
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 1

RESEARCH ARTICLE

Performance Evaluation of SHA-3(KECCAK) on

ARM Cortex-A9 and Comparison with ARM 7TDMI

and Cortex-M4

Pooja Kaplesh

Department of Computer Science and Engineering, Chandigarh University, India.

pooja.e7943@cumail.in

Published online: 04 February 2020

Abstract – Cryptography is the main area which deals with

security. Cryptographic hash functions are essential elements of

cryptography which is helpful for various security application

areas. This paper presents cryptography, cryptographic hash

functions, their properties, applications and some popular

cryptographic hash standards. In this paper, KECCAK (SHA-3)

algorithm has been tested on ARM based platforms (Cortex-A9)

and analyzed its performance on the same. Comparative study is

also discussed between Cortex-A9, Cortex-M4 and ARM7TDMI

to check on which ARM platform KECCAK performs well.

KECCAK has strong design construction that is “sponge

construction” which differentiates it from other SHA-3

candidates.

Index Terms – Cryptography, ARM, KECCAK (SHA-3).

1. INTRODUCTION

This era may be termed as Data Age (like storage age and ice

age). We need to implement security at each step to secure the

data. Thousands of millions of data travel over the network

for accomplishing successful transmission of data sent across

the world. This data needs an assurance that the content sent

must not be altered or accessed by any unauthorized party.

And the area that deals with security issues of data is

Cryptography. Cryptography is a field which is useful for

planning, designing and implementing the cryptographic

systems or cryptosystems. These systems contain different

strategies for encryption and decryption purpose. The role of

cryptography is to give secure solutions to a set of parties who

wish to do a distributed task and don't confide in one another.

The information is secured as: An original information or

message that is to be encrypted is called plaintext and after

applying encryption, the coded or encrypted message obtained

is called cipher text [1]. So, Encryption or encipherment is the

process of conversion of plaintext to cipher-text and the

reverse process i.e. restoring the plaintext from cipher text is

called Deciphering (decoding) or Decryption. At the same

time, a cryptanalyst is concerned with the designing of attack

methodologies that can break a cryptographic algorithm, for

example, unauthorized or third person access to secret data or

information. Handbook of Applied Cryptography lists out the

basic security services provided by cryptography which are

[3]:

1.1. Confidentiality

This service assures that private data remains confidential i.e.

the data sent across the network aren’t disclosed to the

adversary.

1.2. Authentication

This service assures the identity of all users want to access

system or resources.

1.3. Authorization

This service assuring that a certain user should have

permissions to access a system or to perform any function.

1.4. Data Integrity

Data Integrity assuring that data is not modified illegally.

1.5. Non-Repudiation

This assuring against a person that denying a data or a

communication that is originated by that person only.

In cryptography, mainly three basic cryptographic schemes

are used namely symmetric cryptography systems (also called

secret key cryptography), secondly, asymmetric cryptography

systems (also named as public-key cryptography), and also

hash functions or standards. Secret or Symmetric key

cryptography provides confidentiality or privacy and Public-

key Cryptography provides means for user authentication or

verification and non-repudiation. On the other side, Hash

standards or functions are also used in number of security

related applications.[1] This paper describes about various

cryptographic hash functions its categories and types. Section

2 explains about different type of Hash Functions and its

applications. Section 3 focus is on KECCAK Hash algorithm

its sponge structure, features and moreover its strength and

weaknesses. In section 4, purpose of using ARM platform is

discussed along with its various variants like Cortex-M4,

Cortex-A9 and ARM7TDMI etc. ARM is considered among

more powerful and highly used processor. Reason to select

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 2

RESEARCH ARTICLE

IAR ARM workbench is also discussed. In section 5

methodology, tools and techniques are defined like CCStudio-

v5 and IAR workbench. These tools are used to analyze the

performance of KECCAK algorithm. Section 6 discuss about

results obtained of KECCAK (in tabular and graphical form)

performance analysis (in cycles per byte) on Cortex-A9. In

section 7, a discussion on KECCAK performance on Cortex

A9, ARM 7TDMI and Cortex-M4 is done to understand its

performance on various ARM variants. Section 8 discuss

about conclusion of performance comparison of KECCAK.

2. CRYPTOGRAPHIC HASH FUNCTIONS

Hash Function or hash algorithm is an important tool in

cryptography and is used to achieve various security

objectives such as Data Integrity, Message authentication and

Digital Signatures. Hash Function in Cryptographic is an

algorithm which takes variable size messages (M) as input

and generates a fixed size message as output (h), called hash

digest(hash value) or message digest (MD). Hash functions

are introduced in cryptography in the 1976 by Diffie and

Hellman [16]. The difference between Hashing and

Encryption is that Hashing process is basically a one-way

operation means it is not feasible to recover the actual data

from the message digest or hash value. But Encryption is a

two-way process which converts a plaintext into a cipher-text

and at receiver side the cipher-text is transformed into its

original plaintext, which is called decryption. Figure 1

illustrate about basic block diagram of Hash Function which

takes a variable length input (M) and produces a fixed length

output (h).

Figure 1: Block Diagram of Cryptographic Hash Function

2.1. Security Requirements of Hash Algorithm

 A hash algorithm or function should be easy to calculate.

 Preimage Resistance: For each and every output of a hash

function, it is mathematically impractical to obtain any

input hash for that output.

 Weak collision/Second Preimage Resistance: It is

mathematically inapplicable for a given input, to extract a

second input hash for the same output.

 Collision Resistance: It is mathematically impractical to

obtain two colliding inputs, i.e., z and z' such that z'! = z

with h(z) = h(z'). This collision based characteristic of a

hash algorithm is also known as Strong Collision

Resistance. [3]

2.2. Cryptographic Hash Functions Standards

In all hash functions or algorithms, input is seen as a group or

sequence of n bit blocks. This sequence of input is processed

in an iterative fashion one block at a time to generate a output

of n-bit hash function. There are many hash standards in

cryptography like MD4, MD5 and SHA family etc.[4][5] All

have their own construction e.g. MD5 and SHA-1, SHA-2 is

totally based on the design of Merkle-Damgard construction.

To design a collision resistant hash function, Merkle and

Damgard presented an iterative structure that depends on fix

length input collision resistant compression function (f). Till

1980s, there were few hash functions designed and most of

them were broken very quickly after their introduction.

During 1990s, various hash functions/standards were

proposed or implemented, but very few of them have been

broken [11]. Table 1 shows some of the Cryptographic Hash

Standards along with their structure type and output length as:

Name

Output Length(in

bits)

Structure Type

SHA-3(

KECCAK)

Arbitrary Sponge Construction

Skein Arbitrary Unique Block

Iteration

SHA-512 512 Merkle and Damgard

SHA-384 384 Merkle and Damgard

SHA-256 256 Merkle and Damgard

SHA-224 224 Merkle and Damgard

SHA-1 160 Merkle and Damgard

MD5 128 Merkle and Damgard

MD4 128 Hash Standard

MD2 128 Hash Standard

Tiger 192/160/128 Hash Standard

Whirlpool 512 Hash Standard

Table 1: Some Cryptographic Hash Functions Standards

2.3 Application Areas of hash functions

Hash functions have wide range of applications based on

Symmetric key as well as on Asymmetric keys. Bart Preneel

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 3

RESEARCH ARTICLE

in his Ph.D thesis has defined many applications few of

which are highlighted here [13].

2.3.1. Authenticate Users

While authenticating or verify the identity of a user at the time

of login process, hash functions are used. To avoid access to

system, the entered passwords are saved in message digest (or

called hash value) form. When user attempts to login and put

the password, the hash or message digest of these passwords

is calculated and then compared with the message or hash

digest saved in the database. If the digest value matches, then

user is considered to be authenticated and then login process

is done successfully, otherwise user is not considered to be

authenticated.

2.3.2. Digital Signature Implementation

To achieve the goal of authenticity and non-repudiation,

digital signatures play an important role. Only MAC and Hash

Functions cannot fulfill the security objective of Digital

Signatures. To avoid contention between source and receiver

Diffie and Hellman realized the requirement for a message

dependent digital signature (or fingerprint).

Hash algorithms play a very useful role to optimize the use of

digital signature schemes. Signature must have same size as

message if hash functions are not used. The advantage is that

there is no need to generate signature for the whole

transmitted message which needs to be authenticated instead

the sender only signs the hash digest of the message by using

a hash function(or signature generating algorithm). After that

the sender/source sends the message and the signature to the

intended receiver. When receiver gets this information he

compute the digest or hash value of the message with the help

of same hash function as used by sender and verifies the

signature by comparing digest values with the help of

signature verification algorithm. This technique basically

saves a lot of computational overhead included to sign and

verify the messages in the absence of hash functions [14].

2.3.3. Digital Time Stamping

Most of documents like text, audio and video are provided in

digital form nowadays. A lot of various simple tools and

techniques are provided to modify these digital documents.

Therefore there is need of a mechanism to verify when these

documents were created to last modified. Hash functions and

digital signatures are possible techniques that could be used to

implement these mechanisms. To index data in hash tables, to

determine duplicate data and uniquely identify files, for

fingerprinting, for generating random numbers and as

checksums to determine incidental data corruption, Hash

functions play essential role. They are mostly used in all

places in the field of cryptology where effective information

processing is desired. [40].

3. SECURE HASH FAMILY (SHA)

SHA is a class or family of cryptography hash algorithms or

functions that is released by National Institute of Standards

and Technology (NIST) organization. This SHA family

mainly refers to:

SHA-0: It was federal information processing standard (FIPS)

180 under name SHA, released by NIST in 1993.[24]

SHA-1: It is updated version of SHA. SHA-1 is basically a

160-bit hash function which is similar to MD5 algorithm [17].

SHA-2: It contains four hash functions, each having different

block sizes, called SHA-256, SHA-224, SHA-384 and SHA-

512[18].

SHA-3: After the attacks on SHA-0 and SHA-1 were

published, NIST felt need of a more secure standard which

can overcome the weaknesses of earlier hash standards. Two

open workshops and a public consultation period was planned

to achieve the goal. NIST on November 2, 2007 made an

open call for SHA-3 competition to define a new crypto-

graphic hash family [18] [25].

NIST got outstanding feedback from worldwide

cryptographic community throughout the selection process.

On the basis of internal assessment of the second-round

competitors and the public feedback, NIST selected Grøstl

Blake, JH, KECCAK, and Skein (CSRC, 2010) as finalists of

competition on December 9, 2010. KECCAK is finalized as

the winner of SHA-3 family on October 3, 2012[39].

3.1. KECCAK Specification

3.1.1. Design Principle

KECCAK is a cryptographic hash algorithm implemented by

Joan Daemen , Guido Bertoni , Gilles Van Assche and

Michael Peeters. [34]. This algorithm is a group of sponge

functions/construction. The basic role of sponge construction

is that it can produce outputs (hash digests) of any size length

and therefore a single function may be used to generate

different output lengths. KECCAK works in two stages:

absorption and squeezing [10]. It makes use of a state ‘b’

throughout the hashing process and the main methods of the

algorithm consist of the sponge inherited functions pad,

absorb and squeeze.

These functions rely on the permutation f denoted by

KECCAK-f[]. There are seven KECCAK- f permutations are

applied on this as Keccak-f[b], with values b=25, 50, 100,

200, 400, 800 and 1600. In SHA-3 contest, the largest

permutation like Keccak-f[1600] is proposed and smaller

permutations are useful to implement in constrained

environments. Every permutation comprises of the iteration or

cycle of a basic round function. The selection of operations is

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Fingerprint_(computing)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 4

RESEARCH ARTICLE

restricted to bitwise operations like AND, NOT, XOR, and

rotations. [6] [24]

3.1.2. Specifications

Guido Bertoni and team members [21] has defined that

KECCAK is based on sponge construction having members

KECCAK[r, c] use two parameters named:

 Bit-rate (r)

 Capacity (c)

The input data or message is fragmented into pieces of length

r bits each. The importance of r and c is that higher values of

capacity(c) improve its security level and likewise higher

values of bit rate(r) improve its speed [21]. The combined bits

of r and c define the width (b) of the KECCAK- f permutation

(also called width of state in the sponge structure and are

confined to values in {25, 50, 100, 200, 400, 800, 1600}. The

state is managed as an array representation of 5×5 lanes, each

having length w ∈ {1, 2, 4, 8, 16, 32, 64}. The suggested

length for each lane is 6. The total number of rounds

algorithm has, depends upon the width of permutation, and

calculated using nr = 12+2l that is 24 rounds for KECCAK-

f[1600].[28]

3.1.3. Sponge Construction

Cayrel P.L and his team members [29] have defined the

design of sponge construction consisting of a fixed

permutation function (f) taking arbitrary or variable length

input and outputs. This construction is based on following

steps:

 Firstly, reset the state (combination of r and c bits) to

initial value zero.

 To make input message length multiple of r bits, Pad or

insert extra bits in input message.

 Absorbing phase: In this phase, the r bits of each block (pi)

are XORed with the first r bits of the state, and then

forwarded to permutation function f. When all input

blocks are processed, construction is switched to the

squeezing phase.

 Squeezing phase: The first r(bit rate) bits of the state are

reverted as output block (zi) when all blocks got processed

in the absorbing phase. On the state this process is

continued till all the blocks are processed to get required

output length. The final c bits of the state are modified by

permutation function f only, but not by XOR-operation in

the absorbing phase. These bits are additionally never used

as output in the next squeezing phase.

In Figure 2, Pi is the message blocks, function f defines the

permutation or compression function, and Zi in squeezing

phase are output blocks of the hash function.

Figure 2: The Sponge Construction [21]

3.1.4. Proposals for the KECCAK standards

According to the requirement of NIST, the candidate

algorithm should hold at least four different output length

variants like n ∈ {224, 256, 384, and 512}. Hence, the

following four fixed-output-length variants are defined:

Table 2: Proposed Parameters for Algorithm

Table 2 defines input and output variants of KECCAK

algorithm. In addition, KECCAK is also proposed with

default parameters, where one may reduce the output to get

the desired output length. For this arbitrary output bit-rate is

taken as 1024 and capacity is as 576 [28].

3.1.5. KECCAK- f Permutations

The KECCAK-f function takes the current state as input and

performs a number of calls to the underlying permutation f.

Each call updates the state and passes it as argument on to the

next call. Each call is known as a round and the number of

rounds is calculated by the permutation width b as nr = 12 +

2l, where b = 25w and w = 2l. The Permutation works in five

steps named as: theta, chi, pi, rho and iota. These permutation

steps are repeated in each round of KECCAK permutation

[33]. All these steps operate on the state (b) so it is necessary

to introduce about state and its parts.

3.2. Strengths and Weaknesses

3.2.1. Strengths

The sponge construction has many advantages over other

constructions using a compression function and these are as

follows [29]:

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 5

RESEARCH ARTICLE

a. Variable length output: The sponge construction generates

outputs of any length according to user’s choice using a

single function.

b. Simple Construction: The sponge construction is having a

simple design. It is a very secure function and has proved

secure against generic attacks.

c. Flexibility: Security of the sponge function can be

enhanced at the expense of speed by managing bit-rate for

capacity utilizing the same permutation function.

d. Functionality: A sponge construction can be used as a

MAC function, stream cipher and a pseudorandom bit

generator because of its large length outputs and proven

security limits with respect to general attacks.

e. This algorithm has better performance in terms of

hardware implementation.

f. KECCAK has a special support for parallel

implementation.

g. This algorithm is considered to be slowest of the NIST

finalists but still possess one of the smallest outlines, with

small implementation, and more than sufficient

performance in real world. [33]

3.2.2. Weaknesses

a. KECCAK is slowest in software implementation amongst

the SHA-3 finalists.

b. Since KECCAK follows sponge construction it is secure

to upper limit of 2c/2 where c is the capacity. So if a higher

capacity is chosen, naturally higher security but a decrease

in performance [28].

4. ARM (ADVANCED RISC MACHINES)

ARM is a 32-bit processor depends on RISC (Reduced

Instruction Set Computer) computer structure and a product

of ARM Holdings. The first ARM processor was developed in

1985 at Acorn Computers Limited named as Acorn RISC

Machine until the emergence of Advanced RISC Machines.

To widen the utilization of its technology ARM Limited was

renowned as a separate company in 1990.[9] And it has

developed to turned into the biggest microchip IP

organization on the planet and the ARM processor covers

each region of microprocessor applications, from extremely

low cost installed microcontrollers, up to exceptionally elite

multi-center processors. ARM core is not a single core, but an

entire group of structures having identical design principles

and a basic instructions set design [10].

ARM has three classes of processor: Classic, Embedded and

Application based. ARM has developed a variety of

processors that are combined into different classes according

to the core they operate on. Some of them are Cortex-M3,

Cortex-A9, Cortex-M4, Cortex-R4 and ARM7 as shown in

figure 3. Among the selected platforms ARM7TDMI is the

oldest but still covers most of the market and besides that

Cortex-M3, Cortex M4 and Cortex A9 support majority of

Hashing Applications.[7] This paper presents the assessment

of Keccak on Cortex A9. Therefore some features of Cortex-

A9 are highlighted as:

Cortex-A9 is one of the application specific processors

supported by a huge set of functions to provide a high level

performance and low-power solution over both general

purpose and application specific designs. This processor runs

32-bit ARM instructions, 8-bit Java bytecodes in Jazelle state

and 16-bit and 32-bit sized thumb instructions. It has shipped

various digital TV, smart phones, consumer and enterprise

applications. Key functionalities of the Cortex-A9 core are

[32]:

 High performance floating point structure module

 To maximize performance and minimize power

consumption, power optimized L1 caches combine

minimum access latency techniques.

 Ensures reliable development of security applications

like electronic payment and digital rights

management applications called TrustZone

Technology.

 Use Cortex-A9 NEON Media Processing Engine

(MPE) to enhance application specific performance.

Figure 3 below shows various variants of ARM processor

along with its performance parameter and capacity.

Application based cortex processors are better in performance

than classic and embedded processors.

Figure 3: Classes of ARM Processor [10]

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 6

RESEARCH ARTICLE

4.1. IAR workbench for ARM

IAR Workbench provides an integrated development

environment to design and debug ARM-based embedded

applications. It provides extended support for various ARM

devices, and hardware debug systems and produce high

efficient code [42]. It supports various ARM cores. Some of

them are: Cortex-A9, Cortex-R7, Cortex-M3, ARM11, ARM9

and ARM7TDMI. It is a high-performance platform, C/C++

compiler and debugger tool suitable for applications that are

based on 8-bit, 16-bit and 32-bit microcontrollers. Following

are the several reasons to choose the IAR Embedded

Workbench [35]:

 Reliable and most commonly used embedded tool in the

market.

 Fully integrated software debugger with performance

assessment and power visualization.

 The market's broadest range of processors - more than

7400 devices

 It complies with industry standards, such as C++, and is

frequently used in certified applications development.

 Clean, robust user interface made up for embedded

development with an easy workflow in mind.

 Excellent Performance in Code Quality and

Optimizations in Speed and Size.

5. METHODOLOGY

Tools of data collection and assessment

The tools used are:

 IAR Embedded Workbench for ARM

 CU(LM4F232H5QD-Evaluation Board)

 CCStudio-v5 (Code Composer Studio)

When the code was debugged on IAR Embedded Workbench

in Simulator mode, there were multiple facilities available

through the interface to see the performance of the code. To

obtain the cycles/byte and the total time taken by the function

running in the machine environment, I chose Function profiler

and Timeline. KECCAK was given 1418 sets of input bytes

(from 1 byte to 4288 bytes), on Cortex A9 environment. The

screenshot are as follows:

5.1. Cortex-A9

Figure 4 above shows various performance evaluation

parameters of KECCAK on Cortex-A9 for 1 byte input. Here

main focus is on execution time which is approximate 668

cycles per byte.

Figure 5 shows execution time for 4288 input byte which is

approximate 654 cycles per byte.

Figure 4: 1 Byte Input for Cortex-A9

Figure 5: 4288 Byte Input for Cortex-A9

6. RESULTS

KECCAK has variable output sizes: 224, 256, 384, 512-bits. I

have analyzed its performance for output size 512 (KECCAK-

512). The results for Cortex-A9 are calculated on simulator

and when the actual machine is used for implementation, the

results may vary. I have calculated results on Cortex-A9

simulation and results for Cortex M4 and ARM7TDMI are

taken from reference [42]. KECCAK-512 gives an average

speed of 657 cycles/byte on Cortex-A9. For evaluating the

performance of algorithm, I have given 1418 no. of input

bytes (from 1 byte to 4288 byte). Then I formed a set of 50

inputs and calculated their average access time in cycles/byte.

The execution time for 1 input byte is 668.2222222

cycles/byte and for input byte 4288 it is

654.092853cycles/byte. The table and graph representation

between number of bytes and cycles/byte depicts that with the

increasing input size, the execution time of the algorithm was

reduced.

Table 3 below shows performance of KECCAK-512 in cycle

per bytes of set of 50 inputs. Here, some of input values

provided to KECCAK-512 to calculate its execution time on

IAR workbench tool for Cortex-A9.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 7

RESEARCH ARTICLE

6.1. Results Obtained on Cortex A9

Sr. No. Input

Size

(Bytes)

Hash() Access Time

(Cycles)

Cycles per byte

1 1 384896 668.2222222

2 2 384901 668.2309028

3 3 384900 668.2291667

4 4 384915 668.2552083

5 5 384915 668.2552083

6 6 384914 668.2534722

7 7 384913 668.2517361

8 8 384918 668.2604167

9 9 384920 668.2638889

10 10 384919 668.2621528

11 20 384925 668.2725694

12 30 384921 668.265625

13 40 384929 668.2795139

14 50 384931 668.2829861

15 60 384927 668.2760417

16 70 384939 668.296875

17 80 761633 661.1397569

18 90 761638 661.1440972

19 100 761636 661.1423611

20 110 761641 661.1467014

21 120 761641 661.1467014

22 130 761646 661.1510417

23 140 761653 661.1571181

24 150 1138251 658.7100694

25 160 1138260 658.7152778

26 170 1138257 658.7135417

27 180 1138263 658.7170139

28 190 1138259 658.7146991

29 200 1138260 658.7152778

30 250 1514878 657.4991319

31 300 1891494 656.76875

32 350 1891499 656.7704861

33 400 2268118 656.2841435

34 450 2644733 655.9357639

35 500 2644741 655.937748

36 550 3021355 655.6759983

37 600 3397968 655.4722222

38 650 3774571 655.3074653

39 700 3774589 655.3105903

40 750 4151199 655.1766098

41 800 4527815 655.0658275

42 850 4527822 655.0668403

43 900 4904443 654.9736912

44 950 5281046 654.8916171

45 1000 5281063 654.8937252

46 1390 7540757 654.5796007

47 2178 11683858 654.3379256

48 2965 15826331 654.1968833

49 3753 19969415 654.1344012

50 4288 22605449 654.092853

Table 3: Cortex-A9 Simulator Results for KECCAK-512

Figure 6 shows the graphical representation of Keccak-512

results in cycle per bytes. The execution time reduced with

increased input size.

Figure 6: Input Byte vs. Cycles/Byte for Cortex-A9

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 8

RESEARCH ARTICLE

7. KECCAK PERFORMANCE ON CORTEX A9, ARM

7TDMI AND CORTEX-M4

Table 4 below gives an average results obtained on Cortex

A9, ARM 7TDMI and Cortex-M4. On Cortex-A9, KECCAK-

512 has an average speed of 657 cycles per byte (as discussed

in result section). These results are calculated on simulator

(IAR workbench). On Cortex M4 and ARM7TDMI,

KECCAK-512 takes 739 cycles per byte and 213 cycles per

byte respectively [42]. So in comparison I can say that

Keccak-512 performs well on Cortex A9 than ARM7TDMI

(simulation results). It gives better performance on Cortex

M4.

Table 4: Average Processor Speed

8. CONCLUSION

ARM is one of the major players in the current mobile device

market. Increasing market value of ARM processors direct us

to choose the platform for the observations and testing of

performance of the algorithm on them. According to the

results presented in result section (both tabular and graphical

form), KECCAK-512 works faster on Cortex A9 with

increased input size. These results are calculated on

simulation but if evaluation is analyzed on hardware results

may vary. While comparing to other ARM variants,

KECCAK-512 gives better result on Cortex M4 hardware or

evaluation board but works slow on ARM7TDMI simulation.

Cortex-A9 is observed fast as compared to ARM7TDMI. As

number of input size is increasing, there is decrease in

cycles/byte. So, in conclusion, KECCAK-512 does not give

good results on ARM7TDMI but it performs well on Cortex-

A9.

REFERENCES

[1] Diffie, W. & Hellman, M.E. (1976) “New directions in Cryptography”

IEEE Transactions on Information Theory, Vol. IT-22, No.-6.

[2] Demgard M, R.C. (1989). Advances in Cryptology - CRYPTO '89
Proceedings, Lecture Notes in Computer Science Vol. 435. A Certified

Digital Signature. G. Brassard, Springer-Verlag.

[3] Preneel B. &Dobbertin H. (1990) “The Cryptographic Hash Function
RIPEMD-160” , Katholieke Universiteit Leuven, ESAT-COSIC K.

Mercierlaan 94, B-3001 Heverlee, Belgium 2 German Information

Security Agency, Germany.
[4] Rivest R. (1990)“The MD4 message digest algorithm”, MIT

Laboratory for Computer Science; http://tools.ietf.org/html/rfc1186.

[5] Rivest R. (April, 1992) “The MD5 message digest algorithm”, IETF
RFC 1321; www.rfc-editor.org/rfc/rfc1320.txt.

[6] Federal Information Processing Standards Publication 180-1(April

1995) “Announcing the Secure Hash Standard”, NIST,17,Retrieved
from: http://www.umich.edu/~x509/ssleay/fip180/fip180-1.htm

[7] Technical Reference Manual ARM7TDMI (2001), Rev3, April-

Retrieved from
http://infocenter.arm.com/help/topic/com.arm.doc.../DDI0210B.pdf

[8] Federal Information Processing Standards Publication 180-2 , (August

2002) “Specifications for the Secure Hash Standard”, Retrieved from:
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-

08-01/documents/fips180-2.pdf

[9] Andrew N. Sloss, Dominic Symes(2004) ARM System Developer’s
Guide- Designing and Optimizing System Software, Morgan

Kaufmann Publishers

[10] Andrew N. Sloss & Chris Wright “ARM System Developer’s Guide-
Designing and Optimizing System Software”(2004), Retrieved from

https://doc.lagout.org/electronics/Game%20boy%20advance/ARM_B

OOKS/ARM_System_Developers_Guide-
Designing_and_Optimizing_System_Software.pdf.

[11] Preneel B. (2003) “Assessment and Design of Cryptographic Hash

Functions” https://www.cosic.esat.kuleuven.be/publications/thesis-

2.pdf

[12] Damgård I.,(2004),”A Design Principle for Hash Functions", Retrieved

from https://www.iacr.org/archive/eurocrypt2001/20450165.pdf.
[13] Preneel B. (2005)“Cryptographic Hash Functions and MAC

Algorithms Based on Block Ciphers” Katholieke Universiteit Leuven
(Belgium).

[14] Stallings W. (2006), Cryptography and Network Security, Pearson

Education, Inc, Edition – 5
[15] Gauravaram P.(2007), “Cryptography hash functions:Cryptassessment,

design and its applications” Information security Institute, Queensland

university of technology.
[16] Von D. & Knopf C.(November 2007) “Cryptographic Hash

Functions”, Retrieved from https://www.thi.uni-

hannover.de/fileadmin/forschung/arbeiten/knopf-da.pdf.
[17] Manuel, S. & Peyrin, T. (2008). Lecture Notes in Computer Science

Collisions on SHA-0 in One Hour, Retrieved from:

https://link.springer.com/chapter/10.1007/978-3-540-71039-4_2
[18] White paper ARM “The ARM Cortex-A9 Processors” (September

2009),Document Revision 2.0.,Retrieved from

www.arm.com/files/pdf/armcortexa-9processors.pdf
[19] Kelsey J, Nandi M. & Paul S. (September 2009) “Status Report on the

First Round of the SHA-3 Cryptographic Hash Algorithm

Competition”- NIST.
[20] Arpan M. (Augus,2010) “Efficient software implementation of SHA-3

candidates on 8-bit AVR microcontrollers”, Indian Institute of

Technology, Kanpur.
[21] Bertoni G., Daemen J. & Michaël Peeters et.al (June, 2010) “Keccak

sponge function family main document” version 2.1.

[22] Ros A. & Sigurjonsson C. (2010) “Assessment of SHA-3 Candidates
CubeHash and keccak” Bachelor of Science Thesis Stockholm,

Sweden.

[23] Technical Reference Manual Cortex-M4 (2010) Revision r0p1, June-
Retrieved from

http://infocenter.arm.com/.../DDI0439C_cortex_m4_r0p1_trm.pdf

[24] Mourad Gouicem, (2010) “Comparison of seven SHA-3 candidates
software implementations” Retrieved from

https://eprint.iacr.org/2010/531.pdf

[25] Andreicheva L.(2011) “Attacks on SHA-3 candidate functions: Keccak
and Blue MidnightWish (BMW)” Department of Computer Science B.

Thomas Golisano College of Computing and Information Sciences,

Rochester Institute of Technology Rochester, New York, 3rd January.
[26] Bertoni G., Daemen J. & Michaël Peeters et.al (2011)” The KECCAK

SHA-3 submission”, STMicroelectronics and NXP Semiconductors.

[27] Bertoni G., Daemen J. & Michaël Peeters et.al (January, 2011)” The
KECCAK SHA-3 References”, STMicroelectronics and NXP

Semiconductors.

[28] Bertoni G., Daemen J. & Michaël Peeters et.al(2011) “Cryptographic
sponge functions” Version 0.1 .

Processor Average Speed (Cycles/Byte)

Cortex A9 657

 ARM7TDMI 739[43]

Cortex M4 213 [41]

http://tools.ietf.org/html/rfc1186
http://www.rfc-editor.org/rfc/rfc1320.txt
http://www.umich.edu/~x509/ssleay/fip180/fip180-1.htm
https://doc.lagout.org/electronics/Game%20boy%20advance/ARM_BOOKS/ARM_System_Developers_Guide-Designing_and_Optimizing_System_Software.pdf
https://doc.lagout.org/electronics/Game%20boy%20advance/ARM_BOOKS/ARM_System_Developers_Guide-Designing_and_Optimizing_System_Software.pdf
https://doc.lagout.org/electronics/Game%20boy%20advance/ARM_BOOKS/ARM_System_Developers_Guide-Designing_and_Optimizing_System_Software.pdf
https://link.springer.com/chapter/10.1007/978-3-540-71039-4_2
http://www.arm.com/files/pdf/armcortexa-9processors.pdf
http://infocenter.arm.com/.../DDI0439C_cortex_m4_r0p1_trm.pdf
https://eprint.iacr.org/2010/531.pdf

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/191796 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 9

RESEARCH ARTICLE

[29] Cayrel P.L, Hoffmann G. & Schneider M, (2011),“GPU

Implementation of the Keccak Hash Function Family”, CASED –
Center for Advanced Security Research Darmstadt, Germany

[30] Chen R. (2011), “New Techniques for Cryptassessment of

Cryptographic Hash Functions”, the Senate of the Technion, Israel
Institute of Technology, Ph. D. Thesis.

[31] Manuel S.,(2011) “Classification and Generation of Disturbance

Vectors for Collision Attacks against SHA-1,Retrieved from:
https://link.springer.com/article/10.1007/s10623-010-9458-9 .

[32] Cortex™-A Series Version: 2.0 Programmer’s Guide (2011) Received

from
http://www.dsi.fceia.unr.edu.ar/...0184%20Curso%20CORTEX%20

[33] Federal Information Processing Standards Publication 180-4,

(February 2011) Draft “Announcing the Secure Hash Standard (SHS)”,
, Retrieved from:

https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=910977

[34] R. Sobti, S.Anand & Dr. G. Geetha, (2012): “Performance comparison

of Grøestl, JH and BLAKE – SHA-3 Final Round Candidate Algoritms

on ARM Cortex M3 Processors” Computer Science, Lovely

Professional University, Punjab, India.
[35] Getting Started with IAR Embedded Workbench” Tool 6.4, (April

2012), GSEW-3,IAR Systems. Retrieved from
http://supp.iar.com/FilesPublic/UPDINFO/005691/common/doc/EW_

GettingStarted.ENU.pdf

[36] National Institute of Standards and Technology (NIST), (2012) “SHA-
3 Selection Announcement”. Retrieved from :

https://www.nist.gov/news-events/news/2012/10/nist-selects-winner-

secure-hash-algorithm-sha-3-competition
[37] Sadhu S. ,“Keccak discussion” 9th January(2012)

http://spiegel.cs.rit.edu/~hpb/public_html/Lectures/20112//S_T/Src/32/

keccak.pdf

[38] Sterling J. G., (2014) “Hash Functions In Cryptography” Master of

science thesis
shodhganga.inflibnet.ac.in/jspui/bitstream/10603/199858/1/aroy-

thesis.pdf.

[39] Chris Bentivenga, Frederick Christie & Michael Kitson ,
(2017),“Keccak Final Paper” , Retrieved from

https://technodocbox.com/66430335-

Network_Security/Cryptographic-hash-functions.html.
[40] Preneel B. “Cryptographic Hash Functions: An Overview” ESAT-

COSIC Laboratory, K.U.Leuven K. Mercierlaan 94,. Retrieved from:

https://www.esat.kuleuven.be/cosic/publications/article-289.pdf
[41] W. Stornetta & S. Haber (2017), “How to time-stamp a digital

document”, Journal of Cryptology, vol. 3(2), pp. 99-111,.

[42] Rajeev Sobti and Geetha Ganesan, (2018) “Performance Evaluation of
SHA-3 Final Round Candidate Algorithms on ARM Cortex–M4

Processor” Retrieved from https://www.igi-

global.com/gateway/article/190857.

Author

Pooja Kaplesh is working as Assistant Professor in

department of Computer Science and Engineering at
Chandigarh University. She did her B. Tech –M. Tech

from Lovely Professional University, Punjab. She has
published four research papers in international journal

and published a chapter in IGI Global. Her research

areas are mainly networking and cryptography &
Network Security.

http://supp.iar.com/FilesPublic/UPDINFO/005691/common/doc/EW_GettingStarted.ENU.pdf
http://supp.iar.com/FilesPublic/UPDINFO/005691/common/doc/EW_GettingStarted.ENU.pdf
https://www.igi-global.com/gateway/article/190857(2018)
https://www.igi-global.com/gateway/article/190857(2018)

