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Abstract – Cloud computing has emerged as the feasible 

paradigm to satisfy the computing requirements of high-

performance applications by an ideal distribution of tasks to 

resources. But, it is problematic when attaining multiple 

scheduling objectives such as throughput, makespan, and 

resource use. To resolve this problem, many Task Scheduling 

Algorithms (TSAs) are recently developed using single or multi-

objective metaheuristic strategies. Amongst, the TS based on a 

Multi-objective Grey Wolf Optimizer (TSMGWO) handles 

multiple objectives to discover ideal tasks and assign resources to 

the tasks. However, it only maximizes the resource use and 

throughput when reducing the makespan, whereas it is also 

crucial to optimize other parameters like the utilization of the 

memory, and bandwidth. Hence, this article proposes a hybrid 

TSA depending on the linear matching method and backfilling, 

which uses the memory and bandwidth requirements for 

effective TS. Initially, a Long Short-Term Memory (LSTM) 

network is adopted as a meta-learner to predict the task runtime 

reliability. Then, the tasks are divided into predictable and 

unpredictable queues. The tasks with higher expected runtime 

are scheduled by a plan-based scheduling approach based on the 

Tuna Swarm Optimization (TSO). The remaining tasks are 

backfilled by the VIKOR technique. To reduce resource use, a 

particular fraction of CPU cores is kept for backfilling, which is 

modified dynamically depending on the Resource Use Ratio 

(RUR) of predictable tasks among freshly submitted tasks. 

Finally, a general simulation reveals that the proposed algorithm 

outperforms the earlier metaheuristic, plan-based, and 

backfilling TSAs. 

Index Terms – Cloud Computing, Task Scheduling, TSMGWO, 

Meta-Learning, LSTM, Plan-Based Scheduling, Tuna Swarm 

Optimization, Backfilling, VIKOR. 

1. INTRODUCTION 

In recent years, cloud computing has become increasingly 

significant in several industries. As a principle of on-demand 

cloud services over web-based systems, it is operated to meet 

user demands for resource access or to allow members to 

acquire cloud facilities when needed [1]. Based on the 

application and design strategies required by the members, it 

may also handle a wide range of services [2]. It is a mix of 

parallel and distributed computing that makes use of shared 

resources like software and hardware, which are paid for as 

they are used [3]. 

One of the operational paradigms used to operate servers, data 

centers, and VMs is called Infrastructure-as-a-Service (IaaS). 

IaaS is a type of cloud facility, which offers a host or CPU in 

the cloud to process and store data. It gives users access to 

servers locally because the cloud resources are hosted on VMs 

[4]. It relies on the demands of the member, named Service 

Level Agreements (SLAs), and Quality-of-Service (QoS). The 

expense is based on the contract between the member and the 

Cloud Service Providers (CSPs) [5]. Additionally, it 

facilitates CSPs to deliver data centers with high-efficiency 

computing resources, which helps users to access cloud 

applications. 

The VM utilizes the cloud resources such as the memory, or 

CPU. The VM resources are needed by the demanded 

resource for functioning [6]. So, the cloud system has an 

imbalanced resource allocation, and a few VMs cannot get the 

resources they need since several VMs have preemptive and 

non-preemptive relations to resources [7]. The VM must be 

fast to react while the task is delivered to be executed in the 

cloud to minimize waiting time. But, tasks must be allocated 

among each VM simultaneously to maintain equilibrium and 

guarantee effective utilization of the available resources. So, 

TS is essential to allocate tasks across available resources [8]. 

If several tasks are allocated to a single VM or several VMs, 

the allocated tasks can execute simultaneously to fulfill the 

requirements. So, it is important to verify the allocation to 

guarantee that not each task is placed onto one VM, since this 

might make other VMs unavailable or imbalanced in the 

system. To prevent this, a schedule should consider additional 

factors like makespan, cost, and resource use [9]. It ensures 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/221887                 Volume 10, Issue 3, May – June (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       311 

     

RESEARCH ARTICLE 

maximum resource use by delivering satisfactory performance 

under various task constraints such as execution deadlines. 

Several researchers have modeled TS problems as bin packing 

problems or metaheuristic problems, which are solved using a 

First Come First Serve (FCFS), Max-Min, and so on [10-11]. 

On the other hand, such methods have the drawbacks of 

deceiving in local minima because of the multimodal behavior 

of TS. Currently, metaheuristic algorithms have attained 

significant attention to find the close-ideal result to the TS 

challenge within a minimum duration [12]. Numerous 

metaheuristic algorithms have solved TS problems using 

single or multiple objectives to discover close-ideal results 

and offer trade-offs to CSPs. Amongst, the TSMGWO [13] 

can reduce the cost and enhance the resource utilization of 

VMs by finding near-optimal solutions when handling 

conflicting objectives. Nonetheless, this algorithm only tries 

to optimize system throughput, resource usage, and balancing 

workloads across VMs, whereas additional parameters like 

the use of the memory, and bandwidth are needed to improve 

the TS performance.  

Therefore, in this paper, a hybrid TSA is proposed by using 

two main scheduling strategies called linear matching method 

and backfilling. The key goal is to consider the utilization of 

the memory and bandwidth with less computation time for 

effective TS. The major contributions of this paper include:  

1. First, the LSTM is applied as a meta-learner to predict the 

network-produced task runtime reliability during task 

submission, which helps to categorize the tasks into 

predictable and unpredictable tasks.  

2. Then, the plan-based scheduling approach based on Tuna 

Swarm optimization is adopted for tasks with a maximum 

projected runtime and backfills the residual tasks on top of 

the deliberate tasks.  

3. To achieve backfilling, a VIKOR (VIseKriterijumska 

Optimizacija I Kompromisno Resenje) technique is 

adopted. When resource distribution is applied to reduce 

resource use, a particular fraction of CPU cores is set aside 

for backfilling of fewer predictable tasks. This fraction is 

modified dynamically depending on the RUR of 

predictable tasks among freshly submitted tasks. Thus, this 

algorithm can discover the optimal available resources 

during TS for improving makespan, system throughput, 

resource use, and minimizing execution time. 

The remaining article is prepared as follows: Section II 

discusses different TSAs that emerged in previous years. 

Section III explains the presented TSA and Section IV 

portrays its efficiency. Section V abridges the whole work. 

2. LITERATURE SURVEY 

A Hybrid Moth Search Algorithm and Differential Evolution 

(HMSADE) [14] has been presented to plan the jobs in cloud 

systems. But, it considers only the execution time as the 

objective function, whereas it needs other parameters like 

memory usage, bandwidth, etc., to increase the efficiency of 

TS with less time complexity. A Laxity-based Priority (LBP) 

[15] has been suggested to allocate tasks using a suitable 

significance that enhances the sensitivity of job delay. Also, 

Ant Colony Optimization (ACO) has been employed to lessen 

aggregate energy utilization. Nonetheless, it didn’t schedule 

the independent tasks. 

Chen et al. [16] developed a multi-objective Improved Whale 

Optimization Algorithm (IWOA) to distribute the cloud jobs. 

Nevertheless, the tradeoff between exploration and 

exploitation was less efficient due to the poor convergence 

and it did not handle independent tasks. Jia et al. [17] 

presented an Improved Whale Optimization (IWC) scheme to 

enhance TS efficiency by finding the optimal whale 

individuals using the inertial weight mechanism. Also, add 

and delete functions were used after all iterations to monitor 

and choose the best individuals. But, the impact on the 

memory load value was not clear, which needs to enhance 

memory usage. 

Wang & Zuo [18] designed a cloud workflow scheduling 

method called HPSO by hybridizing Particle Swarm 

Optimization (PSO) and idle timeslot-aware rules for 

decreasing the execution cost of a workflow request under a 

deadline limit. A novel particle encoding was used to define 

the VM category needed by all tasks and the scheduling 

sequence of tasks. To decode a particle into a scheduling 

solution, an idle timeslot-aware decoding process was 

applied. Also, a repair scheme was adopted to handle the 

task’s invalid priorities. But, the network bandwidth among 

VM instances was assumed to be equal. 

Dubey & Sharma [19] developed a new hybrid TSA called 

Chemical Reaction-PSO (CR-PSO) to allocate multiple 

independent tasks on the available VMs. The CR optimization 

and PSO were hybridized by uniting the features for the 

optimal schedule sequence where tasks can be processed 

according to the demand and deadline concurrently. But, it 

did not consider the dependent tasks and it needs additional 

parameters like bandwidth for improving efficiency. 

Ajmal et al. [20] developed Hybrid Ant Genetic Algorithm 

(HAGA) for TS effectively. A new strategy was used to add 

and evaporate VM pheromones to identify the load on the 

VM. The GA mutation process was redesigned to identify 

loaded VMs and schedule tasks to balance loads among VMs. 

But, it needs other parameters like resource usage, energy 

consumption, etc., to increase further efficiency. 

Calzarossa et al. [21] analyzed a multi-objective restricted 

optimization issue to recognize the best scheduling strategies 

for systematic tasks to be employed in unreliable cloud 

scenarios. The main aim was to reduce the estimated task 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/221887                 Volume 10, Issue 3, May – June (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       312 

     

RESEARCH ARTICLE 

execution period and monetary expense under probabilistic 

restraints on deadline and budget. This issue was resolved by 

the combined Monte Carlo method and Genetic Algorithm 

(MCGA), the cloud clients were permitted to select the 

strategy of the Pareto optimum group ensuring their demands 

and interests. But, the optimum results were not achieved 

under severe deadlines and costs, because the variability 

raises. 

Kumar et al. [22] modeled the TS problem as a non-linear 

restricted optimization dilemma and solved using the 

Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) to reduce makespan and power usage. But, 

it did not consider the cost and deadline restraints for TS. 

Oudaa et al. [23] presented a novel framework depending on 

the Quantile Regression Deep Q-Network (QR-DQN) to 

create a suitable strategy and the best long-term solutions to 

assign resources and schedule tasks to corresponding VMs. 

But, if the number of tasks was increased, then more tasks 

were discarded because of running out of resources or time. 

Sharma & Garg [24] presented the Load-Balancing Ant 

Colony Optimization (LBACO), which combines the Genetic 

Algorithm (GA) and ACO for QoS-based TS in cloud 

computing. In contrast, advanced optimization schemes must 

be deployed to further boost competence while considering 

multiple objectives. Mahmoud et al. [25] suggested a multi-

objective TS using a Decision Tree (TS-DT) algorithm to 

schedule and execute the applications’ tasks. But, it did not 

consider memory, bandwidth, etc., to determine the objective 

function for effective TS. 

Kruekaew & Kimpan [26] designed an independent Multi-

objective TS Optimization depending on the Artificial Bee 

Colony (ABC) scheme with a Q-learning (MOABCQ). The 

objective of this algorithm was to enhance TS and resource 

usage, throughput, and achieve load-balancing among VMs. 

On the other hand, it cannot ensure that this algorithm was 

optimal so that the network performance was not enhanced in 

each test corpus. 

Table 1 summarizes earlier researchers in terms of algorithms 

used, merits, and demerits compared to the proposed 

algorithm.

Table 1 Comparison of Earlier TSA in Cloud Computing 

Ref. No. Algorithms used Merits Demerits 

[13] TSMGWO Reduce the cost and improve resource 

utilization. 

It did not consider other crucial factors 

like memory and bandwidth for TS. 

[14] HMSADE It can schedule the tasks to the VM when 

consuming a minimum makespan. 

It considered only one objective 

function such as the execution time. 

[15] LBP-ACO It can ensure reasonable scheduling length and 

reduce the failure rate of TS with varied 

deadlines. 

It didn’t schedule the independent 

tasks. 

[16] Multi-objective 

IWOA 

It can enhance efficiency based on system load 

and resource usage. 

The tradeoff between exploration and 

exploitation was less efficient due to 

the poor convergence and it did not 

handle independent tasks. 

[17] IWC It achieved better TS period, and scheduling 

cost. 

The impact on the memory load value 

was not clear, which needs to enhance 

memory usage. 

[18] HPSO It achieved better efficiency in terms of 

execution cost and the success rate in reaching 

the deadline. 

The network bandwidth among VM 

instances was assumed to be equal. 

[19] CR-PSO It was more economical. It achieved less 

execution period, and cost. 

It did not consider the dependent tasks 

and it needs additional parameters like 

bandwidth for improving efficiency. 

[20] HAGA It can discover a feasible schedule to reduce 

the execution time of tasks. 

The optimum results were not 

achieved under severe deadlines and 

costs, because the variability raises. 
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[21] MCGA It was based on the deadline and budget 

constraints. 

No feasible solutions to the 

constrained optimization problem 

were not achieved for the larger 

variability factor of VM performance. 

[22] TOPSIS It was robust in terms of makespan and 

reliability metrics. 

It did not consider the cost and 

deadline restraints for TS. 

[23] QR-DQN It was cost-effective by guaranteeing QoS 

efficiency. 

If the number of tasks was increased, 

then more tasks were discarded 

because of running out of resources or 

time. 

[24] LBACO It can decrease the execution period and cost. It did not perform well for multi-

objective optimization. 

[25] TS-DT It can decrease makespan and enhance 

resource usage. 

It increases energy utilization. It needs 

to consider memory, bandwidth, 

energy usage, etc., to determine the 

objective function for effective TS. 

[26] MOABCQ It can reduce makespan, cost, degree of 

imbalance, and increase throughput. 

It cannot ensure that this algorithm 

was optimal so that the network 

performance was not enhanced in each 

test corpus. 

Proposed LSTM-TSO-

VIKOR 

It can schedule both predictable and 

unpredictable tasks efficiently by considering 

multiple objectives, including makespan, 

resource usage, execution time, throughput, 

memory, and bandwidth. 

Still, it did not consider energy 

utilization as the objective function. 

3. PROPOSED METHODOLOGY 

In this section, the proposed hybrid TSA is explained briefly. 

An overview of the TSA in cloud computing is portrayed in 

Figure 1. Many independent task requests are forwarded 

through a graphical user interface to the cloud broker in a task 

list. The CSP verifies whether the appropriate number of 

cloud resources are available to complete the requirements for 

task execution or not. If the required number of cloud 

resources is available, then the requested tasks are scheduled 

to the resources based on the scheduling algorithm. 

Otherwise, the CSP denied the requested tasks to the cloud 

user and waits for the availability of the resources. 

 

Figure 1 Overview of Task Scheduling in Cloud Computing 
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3.1. Problem Definition 

Initially, the task 𝑗 is assumed with a specified submission 

period and resource necessity. During the submission, these 

are submitted by the consumer, where 𝑛 separate tasks, and 𝑗 
contains different characteristics: submission period 𝑟𝑗, 

resource requirement 𝑑𝑗, actual running period 𝑝𝑗, and 

requested running period �̂�𝑗. The problem considered is to 

implement a group of simultaneous tasks with inflexible 

resource necessities on the cloud with 𝑚 resource units. The 

tasks are submitted over an interval. The resource necessity 𝑑𝑗 

of 𝑗 is equal to the consumer-demanded resource 

acknowledged at the period of submission. The real runtime is 

named a posteriori while the task finishes. The challenge is 

how to schedule tasks to realize enhanced efficiency, with no 

proper runtime values during the submission period. 

To combat this problem, a hybrid scheduling system is 

proposed, which utilizes a linear matching method and 

backfilling for tasks with random runtime. During the task 

submission, the LSTM network is employed to predict the 

reliability of task runtime. After that, tasks are categorized 

into predictable and unpredictable queues using the learned 

LSTM network. Moreover, the tasks with higher expected 

runtime are scheduled by the TSO as plan-based scheduling, 

and the tasks in the unpredictable queue are scheduled on the 

residual accessible resources by the VIKOR-based 

backfilling. The predictable and unpredictable tasks are 

described as follows: 

 Predictable tasks: These are tasks with great expectation 

reliability and are represented by the predicted runtime 

reliability of 60% or higher. 

 Unpredictable tasks: These are tasks with little expectation 

reliability and are represented by the predicted runtime 

reliability of less than 60%. 

3.2. Formation of Objective (Fitness) Functions 

The proposed model considers 6 major objectives such as 

resource utilization, makespan, memory usage, bandwidth 

use, execution time, and throughput for optimization. 

3.2.1. Makespan 

It is the total period needed from submitting a task to the end 

of the task by the consumer. It is calculated in equation (1): 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝑀𝑆(𝑉𝑀𝑥)), 1 ≤ 𝑥 ≤ 𝑛  (1) 

In Eq. (1), 𝑛 is the number of VMs, and 𝑀𝑆(𝑉𝑀𝑥) is 

calculated in equation (2). 

𝑀𝑆(𝑉𝑀𝑥) = ∑𝐶𝑇𝑥𝑦 × 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑥, 𝑦)  (2) 

In Eq. (2), 𝐶𝑇 is the computation period of task 𝑗𝑥 on 𝑉𝑀𝑦, 

𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑥, 𝑦) = 1, when 𝑗𝑥 is scheduled on 𝑉𝑀𝑦; or else, 

𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑥, 𝑦) = 0. The computation period of 𝑉𝑀𝑦 to 

execute 𝑗𝑥 is calculated in equation (3): 

𝐶𝑇𝑥𝑦 = ∑(
𝑗𝑥. 𝑀𝐼

𝑉𝑀𝑦. 𝑀𝐼𝑃𝑆
⁄ )   (3) 

In Eq. (3), 𝑗𝑥 . 𝑀𝐼 denotes a million instructions of 𝑗𝑥, 

𝑉𝑀𝑦 . 𝑀𝐼𝑃𝑆 provides a Million Instructions Per Second of 

𝑉𝑀𝑦. So, the 1st objective is to reduce makespan as given in 

equation (4): 

𝑓1 = min(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛)    (4) 

3.2.2. Resource Utilization 

 The mean RUR is calculated as the fraction of the mean 

makespan to the highest makespan of the cloud network as in 

equation (5) and equation (6): 

𝑀𝑒𝑎𝑛_𝑅𝑈𝑅 =
𝑀𝑒𝑎𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝐶𝑙𝑜𝑢𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛⁄  (5) 

𝑀𝑒𝑎𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ∑
𝑀𝑆(𝑉𝑀𝑥)

𝑛⁄ , 1 ≤ 𝑥 ≤ 𝑛 (6) 

The cloud makespan is equal to the maximum period for the 

completion of each system workload. The lower value of 

𝑀𝑒𝑎𝑛_𝑅𝑈𝑅 represents the insignificant use of computing 

resources and the higher value defines the complete use of 

computing resources in the cloud platform. So, the 2nd 

objective is to increase the mean RUR as in equation (7): 

𝑓2 = max(𝑀𝑒𝑎𝑛_𝑅𝑈𝑅)    (7) 

3.2.3. Execution Time 

4. It is also known as the Degree of Imbalance (DoI), which 

measures the inequity of workload dissemination among VMs 

as per their abilities. It is calculated by equation (8). 

𝐼𝐵_𝐷𝑒𝑔 =
𝑀𝑎𝑥_𝐶𝑇𝑖𝑚𝑒𝑗−𝑀𝑖𝑛_𝐶𝑇𝑖𝑚𝑒𝑗

𝑀𝑒𝑎𝑛_𝐶𝑇𝑖𝑚𝑒𝑗
   (8) 

In Eq. (8), 𝑀𝑎𝑥_𝐶𝑇𝑖𝑚𝑒𝑖 is the highest implementation period 

of 𝑗 on each VM, 𝑀𝑖𝑛_𝐶𝑇𝑖𝑚𝑒𝑖 is the lowest implementation 

period of 𝑗 on each VM, 𝑀𝑒𝑎𝑛_𝐶𝑇𝑖𝑚𝑒𝑗 is the mean 

completion period of 𝑗 on each VM. The lesser 𝐼𝐵_𝐷𝑒𝑔 

define that the cloud workload is balanced properly, while 

greater values define that load balancing is ineffective. So, the 

3rd objective is to reduce the DoI (execution time) as in 

equation (9): 

𝑓3 = min(𝐼𝐵_𝐷𝑒𝑔)    (9) 

3.2.4. Throughput 

5. It determines the amount of tasks executed per interval. It is 

calculated based on the makespan by equation (10). 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛⁄  (10) 
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A greater throughput is needed for an efficient TSA. So, the 

fourth objective is to increase throughput as in equation (11): 

𝑓4 = max(𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)    (11) 

3.2.5. Memory Utilization 

It defines the maximum memory requirement of each VM for 

task execution and is calculated by equation (12). 

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝐴𝑀𝑥 +
𝑅𝑀𝑗

𝑇𝑀𝑥
    (12) 

In Eq. (12), 𝐴𝑀𝑥 indicates the memory utilization before 

implementing 𝑗 at the 𝑖𝑡ℎ VM, 𝑅𝑀𝑗 indicates the memory 

holding the request of 𝑗, and 𝑇𝑀𝑥 denotes the overall memory 

accessible at 𝑖𝑡ℎ VM. So, the fifth objective is to reduce 

memory utilization as in equation (13): 

𝑓5 = min(𝑀𝑒𝑚𝑜𝑟𝑦)    (13) 

3.2.6. Bandwidth Usage 

It defines the maximum bandwidth requirement of each VM 

for task execution and is calculated by equation (14). 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝐴𝐵𝑥 +
𝑅𝐵𝑗

𝑇𝐵𝑥
    (14) 

In Eq. (14), 𝐴𝐵𝑥 indicates the bandwidth utilization before 

implementing 𝑗 at the 𝑖𝑡ℎ VM, 𝑅𝐵𝑗  defines the bandwidth 

holding the request of 𝑗, and 𝑇𝐵𝑥 denotes the overall 

bandwidth accessible at 𝑖𝑡ℎ VM. So, the sixth objective is to 

minimize the bandwidth utilization as in equation (15): 

𝑓6 = min(𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)    (15) 

3.3. Hybrid Task Scheduling System 

The proposed hybrid TSA comprises 4 major modules as 

shown in Figure 2 including the meta-learner module, 

hybridization parameter fine-tuning module, chief scheduler, 

and repository. If the task is submitted to the network, its 

runtime, and reliability are predicted in the meta-learner 

module. Then, the predicted values are utilized by the chief 

scheduler to calculate the positioning period of the fresh task 

in the cloud platform. Once the task execution is completed, 

data regarding real runtimes is stored in the repository to be 

utilized by the meta-learner module and hybridization 

parameter fine-tuning module. The repository has the 

essential information with the LSTM network 

hyperparameters. Because the task finishes execution on the 

cloud, the runtime value is added to the repository. 

 

Figure 2 Schematic Representation of the Presented Hybrid TSA in Cloud Computing 

3.3.1. Central Scheduler 

Utilizing the input from the meta-learner module, tasks are 

split into 2 queues: predictable and unpredictable tasks. Tasks 

that are represented as predictable by the meta-learner module 

are input to a fresh queue, known as expected. The hybrid 

scheduler has 2 schedulers, namely plan-based and backfilling 

schedulers. Initially, the chief scheduler applies plan-based 

scheduling to determine the early period of all predictable 

tasks in the waiting queue. To perform this, a particular 

proportion of resources utilizing a certain ratio of CPU cores 

calculated by the hybridization parameter module is 

deliberated. Then, once the positioning time of the predictable 

tasks is calculated, VIKOR with backfilling scheduler 

calculates the early period of unpredictable tasks on the 

residual accessible resources. The entire plan for each task is 

utilized to position tasks on the cloud. This process is 

continued during task submission, task execution, or task 

termination. 

3.3.2. Hybridization Parameter Fine-tuning Module 

The fraction of resources utilized by the plan-based 

scheduling strategy to plan predictable tasks 𝛼 is known 

hybridization parameter and can be modified by the 

hybridization parameter fine-tuning module. The value of 𝛼 is 

modified according to the fraction of the aggregate resource 

utilization of predictable tasks to the cumulative resource 

request of each task. The modification of 𝛼 is defined by 

equation (16). 
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𝛼𝑡+1 = 𝛼𝑡 ∗
∑ 𝑑𝑖𝑖∈𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒

∑ 𝑑𝑗𝑗∈𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘
    (16) 

In Eq. (16), 𝑑𝑗 denotes the resource requirement for the task 𝑗. 

The early value of 𝛼 represented as 𝛼0 is selected via a grid 

search. 

3.3.3. Meta-Learner Module 

The meta-learner module is used to predict runtime and the 

reliability of the expected runtime. The runtime forecast is 

done by the LSTM network model. The runtime reliability 

prediction defines how expected the runtime of a specified 

task is depending on the attributes regarding the task during 

submission. To decide the forecast reliability of tasks, the 

LSTM network model is applied. The framework 

hyperparameters are stored in the repository, and the 

framework is reconstructed each day. The main role of the 

meta-learner module is to decide whether the tasks belong to 

predictable or unpredictable categories.  

To analyze estimation accuracy for each task, a proper metric 

called a point-wise measure is used, which determines the 

correctness of runtime estimation for all tasks by equating the 

estimated task runtime (�̂�𝑗) and actual task runtime (𝑝𝑗) as 

equation (17): 

𝐴𝑐𝑐𝑗 =

{
 
 

 
 
1, �̂�𝑗 = 𝑝𝑗
𝑝𝑗

𝑝𝑗
, �̂�𝑗 < 𝑝𝑗

𝑝𝑗

𝑝𝑗
, �̂�𝑗 > 𝑝𝑗

    (17) 

3.3.4. LSTM Network Model as Meta-Learning for 

Estimating Runtime Prediction Accuracy 

The LSTM is employed to predict the forecast correctness 

task runtimes (expectation reliability). The LSTM model 

predicts the reliability of the freshly submitted tasks using the 

attributes listed in Table 2 and the correctness of implemented 

tasks as the target values. As depicted in Figure 3, attribute 

vectors of implemented tasks 𝑓𝑖 = {𝑧1𝑖 , … , 𝑧𝑘𝑖}, and their 

respective forecast correctness 𝐴𝑐𝑐𝑖 are utilized to train the 

LSTM network. This network translates the attributes and the 

expected runtime to correctness. Then, the learned framework 

is utilized to measure the runtime forecast correctness of the 

freshly submitted tasks. 

In Figure 4, the expectation reliability provides correctness for 

task 𝑖, 𝐴𝑐�̂�𝑖, by attribute vectors 𝑓𝑖 = {𝑧1𝑖 , … , 𝑧𝑘𝑖 , �̂�𝑖}.

 

Figure 3 Training of the Prediction Reliability Estimation Model 

 

Figure 4 Predicting Accuracy for Newly Submitted Tasks using Trained Reliability Estimation Model 

Table 2 Attributes Considered for Task Runtime Prediction Reliability Estimation 

Attribute category Attribute name 

Consumer-demanded runtime �̂�𝑗 (reqTime) 

Real runtime and CPU for the earlier implemented tasks from the 

identical consumer 

last, beflast, beflast2, lastcpu 

Highest runtime and CPU for the earlier implemented tasks from the maxrt, maxcpu 
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identical consumer 

Seasonality attributes tod1, tod2, dow1, dow2 

Mean and standard variance of runtime and CPU of the tasks from the 

identical consumer 

meanrt, stdrt, meancpu, stdcpu 

The quantity of implemented tasks from the identical consumer prevuser 

The LSTM network includes 3 gate control strategies as 

shown in Figure 5 such as forget, input, and output gate. 

 

Figure 5 Architecture of LSTM Cell 

The presence of the forget gate is to compute the level of 

disremembering the data course preceded by the ongoing 

LSTM unit. The determination is defined in equation (18): 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (18) 

The role of the input gate is to estimate how much present 

data is included in the data course. The determination is 

defined in equations (19) and (20): 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (19) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   (20) 

Once the data traverse via the input and forget gates, the 

LSTM fine-tunes its units to determine the outcome of the 

ongoing LSTM unit and passes it to the consecutive LSTM 

unit. The determination is defined in equation (21): 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡    (21) 

The output gate merges the present input and LSTM unit to 

compute the result of the present LSTM unit. The 

computation is defined in equations (22) and (23): 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (22) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)    (23) 

In Eqns. (18)-(23), 𝑊𝑓 ,𝑊𝑖 ,𝑊𝑜 and 𝑊𝐶 are the weight 

coefficient vector associated with the hidden layers, input and 

output gates, and the neuron condition vector, 

correspondingly. Additionally, 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜 and 𝑏𝐶  denote their 

corresponding offset values (i.e., bias values, which prevent 

overfitting problems). 𝜎 is the sigmoid activation function, 𝑥𝑡 
is the input to the input gate, ℎ𝑡 is the output of a hidden state, 

ℎ𝑡−1 is the output of a previous hidden state, 𝐶𝑡 is a cell state 

at time 𝑡, 𝑓𝑡 is a forget gate, �̃�𝑡 is a new memory, i.e. cell 

update, and 𝑜𝑡 is the output of the output gate. The process to 

obtain an LSTM predictor 𝑚𝑒𝑡�̃� for input 𝐹 is presented in 

Algorithm 1. The algorithm contains a learning collection of 

𝑘-dimensional input attributes of dimension 𝑁 represented as 

𝐹 = {𝑓1, … , 𝑓𝑁} and their respective target correctness values 

𝐴𝐶𝐶 = {𝐴𝑐𝑐1, … , 𝐴𝑐𝑐𝑁}. As the initial timestep, the LSTM 

𝑚𝑒𝑡𝑎0(𝐹) is fitted to 𝐹 and 𝐴𝐶𝐶. Utilizing the trained LSTM, 

a solution area of attribute space for fresh data is provided. 

The expected target value for fresh data is anticipated by 

averaging the runtime of the tasks in a similar sub-area. This 

process is continued for a varying number of epochs. 

Initialize 𝑚𝑒𝑡𝑎0 = argmin∑ 𝐿(𝐴𝑐𝑐𝑖 , 𝛾)
𝑁
𝑖=1  

𝑓𝑜𝑟(𝑚 = 1,… ,𝑀)  

 𝑓𝑜𝑟(𝑖 = 1,… , 𝑁) 

  Calculate 𝑟𝑖𝑚 = −[
𝜕𝐿𝐴𝑐𝑐𝑖𝑚𝑒𝑡𝑎(𝑓𝑖)

𝜕𝑚𝑒𝑡𝑎(𝑓(𝑥𝑖))
]
𝑓=𝑓𝑚−1

; 

 𝑒𝑛𝑑 𝑓𝑜𝑟 

 Fit the LSTM network to the target 𝑟𝑖𝑚; 

 𝑓𝑜𝑟(𝑗 = 1,… ,𝑚)  

  Calculate 𝛾𝑗𝑚 =

argmin
𝛾

∑ (𝐴𝑐𝑐𝑖𝑚𝑒𝑡𝑎𝑚−1(𝑓𝑚−1(𝑥𝑖) + 𝛾))𝑥𝑗∈𝑅𝑗𝑚
; 

 𝑒𝑛𝑑 𝑓𝑜𝑟  

 Update 𝑚𝑒𝑡𝑎𝑚(𝑥) = 𝑚𝑒𝑡𝑎𝑚−1(𝑥) + ∑ 𝛾𝑗𝑚𝐼(𝑥 ∈
𝐽𝑚
𝑗=1

𝑅𝑗𝑚); 

𝑒𝑛𝑑 𝑓𝑜𝑟  

Result: 𝑚𝑒𝑡�̃�(𝑥) = 𝑚𝑒𝑡𝑎𝑀(𝑥) 

Algorithm 1 LSTM Network as the Meta-Learner 

3.4. Plan-based Scheduling for Predictable Tasks using Tuna 

Swarm Optimization 

A species of marine predatory fish known as tuna or tunnini. 

The sizes of the different tuna species vary seriously. Tuna are 

the main oceanic hunters that consume a range of surface and 
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midwater species. The "fishtail form" is a unique and efficient 

swimming technique used by continuous swimmers and tunas, 

wherein the body is inflexible and the long, thin tail swings 

swiftly. The lone tuna moves incredibly swiftly, but it cannot 

keep up with the small fish's quick response [27]. The tuna 

will consequently participate in "group migratory" predation. 

They exploit their cunning to seek and catch their prey. They 

performed two hunting policies: (i) spiral hunting: while 

eating, tuna swim in a spiral pattern to entice fish into shallow 

water where they may be effortlessly attacked, and (ii) 

parabolic hunting: all tunas swim in a line after the one before 

it, developing a parabolic curve around its victim. 

3.4.1. Initialization 

The process of scheduling predictable tasks on the available 

resources is started by TSO by randomly generating primary 

populations in the search region by equation (24). 

Si
ini = rand ∙ (ul − ll) + ll, i = 1, … , NP  (24) 

In Eq. (24), Si
ini is to the ith tuna, ul and ll indicate the 

maximum and minimum limits of the search area, N is the 

number of tuna populations, Dim is the population size, and 

rand is uniformly distributed arbitrary vector ranging 

between 0 and N. Every individual Si
ini in the tuna swarm 

stands for a nominee result for TSO. Every tuna comprises a 

group of Dim-dimensional numbers. 

In all iterations, each tuna in the search region calculates its 

fitness function as equation (25): 

f = [f1, f2, f3, f4, f5, f6]    (25) 

In Eq. (25), f1 is the makespan, f2 is the resource utilization, 

f3 is the runtime (DoI), f4 is the throughput, f5 is the memory 

utilization, and f6 is the bandwidth utilization. The 

exploitation and exploration tradeoff is achieved by 

combining the genetic operators such as crossover and 

mutation operators in each iteration for new population 

generation. Also, the location of each tuna is updated based 

on the two different foraging strategies. 

3.4.1.1. Spiral Hunting 

The majority of tuna cannot decide which direction to swim in 

while pursuing their meal, however a tiny percentage of fish 

may direct the swarm. The adjacent tuna will pursue this tiny 

group of fish when they begin pursuing their prey. The 

complete tuna swarm can eventually create a spiral pattern to 

capture its target. 

If the tuna swarm uses a spiral hunting approach, each can 

communicate to determine which individuals or nearby 

individuals in the swarm are ideal to follow. Even the most 

talented individual occasionally fails to successfully guide the 

swarm in prey acquisition. The tuna will then decide to follow 

a random swarm member. The spiral foraging strategy is 

defined by equations (26), (27), (28), (29), and (30). 

𝑆𝑖
𝑡+1 =

{
 
 

 
 𝛼1 ∙ (𝑆𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ∙ |𝑆𝑟𝑎𝑛𝑑
𝑡 − 𝑆𝑖

𝑡|) + 𝛼2 ∙ 𝑆𝑖
𝑡 , 𝑖 = 1

𝛼1 ∙ (𝑆𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑆𝑟𝑎𝑛𝑑

𝑡 − 𝑆𝑖
𝑡|) + 𝛼2 ∙ 𝑆𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁

𝛼1 ∙ (𝑆𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑆𝑏𝑒𝑠𝑡

𝑡 − 𝑆𝑖
𝑡|) + 𝛼2 ∙ 𝑆𝑖

𝑡 , 𝑖 = 1

𝛼1 ∙ (𝑆𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑆𝑏𝑒𝑠𝑡

𝑡 − 𝑆𝑖
𝑡|) + 𝛼2 ∙ 𝑆𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁

   
𝑖𝑓 𝑟𝑎𝑛𝑑 <

𝑡

𝑡𝑚𝑎𝑥

𝑖𝑓 𝑟𝑎𝑛𝑑 ≥
𝑡

𝑡𝑚𝑎𝑥

                   (26) 

𝛼1 = 𝛼 + (1 − 𝛼) ∙
𝑡

𝑡𝑚𝑎𝑥
    (27) 

𝛼2 = (1 − 𝛼) − (1 − 𝛼) ∙
𝑡

𝑡𝑚𝑎𝑥
   (28) 

𝛽 = 𝑒𝑏𝑙 ∙ cos(2𝜋𝑏)    (29) 

𝑙 = 𝑒
3 cos(((𝑡𝑚𝑎𝑥+

1
𝑡⁄ )−1)𝜋)    (30) 

In Eqns. (26) – (30), 𝑆𝑖
𝑡+1 is the 𝑖𝑡ℎ tuna in the 𝑡 + 1 iteration, 

which is generated by the crossover and mutation operators, 

𝑆𝑏𝑒𝑠𝑡
𝑡  is the present best individual, 𝑆𝑟𝑎𝑛𝑑

𝑡  denotes the 

reference point arbitrarily chosen in the tuna swarm, 𝛼1 

indicates the weight value to handle the tuna whirling to the 

ideal individual or arbitrarily chosen nearby individuals, 𝛼2 

indicates the weight value to handle the tuna whirling to the 

individual in front of it, 𝛽 denotes the distance factor to 

handle the gap between the tuna and the best tuna or an 

arbitrarily chosen reference individual, 𝛼 indicates a constant 

to determine the level of tuna following, 𝑡 is the present 

iteration, 𝑡𝑚𝑎𝑥 indicates the highest iterations and 𝑏 defines 

the arbitrary value from 0 to 1. 

3.4.1.2.  Parabolic Hunting 

Tunas collaborate to feed by producing both a spiral pattern 

and a parabolic pattern. Tuna develops a parabolic shape 

using prey as a point of reference. Tuna also search their 

surroundings for nourishment. These two techniques are used 

simultaneously, with a 50% selection probability for each. 

This strategy is described in equations (31) and (32): 

Si
t+1 = {

Sbest
t + rand ∙ (Sbest

t − Si
t) + γ ∙ p2 ∙ (Sbest

t − Si
t), if rand < 0.5

γ ∙ p2 ∙ Si
t, if rand ≥ 0.5

                            (31) 
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Where 𝑝 = (1 −
𝑡

𝑡𝑚𝑎𝑥
)
(

𝑡

𝑡𝑚𝑎𝑥
)

   (32) 

In Eq. (31), 𝛾 is the random value of 1 or -1. During the 

iteration, every tuna can randomly select to execute either the 

spiral or the parabolic hunting policy. As well, tuna can 

produce fresh individuals using crossover and mutation 

operators in the search region according to the probability 𝑧. 

The crossover and mutation operators are applied between 

two tuna swarms (the best one and the worst one based on 

their fitness value) to generate new offspring (new 

population).  

As a result, TSO can select various strategies based on those 

genetic operators while producing fresh individual locations. 

In the implementation of the TSO, each tuna in the inhabitants 

is regularly modified until the termination criteria are met. At 

last, the TSO provides the best individual in the inhabitants 

and its best solution (scheduling ideal predictable tasks to the 

available resources). Algorithm 2 presents the TSO algorithm 

to find optimal tasks scheduled to the available resources. 

Input: Tuna population size 𝑁𝑃, maximum iteration 𝑖𝑡𝑟𝑚𝑎𝑥 , 

the number of predictable jobs 𝑃𝑇𝑗 , and the number of VMs 

𝑉𝑀𝑥, where 𝑗 ∈ {1, … , 𝐽} and 𝑥 ∈ {1, … , 𝑋} 

Output: Set of optimal predictable task schedules 

Begin 

Generate the initial population of tunas 𝑆𝑖
𝑖𝑛𝑖 (𝑖 = 1,… , 𝑁𝑃) 

randomly; 

Set free parameters 𝑎 and 𝑧; 

𝑤ℎ𝑖𝑙𝑒(𝑡 < 𝑡𝑚𝑎𝑥)  

 Compute the fitness value 𝑓 of all tunas as Eq. (25); 

 Modify the location and value of the best tuna 𝑆𝑏𝑒𝑠𝑡
𝑡 ; 

 𝑓𝑜𝑟(𝑎𝑙𝑙 𝑡𝑢𝑛𝑎𝑠) 

  Modify 𝛼1, 𝛼2, 𝑝 by Eqns. (27), (28), and 

(32); 

  𝑖𝑓(𝑟𝑎𝑛𝑑 < 𝑧) 

   Modify 𝑆𝑖
𝑡+1 using Eq. (24); 

  𝑒𝑙𝑠𝑒 𝑖𝑓(𝑟𝑎𝑛𝑑 ≥ 𝑧) 

   𝑖𝑓(𝑟𝑎𝑛𝑑 < 0.5) 

    Modify the location 𝑆𝑖
𝑡+1 

using Eq. (26); 

   𝑒𝑙𝑠𝑒 𝑖𝑓(𝑟𝑎𝑛𝑑 ≥ 0.5) 

    Modify the location 𝑆𝑖
𝑡+1 

using Eq. (31); 

   𝑒𝑛𝑑 𝑖𝑓 

  𝑒𝑛𝑑 𝑖𝑓 

 𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒  

Find the best tuna 𝑆𝑏𝑒𝑠𝑡  in the search space, and the optimal 

fitness value (𝑓(𝑆𝑏𝑒𝑠𝑡)); 

End 

Algorithm 2 Plan-Based Scheduling for Predictable Tasks 

Using TSO 

3.5. Backfilling for Unpredictable Tasks Using VIKOR 

Technique 

The VIKOR technique is utilized with backfilling for tasks 

with unpredictable runtime. This technique solves the 

conflicts among the unpredictable tasks by formulating the 

criteria matrix 𝐴 as equation (33): 

𝐴 =

𝑈𝑇1 𝑓11 𝑓12
𝑈𝑇2 𝑓21 𝑓22
⋮ ⋮ ⋮
𝑈𝑇𝑗 𝑓𝑗1 𝑓𝑗2

    (33) 

Consider the criteria function 𝑐 = {1, … , 𝑘} and defines the 

benefit, then calculate 𝑓𝑐
∗ and 𝑓𝑐

−, where 𝑓𝑐
∗ determines the 

best task among the unpredictable tasks and 𝑓𝑐
− determines 

the worst tasks as equation (34). 

𝑓𝑐
∗ = max

𝑖
𝑓𝑖𝑐 ,   𝑓𝑐

− = min
𝑖
𝑓𝑖𝑐   (34) 

The maximum group utility (𝑆𝑖) and individual regret of 

opponents (𝑅𝑖) are determined by equations (35) and (36). 

𝑆𝑖 = ∑ 𝑤𝑐 (𝑓𝑐
∗ − 𝑓𝑖𝑐) (𝑓𝑐

∗ − 𝑓𝑐
−)⁄𝑛

𝑐=1    (35) 

𝑅𝑖 = max
𝑐
𝑤𝑐 (𝑓𝑐

∗ − 𝑓𝑖𝑐) (𝑓𝑐
∗ − 𝑓𝑐

−)⁄    (36) 

In Eqns. (34) – (36), 𝑖 = {1, … , 𝑛}. Here, 2 criteria are 

considered such as the execution time (𝐸) and deadline (𝐷𝑇) 
for backfilling. The weight matrix for criteria is determined 

by equations (37) and (38). 

𝑊 = {𝑤𝐸 , 𝑤𝐷𝑇}     (37) 

𝑤𝐸 = ∑
(
𝐸𝑐

10⁄ )

𝐴∗𝑗

𝑘
𝑐=1     (38) 

In Eq. (38), 𝐴 is the maximum weight, which is equal to 6 

because each execution period is in minutes. 𝑤𝐷𝑇  is calculated 

in equation (39). 

𝑤𝐷𝑇 = ∑
(
(𝐷𝑇𝑐−𝐸𝑐)

𝐸𝑐
⁄ )

𝑗

𝑘
𝑐=1     (39) 

After that, for 𝑄𝑖 , 𝑖 = {1, … , 𝑛} in equation (40): 
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𝑄𝑖 =
𝑣(𝑆𝑖−𝑆

∗)

(𝑆−−𝑆∗)
+ (1 − 𝑣)

(𝑅𝑖−𝑅
∗)

(𝑅−−𝑅∗)
   (40) 

In Eq. (40), 𝑆∗ = min
𝑖
𝑆𝑖 , 𝑆

− = max
𝑖
𝑆𝑖 , 𝑅

∗ = min
𝑖
𝑅𝑖 , 𝑅

− =

max
𝑖
𝑅𝑖, and 𝑣 = 0.5, i.e. weight of the majority of criteria. 

Moreover, rank 𝑆, 𝑅 and 𝑄 in descending manner. Sort the 

best measure, i.e. 𝑄 (minimum) using the below criteria: 

Consider 𝑇′ is the alternative task at the initial position and 

𝑇′′ is at the second position in 𝑄 as equations (41) and (42): 

𝑄(𝑇′′) − 𝑄(𝑇′) ≥ 𝐷𝑄    (41) 

𝐷𝑄 =
1

𝑗−1
     (42) 

When 𝑇′′ is the best alternative in 𝑆 and 𝑅, it is stable and 

should satisfy: 𝑣 > 0.5 (majority rule) or 𝑣 ≈ 0.5 (consensus) 

or 𝑣 < 0.5 (with veto). Therefore, the best alternative task 𝑇′ 
among unpredictable tasks is chosen as a backfill task 𝑈𝑇𝑏  for 

scheduling with 𝑈𝑇𝑗  concurrently. 

Input: Unpredictable task set 𝑆 = {𝑈𝑇1, … , 𝑈𝑇𝑗} 

Output: Backfill task 𝑈𝑇𝑏  

Initialize 𝑄′ ← 𝑆; 

Choose 𝐸 and 𝐷𝑇 as criteria for backfilling; 

𝑓𝑜𝑟(𝑖 = 1,… , 𝑗)  

 Create a criteria matrix 𝐴 using Eqns. (33) & (34); 

𝑒𝑛𝑑 𝑓𝑜𝑟  

𝑓𝑜𝑟(𝑐 = 1,… , 𝑘)  

 Calculate weight vector 𝑊 using Eqns. (38) & (39); 

𝑒𝑛𝑑 𝑓𝑜𝑟  

𝑓𝑜𝑟(𝑖 = 1,… , 𝑛)  

 Find 𝑆𝑖 and 𝑅𝑖 using Eqns. (35) & (36); 

𝑒𝑛𝑑 𝑓𝑜𝑟  

𝑓𝑜𝑟(𝑖 = 1,… , 𝑗)  

 Evaluate 𝑄𝑖  using Eq. (40); 

𝑒𝑛𝑑 𝑓𝑜𝑟  

Rank 𝑆, 𝑅 and 𝑄 in descending order; 

Apply Eq. (41) to determine the best alternative that is 

backfill task 𝑈𝑇𝑏; 

Return 𝑈𝑇𝑏  

Algorithm 3 VIKOR Backfilling 

Thus, this hybrid TSA can schedule tasks efficiently with 

better resource utilization and other requirements by 

combining both plan-based and backfilling strategies. 

4. SIMULATION RESULTS 

The effectiveness of the LSTM-TSO-VIKOR is assessed by 

simulating it in CloudSim API 3.0.3 simulator. The 

simulation parameters are given in Table 3, which are set in 

the computer that has Intel ® Core ™ i5-4210 CPU @ 

2.80GHz, 4GB RAM, 1TB HDD under Windows 10 64-bit 

operating system. A comparative analysis is also conducted 

between the proposed and existing algorithms including 

TSMGWO [13], HMSADE [14], HAGA [16], CR-PSO [19], 

and MOABCQ [26] in terms of various metrics. The 

considered metrics include makespan, mean resource use 

percentage, throughput, DoI, memory utilization, and 

bandwidth usage, which are defined in Section 3.2. 

Table 3 Simulation Environment and Parameters 

Type Parameter Value 

Host 

No. of hosts 100 

Host kinds 
HP ProLiant ML110 G4 

HP ProLiant ML110 G5 

HP ProLiant ML110 G4 

No. of Processing Elements (PEs) per host 4 

Bandwidth 3Gbps 

Host memory 8GB 

MIPS of PE 2060 

HP ProLiant ML110 G5 

No. of PEs per host 4 

Bandwidth 3Gbps 

Host memory 8GB 

MIPS of PE 3560 

VM 

No. of VMs 450 

VM kinds 

High-CPU Medium Instance 

Extra Large Instance 

Small Instance 

Micro Instance 
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High-CPU Medium Instance 

MIPS of PE 2500 

No. of PEs per VM 5 

VM memory 1GB 

Bandwidth 118Mbps 

Extra Large Instance 

MIPS of PE 2000 

No.of PEs per VM 4 

VM memory 4GB 

Bandwidth 118Mbps 

Small Instance 

MIPS of PE 1000 

No. of PEs per VM 3 

VM memory 2GB 

Bandwidth 118Mbps 

Micro Instance 

MIPS of PE 500 

No. of PEs per VM 2 

VM memory 1.5GB 

Bandwidth 118Mbps 

Cloudlets 

No. of tasks 1000 

Task length (Million Instructions (MI)) 2500*simulation limit 

No. of PEs per demand 2 

LSTM 

Learning rate 10-3 

Layer size 25 

Dropout rate 0.5 

Number of epoch 30 

TSO 
𝑎  0.7 

𝑧  0.05 

4.1. Makespan 

Makespan is calculated by equation (1). 

 

Figure 6 Makespan vs. No. of Tasks 

Figure 6 explains the makespan achieved by the different 

hybrid TSAs. It is observed that the LSTM-TSO-VIKOR 

algorithm provides the highest reduction in makespan 51.87% 

over HMSADE, 45.2% over CR-PSO, 39.13% over HAGA, 

28.99% over MOABCQ, and 16.9% over TSMGWO 

algorithms for 200 tasks in the cloud. This is because of an 

improved exploitation and exploration ability of the LSTM-

TSOVIKOR algorithm compared to the other optimization 

algorithms for scheduling tasks to the VMs. 

4.2. Mean Resource Utilization Ratio 

Mean Resource Utilization Ratio is calculated by equation 

(4). 

 

Figure 7 Mean RUR vs. No. of Tasks 

In Figure 7, the mean RUR results for different hybrid TSAs 

are plotted. It is observed that the proposed LSTM-TSO-

VIKOR-based TSA results in a high rise in resource use up to 

69.23%, 50%, 37.5%, 26.92%, and 15.79% over HMSADE, 

CR-PSO, HAGA, MOABCQ, and TSMGWO algorithms, 

respectively, for 200 tasks in the cloud. This is because of 

finding optimal scheduling for both predictable and 
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unpredictable tasks by enhancing the searchability of the 

LSTM-TSO-VIKOR algorithm. 

4.3. Degree of Imbalance (DoI) 

Degree of Imbalance (DoI) is calculated by equation (8). 

Figure 8 compares the DoI results of different hybrid TSAs. It 

is noted that the LSTM-TSO-VIKOR-based TSA achieves 

better performance by providing less DoI compared to the 

other algorithms. The LSTM-TSO-VIKOR results in a high 

drop in the DoI up to 40.5% over HMSADE, 37.1% over CR-

PSO, 31.3% over HAGA, 26.7% over MOABCQ, and 15.4% 

over TSMGWO algorithms for 200 tasks in the cloud. This is 

owing to the enhancing optimization procedure using TSO for 

scheduling predictable tasks and VIKOR technique for 

unpredictable tasks independently. 

 

Figure 8 DoI vs. No. of Tasks 

4.4. Throughput 

Throughput is calculated by equation (10). 

 

Figure 9 Throughput vs. No. of Tasks 

In Figure 9, the throughput results achieved by various hybrid 

TSAs are drawn. It is realized that the LSTM-TSO-VIKOR 

creates an extreme rise in throughput up to 70% over 

HMSADE, 50% over CR-PSO, 37.8% over HAGA, 27.5% 

over MOABCQ, and 13.3% over TSMGWO algorithms for 

200 tasks in the cloud. This is because of enhancing 

exploration and exploitation of optimizing multiple objectives 

for both predictable and unpredictable tasks scheduling 

efficiently. 

4.5. Memory Utilization 

Memory Utilization is calculated by equation (12). 

Figure 10 exhibits the memory utilization results for different 

hybrid TSAs. It is noted that the LSTM-TSO-VIKOR creates 

a maximum reduction in memory utilization up to 40%, 

33.33%, 28%, 21.74%, and 14.29% over HMSADE, CR-

PSO, HAGA, MOABCQ, and TSMGWO algorithms, 

respectively for 200 tasks in the cloud. This is because the 

LSTM-TSO-VIKOR can enhance the optimization ability of 

both predictable and unpredictable task scheduling by using 

multiple objectives. 

 

Figure 10 Memory Utilization vs. No. of Tasks 

4.6. Bandwidth Utilization 

Bandwidth Utilization is calculated by equation (14). 

 

Figure 11 Bandwidth Utilization vs. No. of Tasks 

In Figure 11, the bandwidth utilization results of various 

hybrid TSAs are plotted. It is shown that the LSTM-TSO-

VIKOR-based TSA achieves a maximum reduction in 

bandwidth utilization up to 18.22%, 16.67%, 15.05%, 
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11.62%, and 7.89% compared to the HMSADE, CR-PSO, 

HAGA, MOABCQ, and TSMGWO algorithms for 200 tasks 

in the cloud. This is owing to the adoption of new 

optimization such as TSO and VIKOR for efficiently 

scheduling predictable and unpredictable tasks independently 

by predicting their runtime reliability using the LSTM model. 

Thus, it is realized that a huge improvement in the network 

performance for a varying quantity of jobs utilizing the 

proposed LSTM-TSO-VIKOR algorithm. This is because of 

improving the tradeoff between the exploration and 

exploitation ability with fewer parameters during 

optimization, as well as, hybridizing both plan-based and 

backfilling TS strategies. 

5. CONCLUSION 

In this study, the hybrid TSA was developed depending on the 

combination of the linear matching method and backfilling for 

enhancing the performance of TS in cloud computing. First, 

the LSTM network model was applied as a meta-learner for 

estimating the prediction reliability of task runtimes. Based on 

this prediction, the tasks were split into 2 categories such as 

predictable and unpredictable. Further, the predictable tasks 

were scheduled by the TSO, whereas the remaining tasks 

were backfilled by the VIKOR technique. In the end, the 

experiments showed that the LSTM-TSO-VIKOR achieved a 

noteworthy improvement in the utilization of resources and 

other requirements for task execution compared to the 

existing TSAs in cloud computing. 
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