers 6 major objectives such as

resource utilization, makespan, memory usage, bandwidth

use, execution time, and throughput for optimization.

3.2.1. Makespan

It is the total period needed from submitting a task to the end

of the task by the consumer. It is calculated in equation (1):

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝑀𝑆(𝑉𝑀𝑥)), 1 ≤ 𝑥 ≤ 𝑛 (1)

In Eq. (1), 𝑛 is the number of VMs, and 𝑀𝑆(𝑉𝑀𝑥) is

calculated in equation (2).

𝑀𝑆(𝑉𝑀𝑥) = ∑𝐶𝑇𝑥𝑦 × 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑥, 𝑦) (2)

In Eq. (2), 𝐶𝑇 is the computation period of task 𝑗𝑥 on 𝑉𝑀𝑦,

𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑥, 𝑦) = 1, when 𝑗𝑥 is scheduled on 𝑉𝑀𝑦; or else,

𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑥, 𝑦) = 0. The computation period of 𝑉𝑀𝑦 to

execute 𝑗𝑥 is calculated in equation (3):

𝐶𝑇𝑥𝑦 = ∑(
𝑗𝑥. 𝑀𝐼

𝑉𝑀𝑦. 𝑀𝐼𝑃𝑆
⁄) (3)

In Eq. (3), 𝑗𝑥 . 𝑀𝐼 denotes a million instructions of 𝑗𝑥,

𝑉𝑀𝑦 . 𝑀𝐼𝑃𝑆 provides a Million Instructions Per Second of

𝑉𝑀𝑦. So, the 1st objective is to reduce makespan as given in

equation (4):

𝑓1 = min(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛) (4)

3.2.2. Resource Utilization

 The mean RUR is calculated as the fraction of the mean

makespan to the highest makespan of the cloud network as in

equation (5) and equation (6):

𝑀𝑒𝑎𝑛_𝑅𝑈𝑅 =
𝑀𝑒𝑎𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝐶𝑙𝑜𝑢𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛⁄ (5)

𝑀𝑒𝑎𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ∑
𝑀𝑆(𝑉𝑀𝑥)

𝑛⁄ , 1 ≤ 𝑥 ≤ 𝑛 (6)

The cloud makespan is equal to the maximum period for the

completion of each system workload. The lower value of

𝑀𝑒𝑎𝑛_𝑅𝑈𝑅 represents the insignificant use of computing

resources and the higher value defines the complete use of

computing resources in the cloud platform. So, the 2nd

objective is to increase the mean RUR as in equation (7):

𝑓2 = max(𝑀𝑒𝑎𝑛_𝑅𝑈𝑅) (7)

3.2.3. Execution Time

4. It is also known as the Degree of Imbalance (DoI), which

measures the inequity of workload dissemination among VMs

as per their abilities. It is calculated by equation (8).

𝐼𝐵_𝐷𝑒𝑔 =
𝑀𝑎𝑥_𝐶𝑇𝑖𝑚𝑒𝑗−𝑀𝑖𝑛_𝐶𝑇𝑖𝑚𝑒𝑗

𝑀𝑒𝑎𝑛_𝐶𝑇𝑖𝑚𝑒𝑗
 (8)

In Eq. (8), 𝑀𝑎𝑥_𝐶𝑇𝑖𝑚𝑒𝑖 is the highest implementation period

of 𝑗 on each VM, 𝑀𝑖𝑛_𝐶𝑇𝑖𝑚𝑒𝑖 is the lowest implementation

period of 𝑗 on each VM, 𝑀𝑒𝑎𝑛_𝐶𝑇𝑖𝑚𝑒𝑗 is the mean

completion period of 𝑗 on each VM. The lesser 𝐼𝐵_𝐷𝑒𝑔

define that the cloud workload is balanced properly, while

greater values define that load balancing is ineffective. So, the

3rd objective is to reduce the DoI (execution time) as in

equation (9):

𝑓3 = min(𝐼𝐵_𝐷𝑒𝑔) (9)

3.2.4. Throughput

5. It determines the amount of tasks executed per interval. It is

calculated based on the makespan by equation (10).

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛⁄ (10)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 315

RESEARCH ARTICLE

A greater throughput is needed for an efficient TSA. So, the

fourth objective is to increase throughput as in equation (11):

𝑓4 = max(𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) (11)

3.2.5. Memory Utilization

It defines the maximum memory requirement of each VM for

task execution and is calculated by equation (12).

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝐴𝑀𝑥 +
𝑅𝑀𝑗

𝑇𝑀𝑥
 (12)

In Eq. (12), 𝐴𝑀𝑥 indicates the memory utilization before

implementing 𝑗 at the 𝑖𝑡ℎ VM, 𝑅𝑀𝑗 indicates the memory

holding the request of 𝑗, and 𝑇𝑀𝑥 denotes the overall memory

accessible at 𝑖𝑡ℎ VM. So, the fifth objective is to reduce

memory utilization as in equation (13):

𝑓5 = min(𝑀𝑒𝑚𝑜𝑟𝑦) (13)

3.2.6. Bandwidth Usage

It defines the maximum bandwidth requirement of each VM

for task execution and is calculated by equation (14).

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝐴𝐵𝑥 +
𝑅𝐵𝑗

𝑇𝐵𝑥
 (14)

In Eq. (14), 𝐴𝐵𝑥 indicates the bandwidth utilization before

implementing 𝑗 at the 𝑖𝑡ℎ VM, 𝑅𝐵𝑗 defines the bandwidth

holding the request of 𝑗, and 𝑇𝐵𝑥 denotes the overall

bandwidth accessible at 𝑖𝑡ℎ VM. So, the sixth objective is to

minimize the bandwidth utilization as in equation (15):

𝑓6 = min(𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ) (15)

3.3. Hybrid Task Scheduling System

The proposed hybrid TSA comprises 4 major modules as

shown in Figure 2 including the meta-learner module,

hybridization parameter fine-tuning module, chief scheduler,

and repository. If the task is submitted to the network, its

runtime, and reliability are predicted in the meta-learner

module. Then, the predicted values are utilized by the chief

scheduler to calculate the positioning period of the fresh task

in the cloud platform. Once the task execution is completed,

data regarding real runtimes is stored in the repository to be

utilized by the meta-learner module and hybridization

parameter fine-tuning module. The repository has the

essential information with the LSTM network

hyperparameters. Because the task finishes execution on the

cloud, the runtime value is added to the repository.

Figure 2 Schematic Representation of the Presented Hybrid TSA in Cloud Computing

3.3.1. Central Scheduler

Utilizing the input from the meta-learner module, tasks are

split into 2 queues: predictable and unpredictable tasks. Tasks

that are represented as predictable by the meta-learner module

are input to a fresh queue, known as expected. The hybrid

scheduler has 2 schedulers, namely plan-based and backfilling

schedulers. Initially, the chief scheduler applies plan-based

scheduling to determine the early period of all predictable

tasks in the waiting queue. To perform this, a particular

proportion of resources utilizing a certain ratio of CPU cores

calculated by the hybridization parameter module is

deliberated. Then, once the positioning time of the predictable

tasks is calculated, VIKOR with backfilling scheduler

calculates the early period of unpredictable tasks on the

residual accessible resources. The entire plan for each task is

utilized to position tasks on the cloud. This process is

continued during task submission, task execution, or task

termination.

3.3.2. Hybridization Parameter Fine-tuning Module

The fraction of resources utilized by the plan-based

scheduling strategy to plan predictable tasks 𝛼 is known

hybridization parameter and can be modified by the

hybridization parameter fine-tuning module. The value of 𝛼 is

modified according to the fraction of the aggregate resource

utilization of predictable tasks to the cumulative resource

request of each task. The modification of 𝛼 is defined by

equation (16).

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 316

RESEARCH ARTICLE

𝛼𝑡+1 = 𝛼𝑡 ∗
∑ 𝑑𝑖𝑖∈𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒

∑ 𝑑𝑗𝑗∈𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘
 (16)

In Eq. (16), 𝑑𝑗 denotes the resource requirement for the task 𝑗.

The early value of 𝛼 represented as 𝛼0 is selected via a grid

search.

3.3.3. Meta-Learner Module

The meta-learner module is used to predict runtime and the

reliability of the expected runtime. The runtime forecast is

done by the LSTM network model. The runtime reliability

prediction defines how expected the runtime of a specified

task is depending on the attributes regarding the task during

submission. To decide the forecast reliability of tasks, the

LSTM network model is applied. The framework

hyperparameters are stored in the repository, and the

framework is reconstructed each day. The main role of the

meta-learner module is to decide whether the tasks belong to

predictable or unpredictable categories.

To analyze estimation accuracy for each task, a proper metric

called a point-wise measure is used, which determines the

correctness of runtime estimation for all tasks by equating the

estimated task runtime (�̂�𝑗) and actual task runtime (𝑝𝑗) as

equation (17):

𝐴𝑐𝑐𝑗 =

{

1, �̂�𝑗 = 𝑝𝑗
𝑝𝑗

𝑝𝑗
, �̂�𝑗 < 𝑝𝑗

𝑝𝑗

𝑝𝑗
, �̂�𝑗 > 𝑝𝑗

 (17)

3.3.4. LSTM Network Model as Meta-Learning for

Estimating Runtime Prediction Accuracy

The LSTM is employed to predict the forecast correctness

task runtimes (expectation reliability). The LSTM model

predicts the reliability of the freshly submitted tasks using the

attributes listed in Table 2 and the correctness of implemented

tasks as the target values. As depicted in Figure 3, attribute

vectors of implemented tasks 𝑓𝑖 = {𝑧1𝑖 , … , 𝑧𝑘𝑖}, and their

respective forecast correctness 𝐴𝑐𝑐𝑖 are utilized to train the

LSTM network. This network translates the attributes and the

expected runtime to correctness. Then, the learned framework

is utilized to measure the runtime forecast correctness of the

freshly submitted tasks.

In Figure 4, the expectation reliability provides correctness for

task 𝑖, 𝐴𝑐�̂�𝑖, by attribute vectors 𝑓𝑖 = {𝑧1𝑖 , … , 𝑧𝑘𝑖 , �̂�𝑖}.

Figure 3 Training of the Prediction Reliability Estimation Model

Figure 4 Predicting Accuracy for Newly Submitted Tasks using Trained Reliability Estimation Model

Table 2 Attributes Considered for Task Runtime Prediction Reliability Estimation

Attribute category Attribute name

Consumer-demanded runtime �̂�𝑗 (reqTime)

Real runtime and CPU for the earlier implemented tasks from the

identical consumer

last, beflast, beflast2, lastcpu

Highest runtime and CPU for the earlier implemented tasks from the maxrt, maxcpu

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 317

RESEARCH ARTICLE

identical consumer

Seasonality attributes tod1, tod2, dow1, dow2

Mean and standard variance of runtime and CPU of the tasks from the

identical consumer

meanrt, stdrt, meancpu, stdcpu

The quantity of implemented tasks from the identical consumer prevuser

The LSTM network includes 3 gate control strategies as

shown in Figure 5 such as forget, input, and output gate.

Figure 5 Architecture of LSTM Cell

The presence of the forget gate is to compute the level of

disremembering the data course preceded by the ongoing

LSTM unit. The determination is defined in equation (18):

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (18)

The role of the input gate is to estimate how much present

data is included in the data course. The determination is

defined in equations (19) and (20):

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (19)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (20)

Once the data traverse via the input and forget gates, the

LSTM fine-tunes its units to determine the outcome of the

ongoing LSTM unit and passes it to the consecutive LSTM

unit. The determination is defined in equation (21):

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (21)

The output gate merges the present input and LSTM unit to

compute the result of the present LSTM unit. The

computation is defined in equations (22) and (23):

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (22)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (23)

In Eqns. (18)-(23), 𝑊𝑓 ,𝑊𝑖 ,𝑊𝑜 and 𝑊𝐶 are the weight

coefficient vector associated with the hidden layers, input and

output gates, and the neuron condition vector,

correspondingly. Additionally, 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜 and 𝑏𝐶 denote their

corresponding offset values (i.e., bias values, which prevent

overfitting problems). 𝜎 is the sigmoid activation function, 𝑥𝑡
is the input to the input gate, ℎ𝑡 is the output of a hidden state,

ℎ𝑡−1 is the output of a previous hidden state, 𝐶𝑡 is a cell state

at time 𝑡, 𝑓𝑡 is a forget gate, �̃�𝑡 is a new memory, i.e. cell

update, and 𝑜𝑡 is the output of the output gate. The process to

obtain an LSTM predictor 𝑚𝑒𝑡�̃� for input 𝐹 is presented in

Algorithm 1. The algorithm contains a learning collection of

𝑘-dimensional input attributes of dimension 𝑁 represented as

𝐹 = {𝑓1, … , 𝑓𝑁} and their respective target correctness values

𝐴𝐶𝐶 = {𝐴𝑐𝑐1, … , 𝐴𝑐𝑐𝑁}. As the initial timestep, the LSTM

𝑚𝑒𝑡𝑎0(𝐹) is fitted to 𝐹 and 𝐴𝐶𝐶. Utilizing the trained LSTM,

a solution area of attribute space for fresh data is provided.

The expected target value for fresh data is anticipated by

averaging the runtime of the tasks in a similar sub-area. This

process is continued for a varying number of epochs.

Initialize 𝑚𝑒𝑡𝑎0 = argmin∑ 𝐿(𝐴𝑐𝑐𝑖 , 𝛾)
𝑁
𝑖=1

𝑓𝑜𝑟(𝑚 = 1,… ,𝑀)

 𝑓𝑜𝑟(𝑖 = 1,… , 𝑁)

 Calculate 𝑟𝑖𝑚 = −[
𝜕𝐿𝐴𝑐𝑐𝑖𝑚𝑒𝑡𝑎(𝑓𝑖)

𝜕𝑚𝑒𝑡𝑎(𝑓(𝑥𝑖))
]
𝑓=𝑓𝑚−1

;

 𝑒𝑛𝑑 𝑓𝑜𝑟

 Fit the LSTM network to the target 𝑟𝑖𝑚;

 𝑓𝑜𝑟(𝑗 = 1,… ,𝑚)

 Calculate 𝛾𝑗𝑚 =

argmin
𝛾

∑ (𝐴𝑐𝑐𝑖𝑚𝑒𝑡𝑎𝑚−1(𝑓𝑚−1(𝑥𝑖) + 𝛾))𝑥𝑗∈𝑅𝑗𝑚
;

 𝑒𝑛𝑑 𝑓𝑜𝑟

 Update 𝑚𝑒𝑡𝑎𝑚(𝑥) = 𝑚𝑒𝑡𝑎𝑚−1(𝑥) + ∑ 𝛾𝑗𝑚𝐼(𝑥 ∈
𝐽𝑚
𝑗=1

𝑅𝑗𝑚);

𝑒𝑛𝑑 𝑓𝑜𝑟

Result: 𝑚𝑒𝑡�̃�(𝑥) = 𝑚𝑒𝑡𝑎𝑀(𝑥)

Algorithm 1 LSTM Network as the Meta-Learner

3.4. Plan-based Scheduling for Predictable Tasks using Tuna

Swarm Optimization

A species of marine predatory fish known as tuna or tunnini.

The sizes of the different tuna species vary seriously. Tuna are

the main oceanic hunters that consume a range of surface and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 318

RESEARCH ARTICLE

midwater species. The "fishtail form" is a unique and efficient

swimming technique used by continuous swimmers and tunas,

wherein the body is inflexible and the long, thin tail swings

swiftly. The lone tuna moves incredibly swiftly, but it cannot

keep up with the small fish's quick response [27]. The tuna

will consequently participate in "group migratory" predation.

They exploit their cunning to seek and catch their prey. They

performed two hunting policies: (i) spiral hunting: while

eating, tuna swim in a spiral pattern to entice fish into shallow

water where they may be effortlessly attacked, and (ii)

parabolic hunting: all tunas swim in a line after the one before

it, developing a parabolic curve around its victim.

3.4.1. Initialization

The process of scheduling predictable tasks on the available

resources is started by TSO by randomly generating primary

populations in the search region by equation (24).

Si
ini = rand ∙ (ul − ll) + ll, i = 1, … , NP (24)

In Eq. (24), Si
ini is to the ith tuna, ul and ll indicate the

maximum and minimum limits of the search area, N is the

number of tuna populations, Dim is the population size, and

rand is uniformly distributed arbitrary vector ranging

between 0 and N. Every individual Si
ini in the tuna swarm

stands for a nominee result for TSO. Every tuna comprises a

group of Dim-dimensional numbers.

In all iterations, each tuna in the search region calculates its

fitness function as equation (25):

f = [f1, f2, f3, f4, f5, f6] (25)

In Eq. (25), f1 is the makespan, f2 is the resource utilization,

f3 is the runtime (DoI), f4 is the throughput, f5 is the memory

utilization, and f6 is the bandwidth utilization. The

exploitation and exploration tradeoff is achieved by

combining the genetic operators such as crossover and

mutation operators in each iteration for new population

generation. Also, the location of each tuna is updated based

on the two different foraging strategies.

3.4.1.1. Spiral Hunting

The majority of tuna cannot decide which direction to swim in

while pursuing their meal, however a tiny percentage of fish

may direct the swarm. The adjacent tuna will pursue this tiny

group of fish when they begin pursuing their prey. The

complete tuna swarm can eventually create a spiral pattern to

capture its target.

If the tuna swarm uses a spiral hunting approach, each can

communicate to determine which individuals or nearby

individuals in the swarm are ideal to follow. Even the most

talented individual occasionally fails to successfully guide the

swarm in prey acquisition. The tuna will then decide to follow

a random swarm member. The spiral foraging strategy is

defined by equations (26), (27), (28), (29), and (30).

𝑆𝑖
𝑡+1 =

{

 𝛼1 ∙ (𝑆𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ∙ |𝑆𝑟𝑎𝑛𝑑
𝑡 − 𝑆𝑖

𝑡|) + 𝛼2 ∙ 𝑆𝑖
𝑡 , 𝑖 = 1

𝛼1 ∙ (𝑆𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑆𝑟𝑎𝑛𝑑

𝑡 − 𝑆𝑖
𝑡|) + 𝛼2 ∙ 𝑆𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁

𝛼1 ∙ (𝑆𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑆𝑏𝑒𝑠𝑡

𝑡 − 𝑆𝑖
𝑡|) + 𝛼2 ∙ 𝑆𝑖

𝑡 , 𝑖 = 1

𝛼1 ∙ (𝑆𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑆𝑏𝑒𝑠𝑡

𝑡 − 𝑆𝑖
𝑡|) + 𝛼2 ∙ 𝑆𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁

𝑖𝑓 𝑟𝑎𝑛𝑑 <

𝑡

𝑡𝑚𝑎𝑥

𝑖𝑓 𝑟𝑎𝑛𝑑 ≥
𝑡

𝑡𝑚𝑎𝑥

 (26)

𝛼1 = 𝛼 + (1 − 𝛼) ∙
𝑡

𝑡𝑚𝑎𝑥
 (27)

𝛼2 = (1 − 𝛼) − (1 − 𝛼) ∙
𝑡

𝑡𝑚𝑎𝑥
 (28)

𝛽 = 𝑒𝑏𝑙 ∙ cos(2𝜋𝑏) (29)

𝑙 = 𝑒
3 cos(((𝑡𝑚𝑎𝑥+

1
𝑡⁄)−1)𝜋) (30)

In Eqns. (26) – (30), 𝑆𝑖
𝑡+1 is the 𝑖𝑡ℎ tuna in the 𝑡 + 1 iteration,

which is generated by the crossover and mutation operators,

𝑆𝑏𝑒𝑠𝑡
𝑡 is the present best individual, 𝑆𝑟𝑎𝑛𝑑

𝑡 denotes the

reference point arbitrarily chosen in the tuna swarm, 𝛼1

indicates the weight value to handle the tuna whirling to the

ideal individual or arbitrarily chosen nearby individuals, 𝛼2

indicates the weight value to handle the tuna whirling to the

individual in front of it, 𝛽 denotes the distance factor to

handle the gap between the tuna and the best tuna or an

arbitrarily chosen reference individual, 𝛼 indicates a constant

to determine the level of tuna following, 𝑡 is the present

iteration, 𝑡𝑚𝑎𝑥 indicates the highest iterations and 𝑏 defines

the arbitrary value from 0 to 1.

3.4.1.2. Parabolic Hunting

Tunas collaborate to feed by producing both a spiral pattern

and a parabolic pattern. Tuna develops a parabolic shape

using prey as a point of reference. Tuna also search their

surroundings for nourishment. These two techniques are used

simultaneously, with a 50% selection probability for each.

This strategy is described in equations (31) and (32):

Si
t+1 = {

Sbest
t + rand ∙ (Sbest

t − Si
t) + γ ∙ p2 ∙ (Sbest

t − Si
t), if rand < 0.5

γ ∙ p2 ∙ Si
t, if rand ≥ 0.5

 (31)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 319

RESEARCH ARTICLE

Where 𝑝 = (1 −
𝑡

𝑡𝑚𝑎𝑥
)
(

𝑡

𝑡𝑚𝑎𝑥
)

 (32)

In Eq. (31), 𝛾 is the random value of 1 or -1. During the

iteration, every tuna can randomly select to execute either the

spiral or the parabolic hunting policy. As well, tuna can

produce fresh individuals using crossover and mutation

operators in the search region according to the probability 𝑧.

The crossover and mutation operators are applied between

two tuna swarms (the best one and the worst one based on

their fitness value) to generate new offspring (new

population).

As a result, TSO can select various strategies based on those

genetic operators while producing fresh individual locations.

In the implementation of the TSO, each tuna in the inhabitants

is regularly modified until the termination criteria are met. At

last, the TSO provides the best individual in the inhabitants

and its best solution (scheduling ideal predictable tasks to the

available resources). Algorithm 2 presents the TSO algorithm

to find optimal tasks scheduled to the available resources.

Input: Tuna population size 𝑁𝑃, maximum iteration 𝑖𝑡𝑟𝑚𝑎𝑥 ,

the number of predictable jobs 𝑃𝑇𝑗 , and the number of VMs

𝑉𝑀𝑥, where 𝑗 ∈ {1, … , 𝐽} and 𝑥 ∈ {1, … , 𝑋}

Output: Set of optimal predictable task schedules

Begin

Generate the initial population of tunas 𝑆𝑖
𝑖𝑛𝑖 (𝑖 = 1,… , 𝑁𝑃)

randomly;

Set free parameters 𝑎 and 𝑧;

𝑤ℎ𝑖𝑙𝑒(𝑡 < 𝑡𝑚𝑎𝑥)

 Compute the fitness value 𝑓 of all tunas as Eq. (25);

 Modify the location and value of the best tuna 𝑆𝑏𝑒𝑠𝑡
𝑡 ;

 𝑓𝑜𝑟(𝑎𝑙𝑙 𝑡𝑢𝑛𝑎𝑠)

 Modify 𝛼1, 𝛼2, 𝑝 by Eqns. (27), (28), and

(32);

 𝑖𝑓(𝑟𝑎𝑛𝑑 < 𝑧)

 Modify 𝑆𝑖
𝑡+1 using Eq. (24);

 𝑒𝑙𝑠𝑒 𝑖𝑓(𝑟𝑎𝑛𝑑 ≥ 𝑧)

 𝑖𝑓(𝑟𝑎𝑛𝑑 < 0.5)

 Modify the location 𝑆𝑖
𝑡+1

using Eq. (26);

 𝑒𝑙𝑠𝑒 𝑖𝑓(𝑟𝑎𝑛𝑑 ≥ 0.5)

 Modify the location 𝑆𝑖
𝑡+1

using Eq. (31);

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Find the best tuna 𝑆𝑏𝑒𝑠𝑡 in the search space, and the optimal

fitness value (𝑓(𝑆𝑏𝑒𝑠𝑡));

End

Algorithm 2 Plan-Based Scheduling for Predictable Tasks

Using TSO

3.5. Backfilling for Unpredictable Tasks Using VIKOR

Technique

The VIKOR technique is utilized with backfilling for tasks

with unpredictable runtime. This technique solves the

conflicts among the unpredictable tasks by formulating the

criteria matrix 𝐴 as equation (33):

𝐴 =

𝑈𝑇1 𝑓11 𝑓12
𝑈𝑇2 𝑓21 𝑓22
⋮ ⋮ ⋮
𝑈𝑇𝑗 𝑓𝑗1 𝑓𝑗2

 (33)

Consider the criteria function 𝑐 = {1, … , 𝑘} and defines the

benefit, then calculate 𝑓𝑐
∗ and 𝑓𝑐

−, where 𝑓𝑐
∗ determines the

best task among the unpredictable tasks and 𝑓𝑐
− determines

the worst tasks as equation (34).

𝑓𝑐
∗ = max

𝑖
𝑓𝑖𝑐 , 𝑓𝑐

− = min
𝑖
𝑓𝑖𝑐 (34)

The maximum group utility (𝑆𝑖) and individual regret of

opponents (𝑅𝑖) are determined by equations (35) and (36).

𝑆𝑖 = ∑ 𝑤𝑐 (𝑓𝑐
∗ − 𝑓𝑖𝑐) (𝑓𝑐

∗ − 𝑓𝑐
−)⁄𝑛

𝑐=1 (35)

𝑅𝑖 = max
𝑐
𝑤𝑐 (𝑓𝑐

∗ − 𝑓𝑖𝑐) (𝑓𝑐
∗ − 𝑓𝑐

−)⁄ (36)

In Eqns. (34) – (36), 𝑖 = {1, … , 𝑛}. Here, 2 criteria are

considered such as the execution time (𝐸) and deadline (𝐷𝑇)
for backfilling. The weight matrix for criteria is determined

by equations (37) and (38).

𝑊 = {𝑤𝐸 , 𝑤𝐷𝑇} (37)

𝑤𝐸 = ∑
(
𝐸𝑐

10⁄)

𝐴∗𝑗

𝑘
𝑐=1 (38)

In Eq. (38), 𝐴 is the maximum weight, which is equal to 6

because each execution period is in minutes. 𝑤𝐷𝑇 is calculated

in equation (39).

𝑤𝐷𝑇 = ∑
(
(𝐷𝑇𝑐−𝐸𝑐)

𝐸𝑐
⁄)

𝑗

𝑘
𝑐=1 (39)

After that, for 𝑄𝑖 , 𝑖 = {1, … , 𝑛} in equation (40):

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 320

RESEARCH ARTICLE

𝑄𝑖 =
𝑣(𝑆𝑖−𝑆

∗)

(𝑆−−𝑆∗)
+ (1 − 𝑣)

(𝑅𝑖−𝑅
∗)

(𝑅−−𝑅∗)
 (40)

In Eq. (40), 𝑆∗ = min
𝑖
𝑆𝑖 , 𝑆

− = max
𝑖
𝑆𝑖 , 𝑅

∗ = min
𝑖
𝑅𝑖 , 𝑅

− =

max
𝑖
𝑅𝑖, and 𝑣 = 0.5, i.e. weight of the majority of criteria.

Moreover, rank 𝑆, 𝑅 and 𝑄 in descending manner. Sort the

best measure, i.e. 𝑄 (minimum) using the below criteria:

Consider 𝑇′ is the alternative task at the initial position and

𝑇′′ is at the second position in 𝑄 as equations (41) and (42):

𝑄(𝑇′′) − 𝑄(𝑇′) ≥ 𝐷𝑄 (41)

𝐷𝑄 =
1

𝑗−1
 (42)

When 𝑇′′ is the best alternative in 𝑆 and 𝑅, it is stable and

should satisfy: 𝑣 > 0.5 (majority rule) or 𝑣 ≈ 0.5 (consensus)

or 𝑣 < 0.5 (with veto). Therefore, the best alternative task 𝑇′
among unpredictable tasks is chosen as a backfill task 𝑈𝑇𝑏 for

scheduling with 𝑈𝑇𝑗 concurrently.

Input: Unpredictable task set 𝑆 = {𝑈𝑇1, … , 𝑈𝑇𝑗}

Output: Backfill task 𝑈𝑇𝑏

Initialize 𝑄′ ← 𝑆;

Choose 𝐸 and 𝐷𝑇 as criteria for backfilling;

𝑓𝑜𝑟(𝑖 = 1,… , 𝑗)

 Create a criteria matrix 𝐴 using Eqns. (33) & (34);

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑓𝑜𝑟(𝑐 = 1,… , 𝑘)

 Calculate weight vector 𝑊 using Eqns. (38) & (39);

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑓𝑜𝑟(𝑖 = 1,… , 𝑛)

 Find 𝑆𝑖 and 𝑅𝑖 using Eqns. (35) & (36);

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑓𝑜𝑟(𝑖 = 1,… , 𝑗)

 Evaluate 𝑄𝑖 using Eq. (40);

𝑒𝑛𝑑 𝑓𝑜𝑟

Rank 𝑆, 𝑅 and 𝑄 in descending order;

Apply Eq. (41) to determine the best alternative that is

backfill task 𝑈𝑇𝑏;

Return 𝑈𝑇𝑏

Algorithm 3 VIKOR Backfilling

Thus, this hybrid TSA can schedule tasks efficiently with

better resource utilization and other requirements by

combining both plan-based and backfilling strategies.

4. SIMULATION RESULTS

The effectiveness of the LSTM-TSO-VIKOR is assessed by

simulating it in CloudSim API 3.0.3 simulator. The

simulation parameters are given in Table 3, which are set in

the computer that has Intel ® Core ™ i5-4210 CPU @

2.80GHz, 4GB RAM, 1TB HDD under Windows 10 64-bit

operating system. A comparative analysis is also conducted

between the proposed and existing algorithms including

TSMGWO [13], HMSADE [14], HAGA [16], CR-PSO [19],

and MOABCQ [26] in terms of various metrics. The

considered metrics include makespan, mean resource use

percentage, throughput, DoI, memory utilization, and

bandwidth usage, which are defined in Section 3.2.

Table 3 Simulation Environment and Parameters

Type Parameter Value

Host

No. of hosts 100

Host kinds
HP ProLiant ML110 G4

HP ProLiant ML110 G5

HP ProLiant ML110 G4

No. of Processing Elements (PEs) per host 4

Bandwidth 3Gbps

Host memory 8GB

MIPS of PE 2060

HP ProLiant ML110 G5

No. of PEs per host 4

Bandwidth 3Gbps

Host memory 8GB

MIPS of PE 3560

VM

No. of VMs 450

VM kinds

High-CPU Medium Instance

Extra Large Instance

Small Instance

Micro Instance

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 321

RESEARCH ARTICLE

High-CPU Medium Instance

MIPS of PE 2500

No. of PEs per VM 5

VM memory 1GB

Bandwidth 118Mbps

Extra Large Instance

MIPS of PE 2000

No.of PEs per VM 4

VM memory 4GB

Bandwidth 118Mbps

Small Instance

MIPS of PE 1000

No. of PEs per VM 3

VM memory 2GB

Bandwidth 118Mbps

Micro Instance

MIPS of PE 500

No. of PEs per VM 2

VM memory 1.5GB

Bandwidth 118Mbps

Cloudlets

No. of tasks 1000

Task length (Million Instructions (MI)) 2500*simulation limit

No. of PEs per demand 2

LSTM

Learning rate 10-3

Layer size 25

Dropout rate 0.5

Number of epoch 30

TSO
𝑎 0.7

𝑧 0.05

4.1. Makespan

Makespan is calculated by equation (1).

Figure 6 Makespan vs. No. of Tasks

Figure 6 explains the makespan achieved by the different

hybrid TSAs. It is observed that the LSTM-TSO-VIKOR

algorithm provides the highest reduction in makespan 51.87%

over HMSADE, 45.2% over CR-PSO, 39.13% over HAGA,

28.99% over MOABCQ, and 16.9% over TSMGWO

algorithms for 200 tasks in the cloud. This is because of an

improved exploitation and exploration ability of the LSTM-

TSOVIKOR algorithm compared to the other optimization

algorithms for scheduling tasks to the VMs.

4.2. Mean Resource Utilization Ratio

Mean Resource Utilization Ratio is calculated by equation

(4).

Figure 7 Mean RUR vs. No. of Tasks

In Figure 7, the mean RUR results for different hybrid TSAs

are plotted. It is observed that the proposed LSTM-TSO-

VIKOR-based TSA results in a high rise in resource use up to

69.23%, 50%, 37.5%, 26.92%, and 15.79% over HMSADE,

CR-PSO, HAGA, MOABCQ, and TSMGWO algorithms,

respectively, for 200 tasks in the cloud. This is because of

finding optimal scheduling for both predictable and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 322

RESEARCH ARTICLE

unpredictable tasks by enhancing the searchability of the

LSTM-TSO-VIKOR algorithm.

4.3. Degree of Imbalance (DoI)

Degree of Imbalance (DoI) is calculated by equation (8).

Figure 8 compares the DoI results of different hybrid TSAs. It

is noted that the LSTM-TSO-VIKOR-based TSA achieves

better performance by providing less DoI compared to the

other algorithms. The LSTM-TSO-VIKOR results in a high

drop in the DoI up to 40.5% over HMSADE, 37.1% over CR-

PSO, 31.3% over HAGA, 26.7% over MOABCQ, and 15.4%

over TSMGWO algorithms for 200 tasks in the cloud. This is

owing to the enhancing optimization procedure using TSO for

scheduling predictable tasks and VIKOR technique for

unpredictable tasks independently.

Figure 8 DoI vs. No. of Tasks

4.4. Throughput

Throughput is calculated by equation (10).

Figure 9 Throughput vs. No. of Tasks

In Figure 9, the throughput results achieved by various hybrid

TSAs are drawn. It is realized that the LSTM-TSO-VIKOR

creates an extreme rise in throughput up to 70% over

HMSADE, 50% over CR-PSO, 37.8% over HAGA, 27.5%

over MOABCQ, and 13.3% over TSMGWO algorithms for

200 tasks in the cloud. This is because of enhancing

exploration and exploitation of optimizing multiple objectives

for both predictable and unpredictable tasks scheduling

efficiently.

4.5. Memory Utilization

Memory Utilization is calculated by equation (12).

Figure 10 exhibits the memory utilization results for different

hybrid TSAs. It is noted that the LSTM-TSO-VIKOR creates

a maximum reduction in memory utilization up to 40%,

33.33%, 28%, 21.74%, and 14.29% over HMSADE, CR-

PSO, HAGA, MOABCQ, and TSMGWO algorithms,

respectively for 200 tasks in the cloud. This is because the

LSTM-TSO-VIKOR can enhance the optimization ability of

both predictable and unpredictable task scheduling by using

multiple objectives.

Figure 10 Memory Utilization vs. No. of Tasks

4.6. Bandwidth Utilization

Bandwidth Utilization is calculated by equation (14).

Figure 11 Bandwidth Utilization vs. No. of Tasks

In Figure 11, the bandwidth utilization results of various

hybrid TSAs are plotted. It is shown that the LSTM-TSO-

VIKOR-based TSA achieves a maximum reduction in

bandwidth utilization up to 18.22%, 16.67%, 15.05%,

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 323

RESEARCH ARTICLE

11.62%, and 7.89% compared to the HMSADE, CR-PSO,

HAGA, MOABCQ, and TSMGWO algorithms for 200 tasks

in the cloud. This is owing to the adoption of new

optimization such as TSO and VIKOR for efficiently

scheduling predictable and unpredictable tasks independently

by predicting their runtime reliability using the LSTM model.

Thus, it is realized that a huge improvement in the network

performance for a varying quantity of jobs utilizing the

proposed LSTM-TSO-VIKOR algorithm. This is because of

improving the tradeoff between the exploration and

exploitation ability with fewer parameters during

optimization, as well as, hybridizing both plan-based and

backfilling TS strategies.

5. CONCLUSION

In this study, the hybrid TSA was developed depending on the

combination of the linear matching method and backfilling for

enhancing the performance of TS in cloud computing. First,

the LSTM network model was applied as a meta-learner for

estimating the prediction reliability of task runtimes. Based on

this prediction, the tasks were split into 2 categories such as

predictable and unpredictable. Further, the predictable tasks

were scheduled by the TSO, whereas the remaining tasks

were backfilled by the VIKOR technique. In the end, the

experiments showed that the LSTM-TSO-VIKOR achieved a

noteworthy improvement in the utilization of resources and

other requirements for task execution compared to the

existing TSAs in cloud computing.

REFERENCES

[1] Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J.,

Yadwadkar, N. J., Popa, R. A., & Patterson, D. A. (2021). What
serverless computing is and should become: the next phase of cloud

computing. Communications of the ACM, 64(5), 76-84.

[2] Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Delgado, J. M.
D., Akanbi, L. A., ... & Owolabi, H. A. (2021). Cloud computing in

construction industry: use cases, benefits and challenges. Automation in

Construction, 122, 1-18.
[3] Atieh, A. T. (2021). The next generation cloud technologies: a review

on distributed cloud, fog and edge computing and their opportunities

and challenges. ResearchBerg Review of Science and Technology, 1(1),
1-15.

[4] Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., & Alzain, M. A. (2021). A

load balancing algorithm for the data centres to optimize cloud
computing applications. IEEE Access, 9, 41731-41744.

[5] Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load balancing in

cloud computing: a big picture. Journal of King Saud University-
Computer and Information Sciences, 32(2), 149-158.

[6] Imran, M., Ibrahim, M., Din, M. S. U., Rehman, M. A. U., & Kim, B. S.

(2022). Live virtual machine migration: a survey, research challenges,
and future directions. Computers and Electrical Engineering, 103, 1-18.

[7] Houssein, E. H., Gad, A. G., Wazery, Y. M., & Suganthan, P. N.

(2021). Task scheduling in cloud computing based on meta-heuristics:
review, taxonomy, open challenges, and future trends. Swarm and

Evolutionary Computation, 62, 1-41.

[8] Bittencourt, L. F., Goldman, A., Madeira, E. R., da Fonseca, N. L., &
Sakellariou, R. (2018). Scheduling in distributed systems: a cloud

computing perspective. Computer Science Review, 30, 31-54.

[9] Asghari, A., Sohrabi, M. K., & Yaghmaee, F. (2020). Online scheduling

of dependent tasks of cloud’s workflows to enhance resource utilization
and reduce the makespan using multiple reinforcement learning-based

agents. Soft Computing, 24(21), 16177-16199.

[10] Jamil, B., Ijaz, H., Shojafar, M., Munir, K., & Buyya, R. (2022).
Resource allocation and task scheduling in fog computing and internet

of everything environments: a taxonomy, review, and future

directions. ACM Computing Surveys, 10(1), 1-35.
[11] Murad, S. A., Muzahid, A. J. M., Azmi, Z. R. M., Hoque, M. I., &

Kowsher, M. (2022). A review on job scheduling technique in cloud

computing and priority rule based intelligent framework. Journal of
King Saud University-Computer and Information Sciences, 34, 2309-

2331.

[12] Al-Arasi, R., & Saif, A. (2020). Task scheduling in cloud computing
based on metaheuristic techniques: a review paper. EAI Endorsed

Transactions on Cloud Systems, 6(17), 1-19.

[13] Alsadie, D. (2021). TSMGWO: optimizing task schedule using multi-

objectives grey Wolf optimizer for cloud data centers. IEEE Access, 9,

37707-37725.

[14] Abd Elaziz, M., Xiong, S., Jayasena, K. P. N., & Li, L. (2019). Task
scheduling in cloud computing based on hybrid moth search algorithm

and differential evolution. Knowledge-Based Systems, 169, 39-52.
[15] Xu, J., Hao, Z., Zhang, R., & Sun, X. (2019). A method based on the

combination of laxity and ant colony system for cloud-fog task

scheduling. IEEE Access, 7, 116218-116226.
[16] Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., & Murphy, J.

(2020). A WOA-based optimization approach for task scheduling in

cloud computing systems. IEEE Systems Journal, 14(3), 3117-3128.
[17] Jia, L., Li, K., & Shi, X. (2021). Cloud computing task scheduling

model based on improved whale optimization algorithm. Wireless

Communications and Mobile Computing, 2021, 1-13.
[18] Wang, Y., & Zuo, X. (2021). An effective cloud workflow scheduling

approach combining PSO and idle time slot-aware rules. IEEE/CAA

Journal of Automatica Sinica, 8(5), 1079-1094.
[19] Dubey, K., & Sharma, S. C. (2021). A novel multi-objective CR-PSO

task scheduling algorithm with deadline constraint in cloud

computing. Sustainable Computing: Informatics and Systems, 32, 1-20.
[20] Ajmal, M. S., Iqbal, Z., Khan, F. Z., Ahmad, M., Ahmad, I., & Gupta,

B. B. (2021). Hybrid ant genetic algorithm for efficient task scheduling

in cloud data centers. Computers and Electrical Engineering, 95, 1-15.
[21] Calzarossa, M. C., Della Vedova, M. L., Massari, L., Nebbione, G., &

Tessera, D. (2021). Multi-objective optimization of deadline and

budget-aware workflow scheduling in uncertain clouds. IEEE Access, 9,
89891-89905.

[22] Kumar, M. S., Tomar, A., & Jana, P. K. (2021). Multi-objective

workflow scheduling scheme: a multi-criteria decision making
approach. Journal of Ambient Intelligence and Humanized

Computing, 12(12), 10789-10808.

[23] Oudaa, T., Gharsellaoui, H., & Ahmed, S. B. (2021). An agent-based
model for resource provisioning and task scheduling in cloud computing

using DRL. Procedia Computer Science, 192, 3795-3804.

[24] Sharma, N., & Garg, P. (2022). Ant colony based optimization model
for QoS-based task scheduling in cloud computing

environment. Measurement: Sensors, 24, 1-9.

[25] Mahmoud, H., Thabet, M., Khafagy, M. H., & Omara, F. A. (2022).
Multiobjective task scheduling in cloud environment using decision tree

algorithm. IEEE Access, 10, 36140-36151.

[26] Kruekaew, B., & Kimpan, W. (2022). Multi-objective task scheduling
optimization for load balancing in cloud computing environment using

hybrid artificial bee colony algorithm with reinforcement

learning. IEEE Access, 10, 17803-17818.
[27] Xie, L., Han, T., Zhou, H., Zhang, Z. R., Han, B., & Tang, A. (2021).

Tuna swarm optimization: a novel swarm-based metaheuristic algorithm

for global optimization. Computational Intelligence and
Neuroscience, 2021, 1-22.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221887 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 324

RESEARCH ARTICLE

Authors

Ms Ramya B is a research scholar in the
department of computer science at Vellalar

College for women, Erode, Tamilnadu. Her area

of interest is cloud computing. Completed M.Sc
(CT) in 2011 at Kongu Engineering College,

Perundurai, Erode. Completed Mphil in Vasavi

arts and Science College. Worked as Assistant
professor in department of computer science,

Kongu arts and science colleges, from 2016-

2019.

How to cite this article:

Dr. E.S. Samundeeswari is working

as Associate Professor in the

Department of Computer Science at

Vellalar College for Women, Erode,

Tamilnadu. She has more than 33 years

of academic experience. She completed

her PG Degree in MCA in 1988 and

achieved Doctoral Degree in 2008. Her

area of interests include Computation

Intelligence and Image Processing.

Ramya Boopathi, E.S. Samundeeswari, “Amended Hybrid Scheduling for Cloud Computing with Real-Time Reliability

Forecasting”, International Journal of Computer Networks and Applications (IJCNA), 10(3), PP: 310-324, 2023, DOI:

10.22247/ijcna/2023/221887.

