
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 160

RESEARCH ARTICLE

A Symmetric, Probabilistic, Non-Circuit Based Fully

Homomorphic Encryption Scheme

George Asante

Department of Information Technology Education, Akenten Appiah-Menka University of Skills Training and

Entrepreneurial Development, Ghana

geosante@yahoo.com

James Ben Hayfron-Acquah

Department of Computer Science, Kwame Nkrumah University of Science and Technology, Ghana

jbha@yahoo.com

Michael Asante

Department of Computer Science, Kwame Nkrumah University of Science and Technology, Ghana

mickasst@yahoo.com

Joshua Caleb Dagadu

Department of Information Technology Education, Akenten Appiah-Menka University of Skills Training and

Entrepreneurial Development, Ghana

joscaldag@yahoo.com

Received: 04 January 2022 / Revised: 22 February 2022 / Accepted: 06 March 2022 / Published: 30 April 2022

Abstract – Traditional encryption allows encrypted data to be

decrypted before any computation could be performed on such

data. This approach could compromise the security of the data

when an untrusted party is involved in the computation. To be

able to work on data in its encrypted form, a homomorphic

encryption approach is recommended. Homomorphic encryption

allows computation to be done on data that has been encrypted

and yields the same results that would have been obtained if the

computation had been performed on the unencrypted form of

the data. Most of the Homomorphic encryption (HE) algorithms

are deterministic. These deterministic algorithms produce the

same ciphertext for a given data on different occasions. This

could allow an adversary to easily predict a plaintext from a

ciphertext. Probabilistic algorithms, however, resolve the

aforementioned challenge of deterministic algorithms. A

probabilistic encryption algorithm ensures different ciphertexts

for the same plaintext on different occasions. Another challenge

of most homomorphic encryption schemes is the way data is

encrypted. Most algorithms encrypt data bit-by-bit (i.e. circuit-

based). Circuit-based encryption makes the encryption and

decryption complex, thereby increasing the running time. To

reduce the running time, Non-Circuit based encryption and

decryption are preferred. Here, numeric data need not be

converted to binary before any encryption is done. To ensure a

very secure, efficient but simpler HE scheme, the authors have

offered a fully homomorphic encryption (FHE) scheme that is

Probabilistic, Non-Circuit based, and uses symmetric keys.

Results from the experiment conducted show that the proposed

scheme is faster than Fully Homomorphic Encryption over the

Integer (DGHV), A simple Fully Homomorphic Encryption

Scheme Available in Cloud Computing (SDC), and Fully

Homomorphic Encryption by Prime Modular Operation (SAM)

schemes. The proposed scheme has a time complexity of

O(log(n2)) and consumes less memory space. Even though HE

schemes are naturally slow, the less memory space consumed by

the proposed scheme and the time complexity of O (log(n2)),

makes the proposed scheme suitable for real-life implementation

such as auction, electronic voting, and in other applications that

make use of private data.

Index Terms – Probabilistic Encryption, Homomorphic

Encryption, Non-Circuit Based Encryption, Information

Security, Data, Symmetric Keys, Cryptography.

1. INTRODUCTION

The use of Information Technology in our everyday life poses

risks and associated threats that affect the confidentiality and

integrity of data [1]. Cryptography is highly recommended

when one wants to ensure data confidentiality, data integrity,

or authentication [2]. There are always security challenges

when an untrusted user is involved in the computation of data

[1]. With an untrusted user, the data must be worked on in its

encrypted form. Thus, the need for HE. HE helps one to

compute encrypted data without decrypting ciphertext [3].

With HE, all computations that could be performed on

mailto:geosante@yahoo.com
mailto:jbha@yahoo.com
mailto:mickasst@yahoo.com
mailto:joscaldag@yahoo.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 161

RESEARCH ARTICLE

plaintexts could also be performed on ciphertexts and yield

the same results.

Most of the HE schemes operate on binary data. These

include: [4, 5,6,7,8,9,10,11,12,13]. These schemes are

considered circuit-based and are complex in structure [9]. HE

schemes that operate on real numbers are considered to be

faster since data need not be converted to binary format

before any operation could be performed on it [14]. These

non-circuit-based schemes use simple mathematical functions

and do not require additional circuit computation overheads

thereby reducing ciphertext size and speeding up computation

time [15]. Most of the encryption schemes that operate on

binary data [4, 5,6,7,8,9,10,11,12,13] are deterministic [16] in

nature. These deterministic algorithms produce the same

ciphertext for a given data on different occasions. This could

allow an adversary to easily predict a plaintext from a

ciphertext. Probabilistic algorithms, however, resolve the

aforementioned challenge of deterministic algorithms. A

probabilistic encryption algorithm ensures different

ciphertexts for the same plaintext on different occasions.

Furthermore, the public-key cryptography technique is used

by most proposed homomorphic encryption schemes. Many

suggest that public-key cryptography is more secure than

private-key cryptography. However, public-key cryptography

is more complex and consumes more resources comparatively

[17]. Also, private-key cryptography could be secured if the

private key involved could be exchanged securely. Moreover,

some applications would inherently require a secret key [9].

Though there have been many proposed HE schemes, much

has not been exploited on an FHE scheme that is probabilistic,

symmetric [17, 18], and non-circuit based with function

privacy [19]. The main focus of this study was to secure data

using an FHE scheme. Specifically, the concern was to design

an FHE scheme that uses a probabilistic approach in

generating ciphertexts; that makes use of symmetric keys, and

that is non-circuit based. HE schemes are naturally slow. This

inhibits its use in real-life applications. The less memory

space consumed by the proposed scheme and the time

complexity of O (log(n2)) makes the proposed scheme

appropriate for real-life implementation.

This paper has been structured as follows: Related studies are

reviewed in section 2. The tools and methods used in

designing the proposed scheme are explained in section 3.

Discussion of Results was done in section 4, and finally, the

paper was concluded in section 5.

2. RELATED WORK

Since the inception of the HE scheme by Rivest, Adleman,

and Dertouzous in 1978 (Rivest et al, 1978 as cited in [1]),

there has been improvement in either speed, security,

efficiency, or simplicity of the scheme [1].

Before Gentry’s proposal of an FHE scheme in 2009[4], HE

schemes were either partial or somewhat homomorphic

encryption schemes [1]. Since then, numerous variants of

Gentry’s encryption scheme have been introduced.

For this study, this section reviews three FHE schemes:

DGHV, SDC, and SAM Schemes. The review is mainly based

on the description of algorithms, and the Time and Space

complexities of these Schemes.

2.1. DGHV Scheme

[5] Proposed DGHV Scheme in 2010 [5]. Their scheme was a

true version of Gentry’s (Gentry, 2009) scheme [14]. Their

scheme has the following components: Key generation

(KeyGen), Encryption (Encrypt), Decryption (Decrypt), and

Evaluation (Evaluate).

KeyGen: An odd integer p is generated as key, p ∈
[2n−1, 2n)

Encrypt (p, m): set c = pq + 2r + m, m ∈ {0,1}; p, q is a

very big multiple of the key and r is a smaller even number.

“2r is always smaller than p/2.” [5]

Decrypt (p, c): set m = (c mod p) mod 2

Evaluate: Given the binary circuit with ciphertexts, the

ciphertexts are added or multiplied.

The time complexity of the DGHV scheme is O(n2). The

space complexity is also O(1).

The number of homomorphic operations is limited in DGHV.

DGHV operations are restricted to binary operations. It means

DGHV works only on plaintext in bits form. Processing in

bits requires a higher number of operations in computation.

This makes the scheme slower. DGHV also uses the public-

key technique. This makes the algorithm complex with a lot

of overheads. DGHV uses a very long public key which

makes it difficult to be used in practice. DGHV scheme is,

therefore, not fit for real-life applications.

2.2. SDC Scheme

SDC scheme was proposed by [20] in 2012. Their scheme

was a version of the Gentry’s cryptosystem. Their scheme

was to ensure privacy in storing data in the cloud. SDC’s

scheme involves the effective retrieval of encrypted data. The

scheme uses only elementary modular arithmetic [20]. The

scheme has the following components:

Key Generation (KeyGen), Encryption (Encrypt), Decryption

(Decrypt) and Retrieval (Retrieval).

In Key Generation, a random odd integer P is generated as a

key. During the encryption stage, the ciphertext is generated

using the expression c = m + p + r * p * q. m ∈ {0,1}.
Where r and q are integers. The decryption stage uses the

algorithm m = c mod p.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 162

RESEARCH ARTICLE

The ciphertext is retrieved at the final stage using the

algorithm R = (ci – cindex) mod q.

The time complexity of the SDC scheme is O(n2). Similar to

the DGHV scheme, the SDC scheme also has five variables in

the encryption algorithm. So total memory requirement is 4

*5 = 20 bytes. The 20 bytes space is fixed, it does not change

in the process of executing the algorithm. The space

complexity is, therefore, O(1).

Similar to DGHV, SDC operations are also restricted to

binary data. This makes the algorithm slower since there are a

lot of operations that are performed in computation.

2.3. SAM Scheme

SAM Scheme was proposed by Sarah Shihab Hamad and Ali

Makki Sagheer in 2018. Unlike DGHV and SDC schemes that

convert plaintext to 8-bit binary format before encryption, the

SAM scheme takes the plaintext directly and encrypt using

the algorithm: c = m + r*p + p*q, where c is the ciphertext

and m is the plaintext. m ∈ [0, p − 1], p is a big prime

integer, q is a constant integer, and r is the noise [17]. The

scheme has the following components:

KeyGen: generate secret key p as a big prime integer

Encrypt(pk, m ∈ [0, p − 1]): encrypt plaintext using the

equation c = m + r*p + p*q.

Evaluate (pk, m1 ….mt, c1, …… ct): add or multiply t

ciphertexts to get ci, and then decrypt the ci.

Decrypt (sk, c): Set m=c mod p.

The time complexity of the SAM scheme is O(log(n2)).

Similar to DGHV and SDC schemes, the SAM scheme also

has five variables in the encryption algorithm. So total

memory requirement is 4 *5 = 20 bytes. The 20 bytes space is

fixed, it does not change in the process of executing the

algorithm. The space complexity is, therefore, O(1).

Though SAM’s scheme is faster than DGHV and SDC, the

number of primitive operations involved in the encryption

algorithm will increase the running time of the algorithm.

Therefore, an algorithm with less primitive operations is

preferred.

3. METHODS AND MATERIALS

This section describes the various approaches used in

achieving the stated objectives.

3.1. The Proposed Scheme

The proposed scheme takes plaintext (m) and generates two

random numbers (p and r). One of the random numbers (p) is

taken as a private key. This key (p) is used to decrypt the

ciphertext when generated. The algorithms for encryption and

decryption are discussed in Sections 3.1.2 and 3.1.3.

The scheme uses only numeric values. Therefore, a non-

numeric plaintext is converted to numeric using its ASCII

code equivalent. Thus, Plaintext in non-numeric form is

converted to its corresponding ASCII code before any

encryption could be done. For instance, a plaintext “a” is

converted to its ASCII code “65”, the 65 is then encrypted

using the appropriate algorithm. To apply the homomorphic

encryption scheme to numeric data, four basic algorithms

were used. They are Key generation, encryption, decryption,

and evaluation algorithms.

These algorithms have the following description:

KeyGen: select the secret key p to be a randomly generated

large prime positive integer. The key must have a fixed length

and must be within a given range.

Encrypt(p, m ∈ Z+): Encrypt a plaintext (m) using the

encryption equation c = m + (p ∗ r). Here c is the ciphertext,

m is the plaintext (numeric or ASCII code of a character), p is

the randomly generated large positive prime integer and r is

the noise, which is also a randomly generated large positive

prime integer.

Evaluate (c1 ….. ct): add or multiply t ciphertexts and get ci.

When ci is decrypted it yields the same results as adding or

multiplying t plaintexts.

Decrypt (p, c): decrypt ciphertext c using the decryption

equation m = c mod p.

These components of the scheme are explained in the next

sections. Section 3.1.1, 3.12, 3.13, 3.14 gives a detailed

explanation of the four algorithms.

3.1.1. The Proposed Key Generation Algorithm

The proposed key generation algorithm selects randomly a

symmetric key for the encryption and decryption. The random

selection of the symmetric key makes the encryption scheme

probabilistic. The random number selected must also be a

prime number. The key’s size depends on the number of

digits used as the parameter in the key generation algorithm.

A minimum of 10 digits is preferred. The longer the size of

the key, the more secure the key is. However, the size of the

key affects the ciphertext size.

3.1.2. The Proposed Encryption Algorithm

The proposed encryption algorithm takes the plaintext m, the

symmetric key p, and a random number r and transforms the

plaintext into ciphertext c. The inclusion of a random number

makes it difficult for an adversary to predict the plaintext even

when the symmetric key is known. The encryption algorithm

is C = m + (p * r)

The plaintext must be less than the encryption key. If the

plaintext is equal to or greater than the encryption key, the

decryption results will be undesirable. For this reason, the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 163

RESEARCH ARTICLE

encryption key must be large enough. The plaintext must also

be a positive integer. Using negative values yield wrong

results. The programmer can take care of negative values by

appending the negative sign to the decrypted results.

3.1.3. The Proposed Decryption algorithm

The proposed decryption algorithm uses modular arithmetic.

The decryption algorithm uses the symmetric key to convert

the ciphertext into plaintext. ciphertext modulo symmetric key

gives the plaintext value. That is, the remainder of dividing

the ciphertext by the symmetric key is the plaintext. m = c %

p

3.1.4. The Evaluation Operations

The evaluation operations, for example, Addition and

multiplication, are performed on ciphertext in the same

manner as it is done on the plaintext. For example, for

ciphertexts c1, c2, and c3, addition is performed as c1+c2+c3,

and multiplication is performed as c1*c2*c3. Other

computations such as comparing ciphertexts or ordering

ciphertexts could be performed on the ciphertexts. The

evaluation is simply applying the various mathematical

operations on the ciphertexts.

3.2. The Experimentation

This section deals with the implementation of the scheme.

The various components of the scheme were tested with

actual data.

3.2.1. Experimental Set-Up

All the algorithms stated in this study were implemented

using the Java Programming Language. The Integrated

Development Environment (IDE) used was NetBeans. The

codes were run on an intel® Core ™ i7-7500U CPU @ 2.70

GHz 2.90 GHz on 64-bit Windows 10 Operating System, an

x64-based processor with 8.00 GB Installed memory (RAM).

3.2.2. Key Generation

Table 1: Results of p and r Values Generated Using the Key

Generation Algorithm

Count P value r value

1 1089333481 1329746303

2 1680005731 1283849519

3 1440361501 1333286827

4 1532538439 1067249569

5 1573836631 1911291269

6 1277045633 1153954427

Math. random () method in Java was used to generate the

random numbers. Minimum and maximum values of 10-digits

long were used as arguments in the Math. random method to

serve as the range to generate the random numbers from. A

number generated was then verified as a prime. The result is

shown in Table 1.

3.2.3. Encryption

The encryption algorithm is c = m + (p*r). Assuming m = 4, p

= 1453609901 and r = 1851786169.

Then c = 4 + (1453609901 * 1453609901)

 c = 2691774709793259273

3.2.4. Decryption

The decryption algorithm is m = c % p. Assuming

c=2691774709793259273 and p =1453609901

Then m = 2691774709793259273 % 1453609901

 m = 4

3.2.5. Evaluation

The ciphertexts were evaluated the same way addition and

multiplication are performed on numeric values.

Assuming we have three numeric plaintexts m1, m2, and m3.

Let m1 =4, m2=6, and m3=8. Let the symmetric key (p) and

random number (r) be p = 1358972137; r = 1487563225. Let

c1, c2, and c3 be the ciphertext of m1, m2, and m3

respectively.

//Encryption Formulas

c1 = m1 + (p*r)

c2 = m2 + (p*r)

c3 = m3 + (p*r)

// Encrypting Plaintexts

c1 =4 + (1358972137 * 1487563225)

c2 =6 + (1358972137 * 1487563225)

c3 =8 + (1358972137 * 1487563225)

// ciphertexts

c1 = 2,021,556,974,800,861,829

c2 = 2,021,556,974,800,861,831

c3 = 2,021,556,974,800,861,833

//addition of ciphertext

adding c1, c2 and c3 will produce the following:

CombinedCiphertext = c1 +c2 +c3

CombinedCiphertext = 2,021,556,974,800,861,829 +

2,021,556,974,800,861,831 + 2,021,556,974,800,861,833

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 164

RESEARCH ARTICLE

CombinedCiphertext = 6,064,670,924,402,585,493

//multiplication of ciphertext

Multiplying c1, c2, and c3 will produce the following:

ProductCiphertext = c1 * c2 * c3

ProductCiphertext = 2,021,556,974,800,861,829 *

2,021,556,974,800,861,831 * 2,021,556,974,800,861,833

ProductCiphertext =

82614819341800972182008204407223383683642847677424

71867.

//Decrypting ciphertexts

Decrypting CombinedCiphertext will yield the following:

DecCombinedCiphertext = CombinedCiphertext mod p

DecCombinedCiphertext = 6,064,670,924,402,585,493 mod

1358972137

DecCombinedCiphertext = 18 // proof: 4+6+8 = 18

Decrypting ProductCiphertext will yield the following:

DecProductCiphertext = ProductCiphertext mod p

DecProductCiphertext =

82614819341800972182008204407223383683642847677424

71867 mod 1358972137

DecProductCiphertext = 192 // proof: 4*6*8 = 192

4. RESULTS AND DISCUSSION

This section analyzes the results obtained when the various

proposed algorithms were implemented. The main discussion

is on performance and security. Specifically, key generation

time, encryption time, decryption time, evaluation time, and

ciphertext size were measured and analyzed. A comparison

was made with other fully homomorphic encryption schemes,

in respect of time and space complexity. The algorithms were

implemented using the Java Programming Language.

BigDecimal class in Java was used to handle the large

ciphertext sizes generated. This allows for large data to be

handled well. The random () method of the Java MathClass

was used to generate the various random numbers. NetBeans

Integrated Development Environment was used to write the

codes. The codes were run on an intel® Core ™ i7-7500U

CPU @ 2.70 GHz 2.90 GHz on 64-bit Windows 10 Operating

System, an x64-based processor with 8.00 GB Installed

memory (RAM).

4.1. Performance of the Proposed SCHEME

4.1.1. Size of Ciphertext

Ciphertext size was measured by casting the ciphertext to

String and finding the length of the String. When a 10-digit p

and r are chosen, the ciphertext size is always 19-digit long.

Table 2 shows different ciphertexts of 19-digits long.

Table 2 Results of Encrypting Plaintext, 4, Several Times

Using Different Values of p and r

Count p value r value Ciphertext

1 1453609901 1851786169 2691774709793259273

2 1769358203 1712993479 3030899063754158241

3 1737304277 1235295917 2146084879964737013

4 1672281913 1179802847 1972962961944006315

5 1527127999 1194191879 1823683854599320125

6 1863357499 1832429831 3414471866985152673

4.1.2. Execution Time

Table 3 Summary of the Execution Time of the Proposed

Encryption Algorithm

Size of Plaintext Execution time (in

milliseconds)

Execution time

(in

Nanoseconds)

1 byte 0.0002 200

6 bytes 0.0012 1200

12 bytes 0.0024 2400

1 kilobyte 0.2048 2048

1.4 kilobyte 0.28672 28672

Figure 1 Execution time of the Proposed Encryption

Algorithm

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 165

RESEARCH ARTICLE

The execution times were measured using Java

System.nanoTime(). To make the time useful, the time needs

to be generated before and after the statements whose

execution time needs to be measured. The difference between

the two times generated is the execution time of that Java

statement. Table 3 and Figure 1 summarize the execution time

of the proposed algorithm using different sizes of plaintext.

4.1.3. Time and Space Complexities

The time complexity of the encryption algorithm could be

deduced as follows:

Assuming n is the plaintext’s size. Where n ∈ Z+. Using the

encryption algorithm c = m + (p*r), Let T be the time

complexity. The time complexity of c will be T(c) = T(m) +

T(p*r).

All inputs are in decimal digits. The time complexity of

decimal digit is Ο(log(n))[17].

Therefore, T(c) = T(m) + T(p*r)

 = O(log(n)) + O(log(n2))

 ≡ O(log(n2))

The time complexity of the encryption algorithm is, therefore,

O(log(n2)).

There are four variables in the encryption algorithm. c, p, r,

and m ∈ Z+. All four variables are integer data types; hence

these variables will consume a memory space of 4 bytes each.

The total memory space required will, therefore, be 4 *4 = 16

bytes. The 16 bytes space is fixed, it does not change in the

process of executing the algorithm. The space complexity is,

therefore, O(1)

4.2. Security of the Proposed Scheme

4.2.1. Random Prime Number Generation

To make the proposed scheme withstand a Chosen Plaintext

Attack (CPA), large random prime numbers p and r were

generated. By Prime Number Theorem, there are nearly
x

ln x

prime numbers. Where p≤ x [20]. Making p and r random

prime numbers, thwart the effort of the attacker to guess the p

when having the ciphertext.

One benefit of using a prime as a symmetric key is that there

will be only one probable solution when a prime number is

used [14]. That is, two plaintexts can never generate the same

ciphertext.

4.2.2. Symmetric Key Length

The length of the symmetric key is large enough to withstand

a brute force attack. The symmetric key length is Ten decimal

digits which are 80 bits long. Even though the key length

could be increased to say 12-decimal digits or 15-decimal

digits, a very long key length could also affect the

multiplication operations. Multiplication operation generates

longer ciphertext compared to the Addition operation. It is,

therefore, appropriate to keep the length moderate.

4.2.3. One Way Security

One of the securities of the proposed scheme is one-way

Security. The knowledge of a given ciphertext does not allow

adversaries to retrieve the decryption key. The reason is that

the ciphertext does not disclose anything about the decryption

key. Therefore, there is one-way security. That is, when an

adversary has a ciphertext, an adversary would find it difficult

to recover the associated plaintext.

4.2.4. The Indistinguishability Under Chosen-Plaintext

Attack (IND-CPA)

The proposed scheme’s security could also be described using

the indistinguishability property of symmetric encryption. A

Symmetric encryption scheme is usually said to possess an

indistinguishability property if when given a ciphertext of one

of two plaintexts, an adversary will find it difficult to guess

which of the two plaintexts generated the given ciphertext

[21, 14, 13]. The proposed scheme is Indistinguishable under

a chosen-plaintext attack (IND-CPA). Because when given a

ciphertext, an attacker will find it difficult to guess its

corresponding plaintext due to the randomization of the

symmetric key.

4.2.5. Hardness of Large Integer Factorization

Factoring large integers is difficult. The principle of the

hardness of large integer factorization explains that Factoring

N in polynomial time is unattainable if Large Integer

Factorization is unattainable [20]. To ensure that the

encryption and decryption key is secure, large integer values

p and r were generated.

4.3. Comparison of the Proposed Scheme to Other Schemes

This section compares the performance of the proposed

scheme with the other schemes such as DGHV, SDC, and

SAM Schemes. The comparison is mainly based on the Time

and Space complexity of these Schemes.

4.3.1. Comparison of Time Complexities of Proposed

scheme, SAM, SDC, and DGHV Schemes

The time complexity for the encryption algorithm of the

proposed scheme is O(log(n2)). This is a logarithmic time

which is quite more efficient than exponential and quadratic

time. That is, as quadratic time multiplies the time it takes to

run n inputs, the logarithmic time divides. Therefore, reducing

the time complexity. From the review, the time complexity of

the DGHV and the SDC encryption schemes is O (n2). This is

a quadratic time. It could be easily deduced that the proposed

scheme is faster than the DGHV and the SDC schemes. The

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 166

RESEARCH ARTICLE

time complexity of the proposed scheme is the same as the

SAM scheme. It could be deduced from Table 4 that the

proposed scheme has less execution time comparatively. Even

though the proposed scheme has the same time complexity as

SAM, it is faster than SAM. This is due to a few primitive

operations that are performed in the proposed scheme. The

proposed scheme is, therefore, suitable for most real-life

implementation.

4.3.1.1. Comparison of Space Complexities of the Proposed

Scheme, SAM, SDC, and DGHV Schemes

From the above analysis, even though the proposed scheme

and SAM scheme have the same Time complexity, the

proposed scheme is more efficient than the SAM scheme due

to the number of primitive operations involved in the SAM

Scheme.

Unlike DGHV, SDC, and SAM schemes which have five

variables each in its encryption algorithm, the proposed

scheme has four variables in the encryption algorithm. c, m, p,

and r. The four variables are all integer types; hence they will

consume a memory space of 4 bytes each. The total memory

space required is, therefore, 4 *4 = 16 bytes. The 16 bytes

space is fixed, it does not change in the process of executing

the algorithm. The space complexity is, therefore, O(1). The

Summary of the comparison is shown in table 4 and Figure 2.

It could be concluded that the memory requirement of the

proposed scheme is lesser than DGHV, SDC, and SAM

schemes which take a total memory requirement of 4*5 =20

bytes. The less memory requirement contributed to the speed

of the algorithm.

Table 4: Summary of Results

Scheme DGHV[5] SDC[14] SAM[14] PROPOSED

SCHEME

Encryption

Algorithm
𝑐 = 𝑚 + 2𝑟 + 𝑝 ∗ 𝑞 𝑐 = 𝑚 + 𝑝 + 𝑟 ∗ 𝑝 𝑐 = 𝑚 + 𝑟 ∗ 𝑝 + 𝑝 ∗ 𝑞 𝑐 = 𝑚 + 𝑝 ∗ 𝑟

Time Complexity 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(log (𝑛2)) 𝑂(log (𝑛2))

Space Complexity O(1) O(1) O(1) O(1)

Memory

Requirement
20 𝑏𝑦𝑡𝑒𝑠 20 𝑏𝑦𝑡𝑒𝑠 20 𝑏𝑦𝑡𝑒𝑠 16 bytes

Operation Bit operation Bit operation Decimal operation Decimal

operation

Execution time

(12 bytes)

1118 [14] 1180 [14] 1007 [14] 0.0024

Figure 2 Comparison of the Execution Time of DGHV [5], SDC [14], SAM [14], and PROPOSED SCHEME

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 167

RESEARCH ARTICLE

5. CONCLUSION

The main focus of this study was to secure data using a

probabilistic, symmetric, and non-circuit-based fully

homomorphic encryption scheme. The scheme works with

numeric data. Therefore, plaintext in non-numeric format has

to be converted to numeric before encryption. Symmetric keys

were used for both encryption and decryption. The keys were

large prime integers generated randomly from a given range

of integers. Generating a random large prime integer as a

symmetric key makes the encryption probabilistic. The

randomness also improves upon the security of the scheme

and makes it withstand a Chosen Plaintext Attack. The

encryption scheme possesses Indistinguishability property.

The scheme uses fewer memory spaces as compared to

DGHV, SDC, and SAM schemes. The time complexity of the

proposed scheme is less than DGHV, and SDC but the same

as SAM. However, the proposed Scheme runs faster than

SAM because the SAM scheme has more primitive

operations. Even though homomorphic encryption is seen to

be slow in performance, the less execution time of the

proposed scheme makes it appropriate for real-life

implementation in most data-centric applications. The running

time of the encryption algorithm of the proposed scheme is O

(log (n2)). The running time of the proposed scheme is

quadratic. Further studies could be conducted to improve the

scheme’s running time to linear, that is O (log(n)).

REFERENCES

[1] Asante, G., Hayfron-Acquah, J.B., & Asante, M. (2021). Evolution of

Homomorphic Encryption. International Journal of Computer

Applications 183(29):37-40.
[2] Kahate, A. (2013). Cryptography and network security. Tata McGraw-

Hill Education.

[3] Al Badawi, A. Q. A., Polyakov, Y., Aung, K. M. M., Veeravalli, B., &
Rohloff, K. (2018). Implementation and performance evaluation of

RNS variants of the BFV homomorphic encryption scheme. IEEE

Transactions on Emerging Topics in Computing. 2018: pp. 70-95
[4] Gentry, C. (2009). A fully homomorphic encryption scheme. Ph.D.

thesis, Stanford University.

[5] Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010)
Fully homomorphic encryption over the integers," in Advances in

Cryptology {EUROCRYPT 2010, pp. 24{43, Springer, 2010.
[6] Gentry, C., & Halevi, S. (2011, May). Implementing gentry’s fully-

homomorphic encryption scheme. In Annual international conference

on the theory and applications of cryptographic techniques (pp. 129-

148). Springer, Berlin, Heidelberg.

[7] Brakerski, Z., & Vaikuntanathan, V. (2011, August). Fully

homomorphic encryption from ring-LWE and security for key-
dependent messages. In Annual cryptology conference (pp. 505-524).

Springer, Berlin, Heidelberg.

[8] Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (Leveled)
fully homomorphic encryption without bootstrapping. ACM

Transactions on Computation Theory (TOCT), 6(3), 1-36.

[9] Gupta, C. P., and Sharma, I. (2013, October). A fully homomorphic
encryption scheme with symmetric keys with application to private

data processing in clouds. In 2013 Fourth International Conference on

the Network of the Future (NoF) (pp. 1-4). IEEE.
[10] Cheon, J. H., Coron, J. S., Kim, J., Lee, M. S., Lepoint, T., Tibouchi,

M., & Yun, A. (2013, May). Batch fully homomorphic encryption

over the integers. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques (pp. 315-335).

Springer, Berlin, Heidelberg.
[11] Coron, J. S., Lepoint, T., & Tibouchi, M. (2014, March). Scale-

invariant fully homomorphic encryption over the integers.

In International Workshop on Public Key Cryptography (pp. 311-328).
Springer, Berlin, Heidelberg.

[12] Dasgupta, S., & Pal, S. K. (2016). Design of a polynomial ring-based

symmetric homomorphic encryption scheme. Perspectives in
Science, 8, 692-695.

[13] Ahmed, E. Y., and Elkettani, M. D. (2019), An Efficient Fully

Homomorphic Encryption Scheme, International Journal of Network
Security, Vol.21, No.1, PP.91-99, Jan. 2019 (DOI:

10.6633/IJNS.201901 21(1).11)

[14] Hamad, S.S & Sagheer, Ali. (2018). Design of Fully Homomorphic
Encryption by Prime Modular Operation. Telfor Journal. 10. 118-122.

10.5937/telfor1802118S.

[15] Xiao, Liangliang & Bastani, Osbert & Yen, I-ling. (2012). An

Efficient Homomorphic Encryption Protocol for Multi-User Systems.

IACR Cryptology ePrint Archive. 2012. 193.

[16] Bellare, M., Fischlin, M., O’Neill, A., & Ristenpart, T. (2008, August).
Deterministic encryption: Definitional equivalences and constructions

without random oracles. In Annual International Cryptology
Conference (pp. 360-378). Springer, Berlin, Heidelberg.

[17] Bali, P. (2014). Comparative study of private and public-key

cryptography algorithms: A Survey. IJRET: International Journal of
Research in Engineering and Technology, 2319-1163.

[18] Nurhaida, I., Ramayanti, D., & Riesaputra, R. (2017). Digital signature

& encryption implementation for increasing authentication, integrity,
security, and data non-repudiation. vol, 4, 4-14.

[19] Zhang, L., Zheng, Y., & Kantoa, R. (2016, June). A review of

homomorphic encryption and its applications. In Proceedings of the
9th EAI International Conference on Mobile Multimedia

Communications (pp. 97-106).

[20] J. Li, D. Song, S. Chen, X. Lu, “A Simple Fully Homomorphic
Encryption Scheme Available in Cloud Computing”, In Proceeding of

IEEE, (2012), pp. 214-217.

[21] Das A., Dutta S., Adhikari A. (2013) Indistinguishability against
Chosen Ciphertext Verification Attack Revisited: The Complete

Picture. In: Susilo W., Reyhanitabar R. (eds) Provable Security.

ProvSec 2013. Lecture Notes in Computer Science, vol 8209. pp. 347-
356Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

41227-1_6.

Authors

Mr. George Asante is a Senior Lecturer and

the Head in the Department of Information

Technology Education at the Akenten Appiah-
Menka University of Skills Training and

Entrepreneurial Development, Kumasi -

Ghana. His research areas include Information
Security and Education.

Prof. J.B Hayfron-Acquah is an Associate

Professor in Computer Science at the

Department of Computer Science in the
Kwame Nkrumah University of Science and

Technology. His research interests include

Image Processing, Pattern Recognition,
Artificial Intelligence, and Information

security.

https://doi.org/10.1007/978-3-642-41227-1_6
https://doi.org/10.1007/978-3-642-41227-1_6

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212332 Volume 9, Issue 2, March – April (2022)

ISSN: 2395-0455 ©EverScience Publications 168

RESEARCH ARTICLE

Prof. Michael Asante is an Associate

Professor in Computer Science at the
Department of Computer Science in the

Kwame Nkrumah University of Science

and Technology. His research areas
include Computer Security, Cyber

Security, and networking.

How to cite this article:

Joshua Caleb Dagadu holds a Ph.D. in

Computer Science and Technology from
the University of Electronic Science and

Technology of China (UESTC). He is

currently a Lecturer of Computing and
Information Technology at the Akenten

Appiah-Menka University of Skills

Training and Entrepreneurial Development
(AAMUSTED). He has a research interest

in Information security, Artificial

intelligence, and Telemedicine.

George Asante, James Ben Hayfron-Acquah, Michael Asante, Joshua Caleb Dagadu, “A Symmetric, Probabilistic, Non-

Circuit Based Fully Homomorphic Encryption Scheme”, International Journal of Computer Networks and Applications

(IJCNA), 9(2), PP: 160-168, 2022, DOI: 10.22247/ijcna/2022/212332.

