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Abstract – In the recent years, many organizations have turned to 

cloud technology to support their information technology services. 

The cloud servers are therefore increasingly holding huge and 

sensitive information belonging to diverse groups of individuals 

and companies. Additionally, some organizations employ the 

cloud to provide them with online backup services. One of the 

most outstanding requirements for cloud customers is availability 

– the customers must be able to access their information and other 

resources stored in the cloud any time and from anywhere on the 

globe. This means that there should be efficient network design 

such that any delays are averted. The connection between the 

customer and the cloud can therefore be regarded as delay 

senstive. Network congestions often lead to delays and packet 

losses. Transmission control protocol employs four congestion 

control algorithms – slow start, congestion avoidance, fast 

retransmit and fast recovery, all of which fail to meet the 

requirements of delay intolerance. Transmission control protocol 

pacing has been suggested as a possible solution to delays and 

packet dropping in computer networks. However, the 

conventional pacing is static in nature, meaning that constant 

pauses are introduced between packet transmissions to prevent 

bursty transmissions which can lead to delays at the receiver 

buffers. This paper therefore presents a congestion aware packet 

routing where the delay period is hinged on the prevailing 

network conditions. This dynamic pacing algorithm was designed 

and implemented in Spyder using Python programming language. 

It employed probe signals to gather network intelligence such as 

the applicable round trip times of the network. Thereafter, this 

network intelligence was employed to tailor the paces to these 

network conditions. The results obtained showed that this 

algorithm introduced longer paces when more packets are 

transmitted and shorter paces when few packets are transmitted. 

In so doing, this new algorithm gives enough time for large 

packets to be delivered and smaller paces when few packets are 

sent.  The analysis was done in terms of bandwidth utilization 

efficiency, round trip times and congestion window size 

adjustments. The congestion window – time graphs and 

throughput – time graphs showed that the developed dynamic 

pacing algorithm adjusted quickly to network congestions hence 

ensuring that the network is efficiently utilized by averting delays. 

Index Terms – Cloud Computing, Congestion, Network Delays, 

Algorithm, TCP Pacing. 

1. INTRODUCTION 

Routing algorithms are important in cloud communications in 

the specification of procedures to be employed in the transfer a 

data packet from the source to the destination. As [1] explain, 

to make an accurate routing decision, the routing algorithm 

must choose some criteria for making routing decision. Some 

of such metrics include bandwidth, number of hop counts, and 

transmission power. In this paper, congestion, which is another 

critical metric influencing the routes that packets take, is 

investigated. In networks with redundant communication paths 

with varying levels of congestion, the packets should be made 

to utilize the least congested channel. 

Packet loss is a serious issue in computer networks. These 

losses can be occasioned by malicious packet dropping or link 

error. As such, transmitting a data packet from the source and 

ensuring that it has arrived at the destination correctly is a 

challenging exercise. Presently, Internet and bandwidth are 

very valuable and limited resources in networks [2]. As a result, 

optimal bandwidth utilization is indispensable so as to support 

service stability, good quality of service and ensure steady 

quality of experience for users connections. Many techniques 

have therefore been proposed to address this challenge.  

The conventional TCP’s congestion control mechanisms can 

result in bursty transmissions on modern high-speed networks. 

This has a harmful impact on overall network efficiency. One 

possible solution to this problem is to uniformly space or pace 

network data during an entire round-trip time such that packets 
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are not sent in a burst. In [3] a quantitative evaluation of TCP 

pacing is provided. The output showed that pacing provides 

better fairness, throughput, and lower drop rates in some 

circumstances. However, the results also indicated that pacing 

has significantly worse throughput than regular TCP in other 

situations. This is because of its susceptibility to synchronized 

losses and its habit of delaying congestion signals. As such, 

mechanisms to eliminate these challenges are required. 

In cloud communications, the company’s telecommunications 

applications, switching and storage services are hosted by a 

third-party [4]. To access these resources, the organization uses 

the public Internet. In so doing, the cloud offers on-demand 

access to a shared pool of computing resources such as 

computer networks, servers, storage, applications and services. 

Due to the rapid uptake of this technology, many organizations 

have their data centers located in the cloud to facilitate real time 

sharing of these resources among departments and even 

stakeholders, who might be interested in company 

informational resources, such as suppliers and customer [5]. 

This means that there is always real time connections 

established between the company and its data center resources. 

Security and availability of the cloud resources then becomes 

important for the survival of the cloud-dependent 

organizations. 

As a result of the huge uptake of the cloud technology, there 

exists an increasing demand for physical devices such as 

servers to support the increasing number of operations among 

the hosted customers. Virtualization comes handy by allowing 

one physical hardware such as a server to support multiple 

operating systems and hence users [6]. Additionally, cloud 

services support distributed processing which can be used to 

improve company efficiency [7]. Due to the real time 

communication required between customer premise equipment 

(CPE) and the cloud servers, delays in this setup will then 

translate to huge financial losses among many organizations 

that depend on the cloud services for their operations. 

Congested networks often lead to packet loss and delays. As 

[8] point out, cloud can be employed to provide cross-

enterprise biometric identification. Therefore, delays in the 

authentication process can effectively lock out cloud 

stakeholders, or cause inconveniences. Further [9] explains that 

organizations normally utilize hybrid cloud, which can be a 

combination of private, community or public, to enable the 

connection of collocations, managed and dedicated services 

with cloud resources. Once again, this requires faster 

communication among these hybrid models.  

To avert delays and network congestions, congestion control 

algorithms have been devised to deal with congestion and 

packet losses. Some of these algorithms include slow start, 

congestion avoidance, and fast recovery and fast retransmit 

[10]. Due to the limitations of these algorithms such as the 

inefficient utilization of the available bandwidth and the 

reliance on explicit receiver notifications to infer packet losses 

and control the transmission rate, researchers have come up 

with other techniques such as TCP pacing to try and reduce 

packet losses and congestions in networks. 

In TCP connections, at the beginning of each round-trip time, 

TCP senders infuse bursts of packets into the network, which 

often stress the network queues. The effects are packet losses, 

reduction in throughput and increased latency. Since data 

centers are characterized by burst traffic and small buffer sizes, 

then such effects can be catastrophic. As such, TCP pacing 

serves to reduce the burstiness of TCP traffic and to alleviate 

data buffering in routers. However, there is no agreement 

among the researchers on the overall benefits of pacing. The 

model developed in [11] demonstrated that for a particular 

buffer size, as the number of concurrent flows is increased 

beyond a Point of Inflection (PoI), non-paced TCP outperforms 

paced TCP.  

In delay tolerant networks (DTNs), it is not easy to preserve 

stability in end to end networks due to long communication 

delay and high mobility of network.  In the Store and Carry 

mechanism employed for these networks, a node can receive 

and store the messages in the buffer and wait for the chance to 

send them. This therefore calls for the definition of a new 

reliable and efficient routing strategy. Hence, [12] proposed 

hybrid routing algorithm, Spray and Wait with EBR (S&W 

with EBR), which is a combination of both Encounter Based 

Routing (EBR) protocol and Spray and Wait Routing (S&W) 

protocol. The simulation results demonstrated that the 

proposed routing scheme achieved better performance in terms 

of Delivery Probability, Overhead Ratio, Dropping Packets and 

Goodput. 

The only issue in the internet is the tolerances towards delay 

that often leads to disconnections when the delay is above 

tolerance level. Delay Tolerant Networks (DTN) sustain longer 

delays by allowing disconnected operations. Routing protocols 

such as Epidemic routing protocols and Spray and Wait have 

been designed specifically for DTNs. In [13], a comparison of 

these two routing protocol based on end-to-end delay, packet 

delivery ratio and bundle hop count is provided. The results 

obtained indicated that epidemic routing performed well. 

However, if the buffer size is set dynamically, then packet 

delivery ratio of epidemic routing can be further enhanced. 

This study builds on the current study on TCP pacing by 

incorporating the DTN dynamism in epidemic routing, based 

on the round trip times instead of buffer sizes, in delay sensitive 

networks (DSNs). The developed algorithm is similar in 

approach to Spray and Wait, only that this depended on the 

network round trip times. The idea was to reduce the delays 

that are inherent in the current TCP pacing, which sometimes 

makes non-paced TCP connections to outperform paced 

connections. 
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2. RELATED WORK 

Many researchers have devised techniques for eliminating or at 

least reducing packet losses occasioned by network 

congestions. In   [14] an adaptive auto-tuning of TCP pacing 

that adjusts the pacing speed dynamically is suggested. It is 

based on the network situation that is complicated by static and 

manual techniques. To achieve this, two types of dynamic 

pacing (congestion window pacing, and estimated available 

bandwidth pacing) were introduced and merged with BIC TCP 

congestion control at the sender.  

To prevent packet losses that lead to performance deterioration, 

burst transmission were suppressed, available bandwidth was 

estimated and the excess growth of the congestion window size 

was restricted. The results indicated that this approach 

improved the TCP performance in parallel TCP 

communication.  

A simple technique that evades bursty transmissions has been 

suggested by [15]. Instead of utilizing timers, this technique 

employs acknowledgements the first connection receives to 

clock packet transmissions of the second connection over the 

course of the first RTT when the next connection joins the 

network. On the same breadth, acknowledgements of the first 

and second connections are utilized to clock packet 

transmissions of the third connection. 

A study by [16] developed a Discrete Delay Function (DDF for 

establishing new intermediate node in wireless sensor networks 

(WSN), and then forwarding packets through this best 

intermediate node. In addition, a handshaking technique was 

utilized to determine the node for forwarding the packets, then 

broadcasting this node to the rest of the nodes. In so doing, 

other nodes do not have to redo this next node determination, 

thereby saving the other nodes’ power and energy. In the 

conventional WSN, energy is wasted in routing through the 

intermediate nodes and congestion (and hence delays) occurs 

during the routing process.  

In their paper, [17] describes a performance problem in Data 

Transfer Nodes (DTNs) regarding a fast sender overwhelming 

a slow receiver. Consequently, packets get dropped, leading to 

poor performance. Moreover, slow firewalls, under-buffered 

switches, or other network devices that cannot handle high 

speed transmissions can also lead to packet losses, whose 

retransmissions can lead to time wastage. Therefore, [17] 

developed a simple tuning daemon at the sender that can 

identify flows during congestion, and then instructs the Linux 

kernel to adjust those flows to a rate that the network and 

receiver can handle. 

The desire to have more bandwidth for data transmission led to 

the development of all-optical network core. However, owing 

to the intrinsic constraints of this optical technology, only 

routers with small packet buffers are viable for 

interconnections.  The efficient operation of such small-buffer 

networks can be assured by making traffic as less bursty as 

possible. In [18], a packet pacing mechanism is proposed that 

can smooth traffic bursts. The theoretical analysis showed that 

this scheme can provide an assurance that queue length of 

routers is BIBO stable.  

In an effort to boost the web surfing speed and avert delays, 

Google has come up with a multiplexing protocol called Quic 

UDP Internet Connections (QUIC). It operates at the transport 

layer and runs over User Datagram Protocol (UDP and is 

optimized to be utilized for HTTP/2 connections [19]. Its goal 

is to trim down end-to-end latency and works best (compared 

to TCP) for slow connections with high latency.  

A novel cooperative transmission control mechanism, referred 

to as TCP-polite rate control (TPRC), is proposed by [20]. This 

technique is hinged on cooperative determination of new 

congestion indicator as a substitute for drop ratio and round-

trip time. Here, cooperative measurement is employed to 

identify congestion metric of network. Afterwards, this value 

is fed back to rate-based pacing mechanism. In so doing, the 

transmission rate is kept at the lower bound of available 

bandwidth. The output showed that TPRC scheme 

outperformed TCP and TCP-friendly rate control protocol in 

terms of fast-start, efficiency, and fairness. 

3. PROPOSED CONGESTION AWARE ALGORITHM 

An experimental research design using the simulation approach 

was adopted in this paper. The cloud communications were 

simulated by means of server virtualization, in which the 

Wamp server was employed to store the requested resources. 

The pseudo-code for the developed algorithm is illustrated in 

Algorithm 1. As the pseudo-code demonstrates, the first step 

was the starting of the algorithm after which the number of 

packets to be sent and the window size were determined.  

Provided that there were packets to be sent (N>0), then the 

probe signal was sent to the cloud server to measure the round 

trip time. However, if there were no packets o be transmitted to 

the receiver, the algorithm halted. After the probe signal was 

sent to the server, the duration it took the server to respond was 

measured, and from which the RttFactor was computed. The 

RTOFactor, RTO and TCP_Pace were all calculated based on 

the sender’s own assessment of the network conditions. To 

prevent the network from entering into long delays, the TCP 

pace value was set to 20 seconds, which was a close 

approximation to the average duration the server’s responses 

took. In circumstances where the TCP paces went beyond this 

value, the corresponding packet was logged into a file for 

retransmissions. 

However, provided that TCP pace value remains below this 

threshold, the packets were sent to the server and pauses were 

made depending on the computed TCP pace value. On 

condition that the window size is equal to the number of 

packets sent so far, the algorithm terminated at this point. On 
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the other hand, if the congestion window was more than the 

number of packets sent so far, the algorithm shifted to step five, 

where probe signal were once again sent to the cloud server.  

The data flow diagram for this pseudo-code is shown in Figure 

2. As this Figure 2 illustrates, there are three fundamental 

decisions to be made during the course of execution of this 

algorithm. 

This involves whether the number of packets to be sent is 

depleted, whether the current TCP Pace exceeds the threshold 

of 20 seconds, and whether the number of packets sent so far is 

equal to the size of the congestion window. 

The coding for this algorithm was accomplished in Spyder 

using Python programming language. Figure 3 gives the source 

code for the pseudo-code and data flow diagram discussed 

above. 

 

Algorithm 1: Dynamic TCP Pacing Pseudo-Code 

The first line is the sequence of the probe data that were sent to 

the server while the second line starts the sender retransmission 

timer. The third line sets the destination server IP address and 

specifies the data to be sent over. The fourth line transfers the 

packets while the fifth line stops the retransmission timer so 

that the elapsed time for the transmission process can be 

measured. 

Moreover, the sixth line determines the value of Rtt as being 

the difference between the two sender retransmission timer 

values while the seventh line assigns this value to variable t. 

The eighth line serves to convert the measured Rtt into string 

for logging purposes. The ninth line establishes the RTTFactor 

as being the inverse of the Rtt. The tenth line transforms the 

RTTFactor to string for logging into text file. The eleventh line 

determines the RTOFactor to be 0.5, since the measured Rtt 

was for half-duplex communication. The RTO is then the 

product of the RTOFactor and the RTTFactor as illustrated in 

line twelve.  

The TCP pace on the other hand was obtained from the RTO 

by taking the Python’s Math function floor of RTO. If the value 

of the computed TCP_Pace exceeded twenty (20) seconds, the 

packet was marked and logged for retransmission. However, if 

this value was less than twenty seconds, the TCP packets were 

sent with pauses equal to TCP_Pace between them. Since this 

TCP-Pace was computed for each data in the sliding window, 

dynamism in TCP paces was achieved. 

Upon exceeding a TCP Pace of 20 seconds, the sequence 

number of the current packet is logged into a file for 

retransmissions as elaborated by the last line of Figure 3, where 

i is the sequence number of the present packet. 
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Figure 2: Data Flow Diagram of the Algorithm 
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Figure 3: Dynamic TCP Pacing Snippet 

4. RESULTS AND DISCUSSIONS 

Among the data collected in this study were received packets, 

current retransmission timeout (RTO), current round trip times 

(RTT), congestion window, throughput and TCP pace values. 

Figure 4 shows part of the results obtained. This figure shows 

that the received bytes from the cloud server were 189986 bytes 

while the current RTO value was 2.717391079 seconds. On the 

other hand, the current RTT value was 0.184000015259 

seconds. The value of the congestion window at this RTT value 

was 189986 bytes, which corresponded with the size of the 

receiver buffer window size. 

The throughput stood at 1484.265625 kilo bits per second 

transmission time while the value of the current TCP pacing 

was 2.0 seconds. To understand the implication of TCP pacing 

on congestion window and throughput, a comparison, a second 

packet transmission scenario was considered, where the server 

was probed, packets sent and network measurements 

performed as illustrated in Figure 5. Here, the first line 

indicates the number of bytes the receiver has actually obtained 

from the server. The second line was that of the retransmission 

timeout as determined from the sender assessment. For Figure 

5, when the value of the TCP pacing was 9 seconds, the values 

of the congestion window and throughput were 635592 and 

4965.5625 bytes respectively.  

Comparing these values with those obtained in Figure 4, it 

becomes clear that the developed algorithm employed longer 

TCP paces for larger packets and more throughputs while 

permitting very small TCP paces for fewer packets and less 

throughput.  
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Figure 4: Results for TCP Pacing of Two Seconds 

 

Figure 5: Results for TCP Pacing of Nine Seconds 

To establish the trend for the variation of the throughput and 

congestion window as TCP paces were varied, five observation 

instants were considered as demonstrated in Table 1. The 

values of network throughput and sender congestion window 

were observed as the values of the TCP paces were varied. The 

first column was for the calculated. 

TCP pacing value while the second column was for the 

observed network throughput in kilo bits per second. The last 

column was that of the sender congestion window, measured in 

bytes. 

As this table shows, for the third observation instant, the TCP 

pace value was 13.0 seconds and during which the throughput 

and congestion window were 7586.2578125 Kbps and 971041 

bytes respectively. For the fourth observation instant, the TCP 

pace value was 15.0 seconds while throughput and congestion 

window were 8275.921875 Kbps and 1059318 bytes 

correspondingly. The last observation instant had a TCP pace 

value of 16.0 seconds, during which the values of throughput 

and congestion window were 8809.875 Kbps and 1127664 

bytes respectively. To visualize the trend inferred herein, 

Figure 6 (a) and (b) were employed. 

 

Table 1: Variations of Throughput and Congestion Window 

against TCP Paces 

These figures assume almost the same shape, implying that 

TCP pacing affect congestion window and throughput in a 

similar version. The shape of both graphs is almost linear, 

which can be interpreted as follows: congestion window and 

throughput are directly proportional to the TCP Pacing value. 

This means that when high throughput is realized, the TCP 

paces are higher to allow the transmitted data to be received 

correctly. On the other hand, when fewer packets are sent, the 

TCP acing value is set to small values so that other packets are 

sent quickly over the same link and the network be probed 

again so that if conditions have improved, larger packets can 

be sent. This ensures efficient utilization of the communication 

link. These two graphs can be analyzed further to provide some 

predictive data for the congestion window size and throughput 

values. Figure 7 gives an illustration of how this prediction was 

achieved. 

 

(a) 
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(b) 

Figure 6: TCP Pacing against Congestion Window and 

Throughput 

Since this graph is a nearly a straight line graph, the 

relationship between throughput and the TCP paces can be 

expressed as shown in (1): 

Throughput = [RF * TCP pace]                      (1) 

Where RF is the ramp factor. 

The ramp factor for this graph was determined using (2): 

                       
𝛥 𝑌

𝛥𝑋
                                     (2) 

               =   
4

2000
                                     (3) 

This gives a value of 0.002 for the ramp factor. Therefore, at 

any observation instant, the relationship between throughput 

and the TCP paces is given by (4): 

     Throughput [Kbps] = 0.002 * TCP            (4) 

To validate this relationship, point R in Figure 5 was 

considered. At this instant, the TCP pace value was 2000. 

Therefore, according to (4), the throughput value should be 

equal to: 

Throughput [Kbps] = 0.002 * 2000               (5) 

This gives a value of 4 Kbps for the throughput, which a close 

approximation to the point where the straight line moving from 

point R cut the Y –axis, the throughput. Therefore (4) is valid. 

The implication is that TCP pace and the network throughputs 

were directly related. As such, during the periods when large 

numbers of packets are transmitted, the TCP pacing value was 

set to a large value so as to allow enough time for the delivery 

of these large number of packets. 

 

Figure 7: Throughput – TCP Paces Ramp Factor 

However,  during heavy congestion, less packets and hence less 

throughput is achieved and TCP pacing value is set to a smaller 

value so that the network is probed after a short while to 

establish whether network conditions have improved to 

facilitate the transmission of many packets. A similar approach 

was adopted for the congestion window –TCP paces graph as 

shown in Figure 8. 

 

Figure 8: Congestion Window – TCP Paces Ramp Factor 

RF  = 

       = 
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In situations where multiple redundant routes exist from the 

source to the destination, the source machine probes the 

congestion level of each of these routes. Thereafter, the TCP 

paces are set dynamically such that congested routes are 

allocated smaller TCP paces due to smaller number of packets 

that have to be sent through these links. On the other hand, for 

less congested paths, large number of packets are transmitted. 

Consequently, TCP paces are set to be a bit large so as to allow 

the successful delivery of the sent data. In so doing, the 

developed algorithm is truly congestion aware. As was the case 

for the throughput – TCP paces graph, this is a near straight line 

graph. Therefore the relationship between the congestion 

window, Cwnd and the TCP paces can be expressed as shown 

in (6): 

Cwnd = [RF * TCP pace]                            (6) 

 Where RF is the ramp factor. 

The ramp factor for this graph was determined using (7): 

                           
𝛥 𝑌

𝛥𝑋
                                   (7) 

                

         =   
5.5

400000
                                   (8) 

This gives a value of 0.00001375 for the ramp factor. 

Therefore, at any observation instant, the relationship between 

the congestion window and the TCP paces is given by relation 

(9): 

Cwnd [Bytes] = 0.00001375 * TCP Pace     (9) 

To put this relationship into confirmation, point P in Fig. 6 was 

considered. At this point in time, the TCP pace value was 

1000000. Hence, according to equation (9), congestion window 

size value should be equal to: 

Cwnd [Bytes] = 0.00001375 * 1000000     (10) 

The result of (10) is 13. 75 bytes, a very close approximate to 

14 bytes, the point where the straight line emanating from point 

P cuts the Y-axis, the congestion window. Once again, (9) has 

been validated. The next graph to be plotted was that of the 

TCP paces against the transmission time as shown in Figure 9. 

As this Figure 9 shows, the value of the TCP paces varied 

continuously during the transmission time. It further 

demonstrates that higher TCP paces were allowed for some 

transmission times while very low TCP paces were permitted 

for other transmissions.  

To put this into context, three points P, Q and R are considered. 

At point P, the TCP pace is at its highest value. Therefore, 

considering the zero-point as the reference point or the rest 

position, then A1 represents the highest amplitude and point P 

can therefore be regarded as the crest for this graph during this 

observation period. 

 

Figure 9: Variation of TCP Pacing Over Time 

On the other hand, at point Q, the graph is at its lowest position 

and the value of network TCP pace is at its least. Once again, 

taking the zero-point as the reference point, then A2 represents 

the least amplitude during the entire observation time. 

Therefore, point Q can be taken to be the trough for this graph 

during this time. 

At point R, the graph is at its midway between zero-point 

reference and the crest. As such, amplitude A3 can be regarded 

as the mean amplitude. This is because at this observation 

instant, majority of the TCP paces were above this point. 

 

Figure 10: Observation Instant-1 TCP Pacing Threshold 

     RF = 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2017/49121                             Volume 4, Issue 4, July – August (2017)  

  

 

 

ISSN: 2395-0455                                                  ©EverScience Publications   102 

    

RESEARCH ARTICLE 

This is the dynamic TCP pacing that this study sought to 

develop for cloud communications. However, from this graph, 

it was possible to establish the TCP pacing value where most 

packet delivery was assured. This was accomplished by 

determining the point where most TCP paces were above a 

given straight line that then served as the threshold value as 

shown n Figure 10. As this Figure 10 clearly demonstrates, 

point R fell exactly on this green line. 

This meant that the line moving from point R crossing the Y-

axis, the throughput axis, could serve as the threshold line and 

the value of the TCP pace where this line crossed the Y-axis 

could be considered as the threshold TCP pacing value. From 

Figure 10, this threshold TCP pace value was 10 seconds. 

At the threshold value of 10 seconds, majority of the TCP paces 

were well above this green line while only a few fell below this 

line. During the entire observation period, only at three 

observation instants A, B and C did the TCP paces went below 

the threshold line. The comparison of these three points against 

the great number of the points that were above this line led to 

the conclusion that the TCP pace of 10 seconds was established 

as the optimum TCP pacing value during the observation 

period. Using this threshold line, it was possible to cluster the 

TCP paces into two regions, labeled H and L. at region H, the 

TCP paces were large, implying that many data packets were 

transmitted at this region such that enough TCP pacing was 

carried to enable these packets to be delivered successfully.   

On the other hand, at region L, the TCP paces were less, the 

implication of which is that smaller number of packets were 

transmitted and the TCP pacing value were set to smaller 

values so that the network could be probed again to determine 

whether the conditions have improved to facilitate the 

transmission of larger number of packets. 

 

Figure 11: Observation Instant-2 TCP Pacing Threshold 

However, it was possible for this threshold value to shift during 

another set of observation instants as illustrated in Figure 11. 

This Figure 11 clearly shows that the optimum TCP value has 

now shifted to 7 seconds as majority of the TCP paces now lie 

above this new value as demonstrated by the purple horizontal 

line. 

Consequently, the optimum TCP pacing value depended on the 

prevailing network conditions. This was the dynamic TCP 

pacing that this paper was advocating for. 

5. COMPARISON WITH OTHER TECHNIQUES 

In this section, the developed congestion aware packet routing 

algorithm is compared with the latest techniques for congestion 

and delay reduction in communication networks. 

To start with, an adaptive auto-tuning of TCP pacing that 

adjusts the pacing speed dynamically introduces congestion 

window pacing, and estimated available bandwidth pacing. It 

suppresses burst transmission and restricts the excess growth 

of the congestion window size. The setback of this technique is 

that its congestion window pacing limits the data size during 

RTT period to only the size of cwnd. In addition, the estimated 

available bandwidth pacing restricts the maximum 

transmission speed to the anticipated available bandwidth at the 

last time of the packet loss. This is erroneous since network 

conditions might have improved since the last packet losses 

were detected. The proposed algorithm addresses these 

challenges by allowing transmissions speeds and data packet 

sizes to be dynamically adjusted based on the prevailing 

network conditions. 

The second techniques employing acknowledgements for 

clocking transmission rates over the course of the first RTT has 

been suggested. The challenge of this method is that the 

acknowledgements may be attacker initiated, leading to 

erroneous clocking of transmissions. The suggested technique 

averts these attacks by utilizing RTT instead of 

acknowledgements to clock transmission rates. 

On its part, Discrete Delay Function (DDF establishes new 

intermediate node in wireless sensor networks and then 

forwards packets through this best intermediate node. The only 

setback for this mechanism is that DDF requires the initial 

setting of the range, called concentric coronas. Any node in the 

network will then employ this inner corona to forward the 

packet, since it is the best intermediate node for forwarding the 

packet. On condition that no nodes could be found in a specific 

region, this function automatically searches another node in the 

next corona. The developed algorithm automatically probes for 

minimum cwnd, maximum cwnd and RTT only and then varies 

the transmission rates between these cwnd extremes. It does not 

require setting of concentric coronas. 

A simple tuning daemon installed at the sender that can identify 

flows during congestion, and then instructs the Linux kernel to 
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adjust those flows to a rate that the network and receiver can 

handle has also been employed to prevent bursty transmissions. 

The disadvantage of this technique is that it works only in 

Linux kernel which can be easily modified and recompiled, 

being an open source. The proposed dynamic TCP pacing 

works in Linux, Windows and other platforms and does not 

necessitate communication with operating system kernels. 

Another technique for delay reduction in all fiber core networks 

has been implemented at the router level. It serves to smoothen 

traffic bursts. However, this technique is only possible for 

router implementation and not for general internetworking 

devices. The suggested approach works for al internetworking 

devices with small packet buffers and large packet buffers. 

Google’s QUIC technique runs over User Datagram Protocol 

(UDP and is optimized to be utilized for HTTP/2 connections. 

Its shortcomings are that its performance is optimized for 

HHTP/2. In addition, since it runs over UDP, it is 

connectionless, meaning that delivery of data transferred over 

it is not guaranteed. The algorithm proposed here runs on TCP, 

UDP and other communication protocols.   

A novel cooperative transmission control mechanism, referred 

to as TCP-polite rate control (TPRC) is based on cooperative 

determination of new congestion indicator as a substitute for 

drop ratio and round-trip time. On the flip side, cooperative 

measurements generate extra overhead and can easily lead to 

congestions. In this new approach, the probe signals transit 

with the payload and hence do not create extra overhead. 

6. CONCLUSIONS 

This study aimed to develop an algorithm to dynamically 

change the value of TCP paces for delay sensitive networks. In 

these networks, any delays are highly undesirable and packet 

losses can be of catastrophic effect on the ongoing 

communication. The comparison of the developed pacing 

mechanism with other delay reduction mechanism has revealed 

that this algorithm outperforms these techniques in one way or 

the other.  Since majority of the organizations host their data 

centers or online backups in third party cloud infrastructure, 

there is always a constant communication between company 

departments and the cloud data centers. In this scenario, packet 

loss or delays can negatively and adversely affect the company 

operations. This is one area where the developed algorithm can 

be effectively implemented. 

The current TCP pacing avoids bursty transmissions, which 

might be sources of delays and packet losses. However, the 

pacing does not scale with the prevailing network conditions. 

In this new dynamic TCP pacing algorithm, the sender first 

probes the network to determine the prevailing conditions and 

dynamically adjusts the TCP pauses, congestion window, and 

throughput. This novel algorithm prevents delays by sending 

only a few packets are when TCP paces are long. This gives 

enough time for larger packets travelling between the 

organization and the cloud to prevent them from being dropped 

before reaching their destinations. However, to prevent holding 

network resources for long duration, beyond a given TCP 

pacing threshold, the current packet sequence number is 

marked and logged for retransmissions. The simulation results 

obtained justifies the efficiency of this algorithm and it is 

therefore recommended for practical implementation on cloud 

environment. 
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